Manual de Utilização DU350 / DU351

Rev. F 07/2016 Cód. Doc.: MU213100

Nenhuma parte deste documento pode ser copiada ou reproduzida sem o consentimento prévio e por escrito da Altus Sistemas de Informática S.A., que se reserva o direito de efetuar alterações sem prévio comunicado.

Conforme o Código de Defesa do Consumidor vigente no Brasil, informamos, a seguir, aos clientes que utilizam nossos produtos aspectos relacionados com a segurança de pessoas e instalações.

Os equipamentos de automação industrial fabricados pela Altus são robustos e confiáveis devido ao rígido controle de qualidade a que são submetidos. No entanto, equipamentos eletrônicos de controle industrial (controladores programáveis, comandos numéricos, etc.) podem causar danos às máquinas ou processos por eles controlados em caso de defeito em suas partes e peças ou de erros de programação ou instalação, podendo inclusive colocar em risco vidas humanas.

O usuário deve analisar as possíveis conseqüências destes defeitos e providenciar instalações adicionais externas de segurança que, em caso de necessidade, sirvam para preservar a segurança do sistema, principalmente nos casos da instalação inicial e de testes.

Os equipamentos fabricados pela Altus não trazem riscos ambientais diretos, não emitindo nenhum tipo de poluente durante sua utilização. No entanto, no que se refere ao descarte dos equipamentos, é importante salientar que quaisquer componentes eletrônicos incorporados em produtos contém materiais nocivos à natureza quando descartados de forma inadequada. Recomenda-se, portanto, que quando da inutilização deste tipo de produto, o mesmo seja encaminhado para usinas de reciclagem que dêem o devido tratamento para os resíduos.

É imprescindível a leitura completa dos manuais e/ou características técnicas do produto antes da instalação ou utilização do mesmo.

A Altus garante os seus equipamentos conforme descrito nas Condições Gerais de Fornecimento, anexada às propostas comerciais.

A Altus garante que seus equipamentos funcionam de acordo com as descrições contidas explicitamente em seus manuais e/ou características técnicas, não garantindo a satisfação de algum tipo particular de aplicação dos equipamentos.

A Altus desconsiderará qualquer outra garantia, direta ou implícita, principalmente quando se tratar de fornecimento de terceiros.

Pedidos de informações adicionais sobre o fornecimento e/ou características dos equipamentos e serviços Altus devem ser feitos por escrito. A Altus não se responsabiliza por informações fornecidas sobre seus equipamentos sem registro formal.

DIREITOS AUTORAIS

Série Ponto, MasterTool, Quark, ALNET e WebPlc são marcas registradas da Altus Sistemas de Informática S.A.

Windows NT, 2000, XP e Vista são marcas registradas da Microsoft Corporation.

Sumário

1.	INTRODUÇÃO	1
	Documentos Relacionados a este Manual	2
	Inspeção Visual	2
	Suporte Técnico	
	Mensagens de Advertência Utilizadas neste Manual	
2.	DESCRIÇÃO TÉCNICA	4
	Características Gerais	4
	Entradas Digitais	5
	Saídas Digitais a Transistor (DU350)	6
	Saídas Digitais a Relé (DU351)	7
	Saídas Digitais Rápidas	8
	Entradas Analógicas	9
	Modo de Tensão	9
	Modo de Corrente	10
	Saídas Analógicas	
	Modo de Tensão	
	Modo de Corrente	
	Contadores Rápidos	
	Canal Serial Local	
	Canal Serial RS-485	
	Características de Software	
	Compatibilidade com Demais Produtos	
	Desempenho	
	Tempos de Aplicação	
	Restrições de Linguagem	
	Restrições de Software	
	Restrições de Tipos de Variaveis	15
	Tempos de Inicialização	
	Tempos de Saídas Analógicas	
	Tempos de Entradas Analogicas	
	Tempo de Ciclo	15
	Desempenno das Entradas Rapidas	
	Dimensoes Fisicas	
	Dados para Compra	
	Cádica da Dacheta	
	Coalgo do Produto Produtos Relacionados	
3.	CONFIGURAÇÃO	
	Gerais	
	Barramento	
	Entradas	
	Entradas Digitais 0/1/2	
	Entradas Analógicas	

Entradas Rápidas	23
Saídas	30
Saídas Digitais	30
Saídas Analógicas	31
Saídas Rápidas	
Saída comum de Comparador dos Contadores	42
Funções de Posicionamento	43
Funções de Inicialização ANALOG_INI e PTO_INI	44
Estrutura de Configuração para COUNT_PTO, PTO, COUNT_ANALOG e REFER_PTO	45
Funcionamento de um Referenciamento	47
Funções de Referenciamento e Posicionamento	48
Códigos de Erro	53
Comunicação	55
MODBUS Mestre	57
MODBUS Escravo	60
Protocolo genérico de comunicação	62
IHM – Interface Homem-Máquina	72
Visor Gráfico	72
Teclado	73
Edição de Variáveis	75
Teclas de Atalho	77
Telas Especiais	77
Relógio RTC	77
Exibição do relógio em telas	78
Chamadas de POUs	80
POUs acionadas por interrupção de tempo	80
Atualização Instantânea de Entradas e Saídas (AES)	80
AES_DIGITAL_INPUT	81
AES_DIGITAL_OUTPUT	81
AES_ANALOG_INPUT	81
AES_ANALOG_OUTPUT	81
AES_COUNTERS	81
AES_FAST_OUTPUTS	81
Navegação nas Telas de Usuário via teclado (NAVIGATION)	81
Habilitação de Tela (CHANGE_SCREEN)	82
Upload	82
Watchdog	83
Brownout	83
Erro de Sistema	83
Estado Seguro	84
INSTALAÇÃO	85
Instalação Elétrica	85
Conexões	
Aterramento	۵۵ ۶۸
Interfaces Analógicas	00 ۶۸
Interface com Encoders em Quadratura	
Proteção saídas digitais	
Instalação Merânica	
Instalação do Programador	
PROGRAMAÇÃO INICIAL	94
Primeiros passos com MasterTool IEC e DU350/DU351	
	94

	Conceitos de Tarefas e POUs	94
	Criando a POU PLC_PRG	94
	Compilando	94
	Download	95
	Analisando o Modelo	96
	Conversão de Projetos	97
	Modo de Simulação	
6.	MANUTENÇÃO	
	Diagnósticos	
	Diagnósticos Gerais	
	Soluções de Problemas	
	Diagnóstico Entradas Rápidas	
	Diagnóstico Saídas Analógicas	
	Diagnóstico Entradas Analógicas	
	Diagnóstico Saídas Rápidas	
	Diagnósticos MODBUS	
	Lista de Operandos Reservados	
7.	APLICAÇÕES ESPECIAIS COM SERIAL RS-232	110
	Handshake de Hardware RTS/CTS em Modems Rádio	
	Handshake de Hardware KTS/CTS em Conversores RS-485	
8.	GLOSSÁRIO	

1. Introdução

A Série Duo de controladores programáveis (CP) com interface homem máquina (IHM) incorporada é a solução ideal para aplicações que requerem controle e supervisão em um único produto e ambiente. Esta solução foi concebida através de uma arquitetura de *hardware* baseada em processadores de 32 bits e alto desempenho. Podem ser citadas como principais características do produto a velocidade de processamento da aplicação, a alta densidade de pontos E/S integrados, conectividade com outros elementos do ambiente através de duas portas seriais e os requisitos para posicionamento de eixos utilizando entradas e saídas rápidas.

A programação do produto é realizada através de uma única ferramenta, disponibilizando para isso 6 linguagens de programação de CPs, sendo 5 descritas na norma IEC 61131-3: LD, ST, IL, FBD e SFC; além de uma linguagem adicional, o CFC. O MasterTool IEC possui um importante recurso de simulação que permite ao usuário testar sua aplicação sem a utilização do equipamento, conferindo maior agilidade no desenvolvimento do programa.

Além de uma IHM que suporta textos e gráficos, teclado alfanumérico, 7 teclas de função, a inovação do produto também é constatada na sua apresentação. O Duo ID possibilita que o cliente customize o *design* do produto, com a sua marca de acordo com a aplicação e com a identidade visual da sua empresa.

Os modelos DU350 e DU351 se diferenciam pelo tipo das saídas digitais disponíveis em cada um deles. Enquanto o DU350 possui 14 saídas normais e 2 saídas rápidas configuráveis a transistor, o DU351 possui 14 saídas normais a relé e duas saídas rápidas configuráveis a transistor.

Figura 1-1. Controlador DU350/DU351

O produto tem como principais características:

- Programador MasterTool IEC com 6 linguagens de programação, sendo 5 definidas pela norma IEC 61131-3 e uma linguagem adicional
- 20 entradas digitais isoladas, sendo 6 pontos rápidos configuráveis para 2 contadores bidirecionais, 4 contadores unidirecionais ou para funções de posicionamento
- 14 saídas digitais (Relé ou Transistor) isoladas
- 2 saídas digitais isoladas a transistor configuráveis como 2 pontos de saídas rápidas PTO, PWM/VFO ou para funções de posicionamento
- 4 entradas analógicas configuráveis para 0 a 10 V, 0 a 20 mA ou 4 a 20 mA
- 2 saídas analógicas configuráveis para 0 a 10V ou 0 a 20 mA ou para funções de posicionamento
- Visor gráfico 128 x 64 Configurável pelo programador MasterTool IEC
- Teclado membrana com 25 teclas
- Relógio de Tempo Real
- 1 porta serial RS-232 para programação, protocolo MODBUS mestre e escravo e protocolo genérico
- 1 porta serial RS-485 protocolo MODBUS mestre e escravo e protocolo genérico
- Fonte 24Vdc isolada
- Memória de aplicação de 256kbytes
- Capacidade de até 1250 bytes de memória retentiva sem necessidade de bateria

Documentos Relacionados a este Manual

Para obter informações adicionais sobre a Série Duo podem ser consultados outros documentos (manuais e características técnicas) além deste. Estes documentos encontram-se disponíveis em sua última revisão em <u>www.altus.com.br</u>.

Cada produto possui um documento denominado Característica Técnica (CT), onde encontram-se as características do produto em questão. Adicionalmente o produto pode possuir Manuais de Utilização (o código do manuais são citados na CT).

Por exemplo, o módulo PO2022 tem todos as informações de características de utilização e de compra, na sua CT. Por outro lado, o PO5063 possui, além da CT, um manual de utilização.

Aconselha-se os seguintes documentos como fonte de informação adicional:

- Características Técnicas (CT) do Produto CT113100
- MasterTool IEC Manual de Utilização MU299606

Inspeção Visual

Antes de proceder à instalação, é recomendável fazer uma inspeção visual cuidadosa dos equipamentos, verificando se não há danos causados pelo transporte. Verifique se todos os componentes de seu pedido estão em perfeito estado. Em caso de defeitos, informe a companhia transportadora e o representante ou distribuidor Altus mais próximo.

CUIDADO:

Antes de retirar os módulos da embalagem, é importante descarregar eventuais potenciais estáticos acumulados no corpo. Para isso, toque (com as mãos nuas) em uma superfície metálica aterrada antes de manipular os módulos. Tal procedimento garante que os níveis de eletricidade estática suportados pelo módulo não serão ultrapassados.

É importante registrar o número de série de cada equipamento recebido, bem como as revisões de software, caso existentes. Essas informações serão necessárias caso se necessite contatar o Suporte Técnico da Altus.

Suporte Técnico

Para entrar em contato com o Suporte Técnico da Altus em São Leopoldo, RS, ligue para +55-51-3589-9500. Para conhecer os centros de Suporte Técnico da Altus existentes em outras localidades, consulte nosso site (<u>www.altus.com.br</u>) ou envie um email para <u>altus@altus.com.br</u>.

Se o equipamento já estiver instalado, tenha em mãos as seguintes informações ao solicitar assistência:

- os modelos dos equipamentos utilizados e a configuração do sistema instalado.
- o número de série da UCP.
- a revisão do equipamento, indicada na etiqueta afixada na traseira do produto.
- a versão do software executivo encontrado na tela especial INFORMATION.
- o conteúdo do programa aplicativo, obtido através do programador MasterTool IEC.
- a versão do programador utilizado.

Mensagens de Advertência Utilizadas neste Manual

Neste manual, as mensagens de advertência apresentarão os seguintes formatos e significados:

PERIGO:

Relatam causas potenciais, que se não observadas, *levam* a danos à integridade física e saúde, patrimônio, meio ambiente e perda da produção.

CUIDADO:

Relatam detalhes de configuração, aplicação e instalação que *devem* ser seguidos para evitar condições que possam levar a falha do sistema e suas conseqüências relacionadas.

ATENÇÃO:

Indicam detalhes importantes de configuração, aplicação ou instalação para obtenção da máxima performance operacional do sistema.

2. Descrição Técnica

Este capítulo apresenta todas as características técnicas dos controladores DU350 e DU351.

Características Gerais

	DU350, DU351	
Número de pontos de entrada	20 pontos de entrada digital isolados:	
digital	14 entradas digitais comuns	
	6 entradas digitais rápidas (as entradas rápidas podem ser utilizadas como contadores ou como entradas comuns)	
Número de pontos de saída	16 pontos de saída digital isolados:	
relé / transistor	2 pontos de saída rápida e 14 pontos de saída transistor-DU350	
	2 pontos de saída rápida e 14 pontos de saída relé-DU351	
Número de pontos de saída rápida	2 pontos de saídas rápidas: PTO, PWM, Freqüência ou saída digital	
Contadores rápidos	6 pontos rápidos divididos em 2 blocos configuráveis como bidirecional ou unidirecional(2 contadores por bloco)	
Entradas analógicas	4 entradas analógicas	
	0 a 10V ou 0 a 20 mA ou 4 a 20 mA	
Saídas analógicas	2 saídas analógicas	
	0 a 10V ou 0 a 20 mA	
Relógio de tempo real RTC	Sim, autonomia de 15 dias sem alimentação. Resolução de um segundo e variação máxima de 2s por dia	
Visor	Visor gráfico monocromático 128 x 64 com <i>backlight</i> e controle de contraste.	
Teclado	Teclado de membrana com 25 teclas	
Protocolo MODBUS	Mestre e escravo RS-232 e RS-485	
Carga de aplicativo em campo	Sim, através da COM 1, RS-232	
Programação on-line	Não	
Interface RS-232	Sim, uma interface com sinais de modem TXD, RXD, RTS, CTS, DTR, DSR, DCD	
Interfaces RS-485	Sim, não isolada	
Circuito de cão-de-guarda	Sim	
Tensão de alimentação externa	19 a 30 Vdc	
Consumo 24V	350 mA	
Potência	8,4 W	
Interrupção máxima de fonte de alimentação	10 ms @ 24 Vdc	
Isolação da fonte de alimentação	Sim	
Tempo de inicialização	10 segundos	
Normas atendidas	IEC 61131-3 2003	
Peso	600 g	
Temperatura de operação	0 a 60°C	
Temperatura de armazenagem	-20 a 75°C	
Proteção painel frontal	IP 54	
Proteção painel traseiro IP 20		
Dimensões	180,1 x 144,1 x 51 mm	

Tabela 2-1. Características Gerais

Notas

Relógio RTC: Em ambientes com temperatura de 25 °C. Em toda a faixa de temperatura de operação do produto o tempo de retentividade pode variar entre 10 a 20 dias.

Entradas Digitais

	DU350, DU351		
Número de entradas	20 entradas digitais divididas em 3 grupos de isolação:		
	100108 - 9 entradas – Grupo 0		
	I10I18 - 9 entradas – Grupo 1		
	I20I21 - 2 entradas – Grupo 2		
Tensão de entrada	14 a 30 Vdc em relação ao comum para estado 1		
	0 a 5 Vdc em relação ao comum para estado 1		
Corrente de entrada	5 mA (24 Vdc em relação ao comum) – Entradas comuns		
	15 mA (24 Vdc em relação ao comum) – Entradas rápidas		
Tipo de entrada	"sink" tipo 1		
Impedância de entrada	4,3 KΩ - Entradas comuns		
	1,5KΩ - Entradas rápidas		
Isolação	2000 Vac por um minuto entre cada grupo de entrada		
	2000 Vac por um minuto entre grupo de entrada e circuito lógico		
Configuração do borne	As entradas digitais estão divididas em 3 conectores (grupos de isolação) isolados entre si e isolados do circuito lógico. Cada conector é constituído de um borne para cada entrada e um borne para a referência de tensão.		
	100 a 108 – entrada 0 a 8 do grupo de isolação 0.		
	110 a 118 – entrada 0 a 8 do grupo de isolação 1.		
	I20 a I21 – entrada 0 a 1 do grupo de isolação 2.		
	C0 – comum do grupo de isolação 0.		
	C1 – comum do grupo de isolação 1		
	C2 – comum do grupo de isolação 2		
	As entradas I00 a I02 e I10 a I12, são entradas rápidas, as entradas rápidas I00 a I02 pertencem ao Bloco 0 de entradas rápidas e as entradas rápidas I10 a I12 pertencem ao Bloco 1 de entradas rápidas. As entradas rápidas podem ser utilizadas como entradas comuns.		
Tempo de resposta	0,5 ms – Entradas comuns		
	10 us - Entradas rápidas		
Indicação de estado	Pode ser visualizado nas telas padrões do produto		

Tabela 2-2. Características Entradas Digitais

Notas

Tempo de resposta: O tempo máximo de resposta para entradas digitais comuns será o tempo de resposta mais o tempo máximo de ciclo.

Saídas Digitais a Transistor (DU350)

	DU350	
Número de saídas comuns	14 saídas digitais a transistores divididas em 2 grupos de isolação:	
	Q02 a Q07 – 6 saídas – Grupo 0	
	Q10 a Q17 – 8 saídas – Grupo 1	
Corrente máxima por ponto	0,5 A	
Tipo de saída	Transistor "source"	
Tempo de comutação	600 μs	
Freqüência máxima de chaveamento com carga	250 Hz, com carga externa mínima de 12500 Ω	
Indicação de estado	Pode ser visualizado nas telas padrões do produto	
Proteções	Diodo TVS em todas as saídas a transistor	
Tensão de operação	10 a 30 Vdc	
Isolação	2000 Vac por um minuto entre cada grupo de saída a transistor	
	2000 Vac por um minuto entre grupo de saída a transistor e circuito lógico	
Impedância de saída	500 mΩ	
Configuração do borne	As saídas digitais à transistor estão divididas em 2 conectores(grupos de isolação). Cada conector é constituído de um borne para cada saída, um borne para o contato comum(alimentação) e um borne de referência 0V.	
	Q02 a Q07 – saída a transistor 2 a 7 do grupo de isolação 0	
	Q10 a Q17 – saída a transistor 0 a 7 do grupo de isolação 1	
	C5 – 0V grupo de isolação 0.(compartilhado com as saídas rápidas)	
	C6 – Alimentação grupo de isolação 0. (compartilhado com as saídas rápidas). Tensão máxima 30 Vdc	
	C7 – 0V grupo de isolação 1	
	C8 – Alimentação grupo de isolação 1. Tensão máxima 30 Vdc	

Tabela 2-3. Características das Saídas Digitais a Transistor

Notas

Corrente máxima por ponto: As saídas a transistor não possuem proteção contra sobre-corrente, em caso de necessidade de proteção das saídas deve ser utilizado fusível externo ao produto. **Configuração do borne**: O grupo de isolação 0 possui duas saídas rápidas a transistor(Q00, Q01).

Saídas Digitais a Relé (DU351)

	DU351	
Número de saídas	14 saídas digitais a relé divididas em 2 grupos de isolação:	
	Q02 a Q07 – 6 saídas – Grupo 0	
	Q10 a Q17 – 8 saídas – Grupo 1	
Corrente máxima por ponto	1 A	
Tipo de saída	Relé normalmente aberto	
Carga mínima	5 mA	
Vida útil esperada	10x10 ⁴ operações com carga nominal	
Tempo máximo de comutação	10 ms	
Freqüência máxima de chaveamento	0,5 Hz máximo com carga nominal	
Indicação de estado	Pode ser visualizado nas telas padrões do produto	
Tensão máxima(C6,C8)	30 Vdc grupo de isolação 0	
	30 Vdc grupo de isolação 1	
	240 Vac grupo de isolação 1	
Isolação	2000 Vac por um minuto entre cada grupo de saída	
	2000 Vac por um minuto entre grupo de saída e circuito lógico	
Resistência de contato	< 250 mΩ	
Configuração do borne	As saídas digitais a relé estão divididas em 2 conectores(grupos de isolação). Cada conector é constituído de um borne para cada saída, um borne para o contato comum a todos os relés do mesmo conector e um borne de 0V (somente utilizado em saídas a transistor).	
	Q02 a Q07 – saída a relé 2 a 7 do grupo de isolação 0	
	Q10 a Q17 – saída a relé 0 a 7 do grupo de isolação 1	
	C5 – não utilizado para as saídas a relé	
	C6 – comum de todos relés do grupo de isolação 0, e utilizado para alimentar as saídas rápidas. Na opção de saída tipo sink (0 Vdc no pino C6) as saídas Q00 e Q01 não poderão ser utilizadas	
	Os relés do grupo de isolação 0 não poderão acionar cargas AC	
	A utilizações de tensão alternada no pino C6 causará danos irreversíveis ao produto	
	C7 – Pino não utilizado para as saídas a relé	
	C8 – Pino ligado ao comum de todos relés do grupo de isolação 1	

Tabela 2-4. Características das Saídas Digitais a Relé

Notas

Corrente máxima por ponto: As saídas a relé não possuem proteção contra sobre-corrente, em caso de necessidade de proteção das saídas deve ser utilizado fusível externo ao produto.

Configuração do borne: O grupo de isolação 0 possui duas saídas rápidas a transistor(Q00, Q01).

ATENÇÃO:

A utilização de tensão alternada no pino C6 causará danos irreversíveis ao produto.

Saídas Digitais Rápidas

	DU350, DU351			
Número de saídas	2 rápidas:			
	Q00 e Q01			
Corrente máxima por ponto	0,5 A			
Tipo de saída	Transistor "source"			
Freqüência máxima de geração de pulsos	50 KHz	-		
Largura de pulso mínima	CARGA EXTERNA MÍNIMA	TEMPO DE PULSO MÍNIMO		
@ 24V	Sem carga	20 us		
	1000 Ω	4 us		
	50 Ω	2 us		
Indicação de estado	Através de operandos fixos reser	vados		
Proteções	Diodo TVS em todas as saídas a	transistor		
Tensão de operação	10 a 30 Vdc			
Isolação	2000 Vac por um minuto entre ca	ada grupo de saída		
	2000 Vac por um minuto entre gr Iógico	upo de saída e entre o circuito		
Impedância de saída	700 mΩ			
Configuração do borne	As saídas rápidas estão no conector do grupo de isolação 0 das saídas digitais. O conector é constituído de um borne para cada saída, um borne para o contato comum (alimentação) e um borne de referência 0V.			
	C5 – 0V grupo de isolação 0 (compartilhado com as saídas Q02 a			
	C6 – Alimentação grupo de isolaç saídas Q02 a Q07 a relé (DU351 máxima 30 Vdc	ção 0 (compartilhado com as)/transistor (DU350)).Tensão		
Modos de saída	PTO, VFO e PWM			
Número máximo de saídas rápidas utilizadas	2			
Funções executadas via	PTO	VFO/ PWM		
software	Escrita do valor do número de pulsos a serem gerados	Escrita do valor da freqüência a ser gerado em Hz(1 Hz a 50 KHz)		
	escrita do numero de puisos a serem gerados na aceleração/desaceleração	Escrita do Duty Cycle das saídas de 0 a 100%		
	Início/Fim de operação das saídas saídas			
	Diagnósticos das saídas rápida Diagnósticos das saídas rápida			
	Monitoração do estado atual das saídas rápidas			
Forma de acessos aos registradores das saídas rápidas	Em operandos fixos reservados			

Tabela 2-5. Características Saídas digitais Rápidas

Notas

Corrente máxima por ponto: As saídas rápidas a transistor não possuem proteção contra sobre-corrente, em caso de necessidade de proteção das saídas deve ser utilizado fusível externo ao produto.

Funções executadas via software: Variação de 1 em 1Hz ou de 1 em 1% para as configurações de freqüência e duty cycle respectivamente.

ATENÇÃO:

Durante a energização do produto as saídas rápidas podem alterar seu estado por um período de aproximadamente 100 us.

Entradas Analógicas

	DU350, DU351		
Número de entradas	4 entradas analógicas não isoladas do circuito lógico		
Tipo de entrada	Tensão: 0 a 10 Vdc		
	Corrente: 0 a 20 mA, 4 a 20 mA		
Resolução do conversor	12 bits		
Configuração do borne	AV0 – entrada de tensão canal 0		
	Al0 – entrada de corrente canal 0		
	C9 – comum para entradas 0 e 1		
	AV1 – entrada de tensão canal 1		
	Al1 – entrada de corrente canal 1		
	AV2 – entrada de tensão canal 2		
	Al2 – entrada de corrente canal 2		
	C10 – comum para entradas 2 e 3		
	AV3 – entrada de tensão canal 3		
	Al3 – entrada de corrente canal 3		
Parâmetros configuráveis	Tipo da entradas para cada ponto, tensão ou corrente		
	Fundo de escala para cada canal, máximo 30000		
	Filtro de primeira ordem com constantes de tempo pré-definidas		
Proteções	Diodo TVS em todas as entradas analógicas		
Tempo de atualização	60 ms		

Tabela 2-6. Características das Entradas Analógicas

Notas

Tempo de atualização: Tempo necessário para o AD disponibilizar um novo valor de um canal ao UCP.

Modo de Tensão

	DU350, DU351		
Precisão	\pm 0,3% do fundo de escala @ 25°C		
	$\pm0,015\%$ / °C do funde	o de escala	
Crosstalk DC a 100 Hz	- 30dB		
Impedância de entrada	1,1 MΩ		
Tensão máxima/mínima contínua sem dano	12 Vdc/ -0.3 Vdc		
Filtragem	Constante de tempo configurável:		
	90 ms, 140 ms, 1 s ou 15 s		
Escala	Faixa	Contagem	Sensibilidade
	0 – 10 V	0 a 30.000	2,52 mV
Folga de escala	3 %		

Tabela 2-7. Características das Entradas no Modo Tensão

Notas

Filtragem: O valor da constante de tempo poderá variar 10% do seu valor nominal. O desvio máximo do valor da constante de tempo é igual a taxa de amostragem. Ex: Selecionando a constante de tempo de 140 ms. O tempo máximo para o valor de tensão com filtro possuir 63% do valor da entrada é de: 140ms * 110% + 60ms = 214ms.

Contagem: O fundo de escala pode ser modificado por software, o valor máximo é 30000.

Folga de escala: define o percentual acima do fundo de escala que pode ser lido pelas entradas analógicas. Esta característica pode ser utilizada para compensar possíveis erros de calibração de um determinado sensor utilizado.

Modo de Corrente

	DU350, DU51			
Precisão	± 0,3% do fundo de escala @ 25°C			
	\pm 0,015% / °C do fundo de escala			
Crosstalk DC a 100 Hz	- 30dB			
Impedância de entrada	124,5 Ω			
Corrente máxima/mínima contínua sem dano	25 mA/-2mA			
Filtragem	Constante de tempo configurável:			
	2 ms, 90 ms, 1 s ou 15 s			
Escala	Faixa Contagem Sensibilidade			
	0 – 20 mA	0 a 30.000	5,1 μA	
	4 – 20 mA	0 a 30.000	5,1 μA	
Diagnóstico	Corrente abaixo de 3,8 mA (válido somente quando utilizado escala de 4 a 20 mA para sinalizar um possível rompimento de um fio)			
Folga de escala	4 %			

Tabela 2-8. Características das	Entradas no	Modo	Corrente
---------------------------------	-------------	------	----------

Notas

Filtragem: O valor da constante de tempo poderá variar 10% do seu valor nominal. O desvio máximo do valor da constante de tempo é igual a taxa de amostragem. Ex: Selecionando a constante de tempo de 1 s. O tempo máximo para o valor de corrente com filtro possuir 63% do valor da entrada é de: 1 s * 110% + 60ms = 1,16s.

Contagem: O fundo de escala pode ser modificado por software, o valor máximo é 30000.

Folga de escala: define o percentual acima do fundo de escala que pode ser lido pelas entradas analógicas. Esta característica pode ser utilizada para compensar possíveis erros de calibração de um determinado sensor utilizado.

Saídas Analógicas

	DU350, DU351		
Número de saídas	2 saídas analógicas não isoladas do circuito lógico		
Tipo de saída	-Tensão: 0 a 10 Vdc		
	-Corrente: 0 a 20 mA		
Resolução do conversor	12 bits		
Configuração do borne	C3 – comum para a saída AO0.		
	AO0 – saída analógica 0. (Configurável por software como tensão ou corrente),		
	C4 – comum para a saída AO1		
	AO1 – saída analógica 1 (Configurável por software como tensão ou corrente)		
Proteções	Diodo TVS em todas as saídas analógicas.		
Parâmetros configuráveis	Tipo de sinal em cada canal (tensão ou corrente)		
	Fundo de escala para cada canal, máximo 30000		

Tabela 2-9. Características das Saídas Analógicas

Modo de Tensão

	DU350, DU351				
Precisão	\pm 0,3% do fundo de e	scala @ 25°C			
	± 0,015% / °C do func	lo de escala			
Crosstalk DC a 100 Hz	- 30dB				
Impedância de saída	22 Ω	22 Ω			
Impedância mínima de carga	600 Ω	600 Ω			
Proteção contra curto circuito	Sim				
Tempo de atualização	1 ms				
Tempo de estabilização	4 ms				
Escala	Faixa Contagem Resolução				
	0 – 10 V 0 a 30.000 2,59mV				
Folga de escala	4 %				
Indicação de sobre carga	Sim (tipicamente cargas com impedância menor que 500 Ω)				

Tabela 2-10. Características das Saídas no Modo Tensão

Notas

Tempo de atualização: Tempo máximo entre o final de um ciclo e a atualização das saídas.

Tempo de estabilização: Tempo máximo para estabilização do sinal da saída com uma carga resistiva maior ou igual a 600 Ω.

Contagem: O fundo de escala pode ser modificado por software, o valor máximo é 30000.

Folga de escala: A folga de escala permite que o DA atinja valores de tensão acima da faixa para compensar eventuais erros de offset dos dispositivos a serem controlados pelas saídas analógicas.

Modo de Corrente

	DU350, DU351			
Precisão	± 0,3% do fundo de escala @ 25°C			
	\pm 0,015% / °C do fund	\pm 0,015% / °C do fundo de escala		
Crosstalk DC a 100 Hz	- 30dB			
Impedância máxima de carga	600 Ω			
Tempo de atualização	1 ms			
Tempo de estabilização	4 ms			
Escala	Faixa Contagem Resolução mínima			
	0 – 20 mA 0 a 30.000 5,2 μA			
Folga de escala	4 %			
Indicação de laço aberto	Sim (tipicamente cargas com impedância maior que 650 Ω)			

Tabela 2-11. Características das Saídas em Modo Corrente

Notas

Tempo de atualização: Tempo máximo entre o final de um ciclo e a atualização das saídas.

Tempo de estabilização: Tempo máximo para estabilização do sinal da saída com uma carga resistiva menor ou igual a 600 Ω.

Contagem: O fundo de escala pode ser modificado por software, o valor máximo é 30000.

Folga de escala: A folga de escala permite que o DA atinja valores de corrente acima da faixa para compensar eventuais erros de offset dos dispositivos a serem controlados pelas saídas analógicas.

Contadores Rápidos

	DU350, DU351			
Número de contadores	Até 4 contadores rápidos configuráveis de 32 bits			
Modos de contagem	Unidirecional			
	Incrementa ou decrementa			
	Bidirecional			
	A: Incrementa B: Decrementa			
	A: Conta B: Sentido			
	Quadratura com duas contagens por período (2x)			
	Quadratura com quatro contagens por período (4x)			
Formato dos dados	Inteiros de 32 bits sem sinal			
Limite de operação	4.294.967.295			
Freqüência máxima de entrada	40 kHz para o Bloco 0 e 20kHz para o Bloco 1			
Configuração do borne	Bloco 0:			
	I00 – Entrada A (modo Bidirecional) ou Contador 0 (modo Unidirecional) do bloco 0			
	l01 – Entrada B (modo Bidirecional) ou Contador 1(modo Unidirecional) do bloco 0			
	I02 – Entrada Configurável bloco 0			
	Bloco 1:			
	110 – Entrada A (modo Bidirecional) ou Contador 2(modo Unidirecional) do bloco 1			
	I11 – Entrada B (modo Bidirecional) ou Contador 3(modo Unidirecional) do bloco 1			
	I12 – Entrada Configurável bloco 1			
Parâmetros configuráveis	Modo do contador			
	Função das entradas			
	Função das saídas			
	Registradores de comparação			

Tabela 2-12. Características dos Contadores Rápidos

Canal Serial Local

	DU350, DU351
Meio físico	RS-232
Protocolo	MODBUS RTU mestre e escravo, comunicação com programador MasterTool IEC e protocolo genérico
Sinais de hardware	RTS, CTS, DCD, DTR e DSR
Isolação com circuito lógico	Não
Conector	RJ45

Tabela 2-13	Características	do	Canal Serial	RS-232
-------------	-----------------	----	---------------------	---------------

Canal Serial RS-485

	DU350, DU351
Meio físico	RS-485
Protocolo	MODBUS RTU mestre e escravo e protocolo genérico
Terminação interna	Não
Isolação com circuito lógico	Não
Conector	RJ45

Tabela 2-14. Características do Canal Serial RS-485

Características de Software

	DU350, DU351
Linguagem de programação	IL, ST, LD, SFC, FBD e CFC
Programação on-line	Não
Conversão de linguagem	Conversão dos códigos de linguagem disponível
Memória de aplicativo	256 kbytes
Ocupação média de memória por instrução IL	1000 instruções a cada 7 kbytes
Memória para download de código fonte	256 kbytes
Memória de dados do tipo l	128 bytes
Memória de dados do tipo Q	128 bytes
Memória de dados do tipo M	6656 bytes
Memória Global	6656 bytes
Retentividade	Memória não volátil de 1250 Bytes
Número de POUs	300
Programador da IHM	Incluso na mesma interface do programador da aplicação
Simulador	Simulador de CP para testes de aplicação sem necessidade de equipamento
Funções avançadas	Disponíveis bibliotecas para controle avançado

Tabela 2-15. Características de Software

Notas

Memória de dados tipo I e Q: A opção "Sem verificação de endereços" em "Configurações de dispositivo" está normalmente não selecionada. Neste caso somente é possível utilizar na aplicação os endereços associados as entradas e saídas digitais e analógicas do DU350 e DU351. Caso esta opção seja selecionada toda a faixa poderá ser utilizada. **Memória Global**: Nesta área de 6656 bytes é necessário utilizar um byte para controle, com isso na prática só podem ser declarados 6655 bytes de dados restando um byte para controle.

Versão de Software: Os dados da tabela se referem à memória disponível a partir da versão 1.10 do executivo do DU350 e DU351.

Retentividade: Quando uma variável retentiva é apontada para um endereço direto %I, %Q ou %M, os controladores DU350 e DU351 não tratam estas variáveis como retentivas.

Compatibilidade com Demais Produtos

Código	Descrição
MT8200	MasterTool IEC versão 1.0 ou superior

Tabela 2-16. Compatibilidade

Notas

Características: Algumas das características descritas nesta CT estão disponíveis somente em determinadas versões do MasterTool IEC e do software do DU350 e DU351. Para maiores detalhes consulte as seções específicas das características.

Desempenho

Mapa de Memória

Os controladores DU350 e DU351 possuem as seguintes áreas de memórias disponíveis para a aplicação do usuário:

Memória	Тіро	Tamanho	
Código não volátil	Código da Aplicação	256 kbytes	
Dado volátil	Operandos Globais	6656 bytes	
	Operandos Memória (%M)	6656 bytes	
	Operandos Entrada (%I)	128 bytes	
	Operandos Saída (%Q)	128 bytes	
Dado não volátil	Operandos Retentivos	1250 bytes	

Tabela 2-17. Quantidade de Operandos

Os operandos globais são utilizados em declarações de operandos sem um endereço definido pelo usuário. Para cada tarefa adicionada ao projeto, o sistema utiliza até 35 bytes da memória de operandos globais. Em caso de utilização de bibliotecas externas (Standard.lib, SysLibTargeVisu.lib, ...) o sistemas aloca a memória necessária para as bibliotecas na área de Operandos Globais.

Tempos de Aplicação

Na tabela abaixo, encontram-se os tempo necessário para realização de diferentes instruções nos controladores DU350 e DU351. Todas as medições foram feitas em linguagem ladder:

Instrução	Operandos	Tempos instruções (us)
Overhead	indiferente	26 us
1000 Linhas com 10 Contatos	indiferente	94,4 us
1000 Chamadas de Função	indiferente	864 us
	BYTE	404 us
1000 Multiplicações	WORD	440 us
	REAL	1610 us
	BYTE	388 us
1000 Somas	WORD	416 us
	REAL	1608 us

Tabela 2-18. Tempos de Instruções

O overhead é calculado executando um programa sem nenhuma instrução.

Restrições de Linguagem

Os controladores DU350 e DU351 não suportam tipos de operandos de 64 bits. São eles: LWORD, LINT, LREAL e ULINT.

ATENÇÃO:

É possível tratar LREAL como REAL assinalando esta opção no programador MasterTool IEC. Porém esta opção irá apenas tratar substituir estes tipos de variáveis fazendo com que as mesmas sejam tratadas como REAL, ou seja, variáveis de 32 bits.

Restrições de Software

Os controladores DU350 e DU351 não suportam a utilização de breakpoint (possibilidade de congelar a execução do aplicativo para monitoração e depuração) no modo "logado". A restrição abrange as funções de Alternar breakpoint, Diálogo de breakpoint, Sobrepasso, Passo a passo e Ciclado, todas no menu Comunicação.

Restrições de Tipos de Variáveis

Os controladores DU350 e DU351 não suportam a utilização de variáveis do tipo PERSISTENT.

Quando uma variável retentiva é apontada para um endereço direto %I, %Q ou %M, os controladores DU350 e DU351 não tratam estas variáveis como retentivas.

Tempos de Inicialização

Os controladores DU350 e DU351 possuem tempo de inicialização de 10 segundos.

Tempos de Saídas Analógicas

Os controladores DU350 e DU351 possuem intervalo de atualização das saídas analógicas de tensão e corrente igual ao tempo de ciclo de programa. Em caso de utilização da função AES_ANALOG_OUTPUT as saídas são atualizadas no momento da chamada da função.

Tempos de Entradas Analógicas

Os controladores DU350 e DU351 possuem intervalo de atualização das entradas analógicas de tensão e corrente de 60 ms. Em caso de utilização da função AES_ANALOG_INPUT as entradas analógicas permanecem com o intervalo de atualização de 60 ms, porém os operandos AIx são atualizados com o valor do último ciclo de leitura das entradas analógicas.

Tempo de Ciclo

O tempo de ciclo da UCP é dependente do aplicativo, podendo variar de 1 a 2000 ms.

CUIDADO:

A comunicação com o Programador MasterTool IEC é afetada pelo tempo de ciclo. Quanto maior o tempo de ciclo, mais lenta fica a troca de dados com ele. Um tempo de ciclo muito próximo a 2000 ms pode causar um time-out de comunicação no MasterTool IEC. Caso o tempo de ciclo longo seja causado por algum problema na lógica do aplicativo, o seguinte procedimento é recomendado: desenergizar o CP, pressionar a tecla ESC, energizar novamente, aguardar a tela de boot e soltar a tecla ESC. Assim a UCP não iniciará o aplicativo, sendo possível realizar um novo download do aplicativo corrigido. Se o aplicativo exigir um tempo de ciclo muito alto, porém menor que 2000 ms, é possível aumentar o tempo de time-out da interface de programação, para isso é necessário entrar em "Projeto" \rightarrow "Opções..." \rightarrow "Ambiente de Trabalho" e alterar os valores dos campos "Timeout de comunicação [ms]" e "Timeout de comunic. para download [ms]". O tempo de timeout padrão do MasterTool IEC é de 2000 ms para ambos os campos.

Desempenho das Entradas Rápidas

As entradas rápidas necessitam de mais processamento em função do aumento da freqüência nas entradas. O processamento requerido varia conforme a configuração dos blocos contadores. A tabela abaixo descreve o processamento dedicado aos periféricos de contagem rápida, com diferentes configurações dos contadores e o quanto há de processamento livre para a aplicação em cada caso.

	Bloco 0		Bloco 1		Processamento (%)	
	Contador 0	Contador 1	Contador 0	Contador 1	Contadores	Aplicativo
1	Modo 0 - 40 kHz		Modo 0 - 20 kHz		19,4%	80,6%
2	Modo 0 -	40 kHz	Modo 1	- 20 kHz	19,7%	80,3%
3	Modo 0 -	40 kHz	Modo 2 - 10 kHz		29,8%	70,2%
4	Modo 0 -	40 kHz	Modo 3	3 - 20 kHz	29,6%	70,4%
5	Modo 0 -	40 kHz	Unid 20 kHz	Unid 20 kHz	30,3%	69,7%
6	Modo 1 -	40 kHz	Modo 0) - 20 kHz	29,1%	70,9%
7	Modo 1 -	40 kHz	Modo 1	- 20 kHz	29,1%	70,9%
8	Modo 1 -	40 kHz	Modo 2	2 - 10 kHz	37,3%	62,7%
9	Modo 1 -	40 kHz	Modo 3	3 - 20 kHz	37,9%	62,1%
10	Modo 1 -	40 kHz	Unid 20 kHz	Unid 20 kHz	32,0%	68,0%
11	Modo 2 -	20 kHz	Modo 0) - 20 kHz	40,5%	59,5%
12	Modo 2 -	20 kHz	Modo 1 - 20 kHz		33,6%	66,4%
13	Modo 2 -	20 kHz	Modo 2 - 10 kHz		44,0%	56,0%
14	Modo 2 -	20 kHz	Modo 3	- 20 kHz	50,0%	50,0%
15	Modo 2 -	20 kHz	Unid 20 kHz	Unid 20 kHz Unid 20 kHz		55,7%
16	Modo 3 -	40 kHz	Modo 0	Modo 0 - 20 kHz		62,5%
17	Modo 3 -	40 kHz	Modo 1	Modo 1 - 20 kHz		54,9%
18	Modo 3 -	40 kHz	Modo 2	Modo 2 - 10 kHz		50,6%
19	Modo 3 -	40 kHz	Modo 3 - 20 kHz		47,9%	52,1%
20	Modo 3 -	40 kHz	Unid 20 kHz Unid 20 kHz		42,2%	57,8%
21	Unid 4	40 kHz	Modo 0 - 20 kHz		33,3%	66,7%
22	Unid 4	40 kHz	Modo 1 - 20 kHz		33,6%	66,4%
23	Unid 4	40 kHz	Modo 2 - 10 kHz		35,7%	64,3%
24	Unid 4	40 kHz	Modo 3	Modo 3 - 20 kHz		64,7%
25	Unid 4	40 kHz	Unid 20 kHz	Unid 20 kHz	29,1%	70,9%

Tabela 2-19.	Processamento	livre para	aplicativo
---------------------	---------------	------------	------------

Dimensões Físicas

Figura 2-1. Dimensional DU350 e DU351

Dados para Compra

Itens Integrantes

A embalagem do produto contém os seguintes itens:

- módulo DU350 ou DU351
- 8 conectores
- guia de instalação

Código do Produto

O seguinte código deve ser usado para compra do produto:

Código	Denominação
DU350	CP COM IHM 20ED 16SDT 4EA 2SA
DU351	CP COM IHM 20ED 14SDR 2SDT 4EA 2SA

Tabela 2-20. Modelos da Série Duo

Produtos Relacionados

Os seguintes produtos devem ser adquiridos separadamente quando necessário:

Código	Denominação
AL-1714	Cabo RJ45 – RJ45 RS-232 (PICCOLO)
AL-1715	Cabo RJ45-CFDB9
PO8500	Cabo de Expansão 0,4 m
PO8501	Cabo de Expansão 1,4 m
PO8525	Derivador e Terminação p/ rede RS-485
FBs-USB-232M9	Cabo Conversor USB-SERIAL

Tabela 2-21. Produtos relacionados

Notas

AL-1715: este cabo possui um conector serial RJ45 e outro DB9 RS-232C fêmea padrão IBM/PC. Deve ser utilizado para comunicação do módulo com o software programador MasterTool IEC, e para interface de comunicação RS-232 ponto-a-ponto utilizando o protocolo MODBUS RTU.

AL-1714: este cabo possui um conector RJ45 em cada extremidade, é utilizado para interface de comunicação RS-232 ponto-a-ponto entre dois controladores DU350/DU351, utilizando o protocolo MODBUS RTU.

PO8500 e PO8501: este cabo possui um conector RJ45 em cada extremidade, é utilizado para conectar o derivador RS-485 PO8525 com a porta serial RS-485 do DU350 ou do DU351.

PO8525: este módulo é utilizado para derivação e terminação de uma rede RS-485. Para cada nó da rede deve existir um PO8525. No conector RJ45 do PO8525 deve ser conectado a interface de comunicação RS-485 do DU350 ou do DU351. Os PO8525 que estiverem nas extremidades da rede devem ser configurados como terminação, o restante como derivação.

FBS-USB-232M9: este módulo é utilizado para permitir a conexão da interface de comunicação RS-232 dos controladores DU350 e DU351 a uma interface padrão USB de um microcomputador.

3. Configuração

Os controladores DU350 e DU351 são configurados e programados através do software MasterTool IEC. A configuração realizada define o comportamento e modos de utilização dos periféricos e características especiais dos controladores. A programação representa a aplicação desenvolvida pelo usuário, também chamada de aplicativo.

Gerais

Os controladores DU350 e DU351 possuem algumas configurações gerais que são realizadas através da escrita em alguns operandos especiais. Estes operandos especiais, já estão previamente mapeados em uma região específica de memória. Dessa forma, basta utilizá-los como uma variável global (simplesmente utilizando o nome do operando em qualquer POU do projeto). São eles:

CONTRASTE = Percentagem do contraste [0 - 100%]

BACKLIGHT = Tempo de backlight [0 - 255s]

Os nomes dos operandos e o modo de acessá-los encontram-se melhor descritos na lista de operandos especiais na seção "Manutenção" - "Diagnósticos" - "Lista de Operandos Reservados".

Barramento

Os controladores DU350 e DU351 possuem Entradas e Saídas descritas na sua árvore de configuração como barramento. Para fazer acesso a árvore de configuração, abra o MasterTool IEC e clique em "Configuração do CP", localizada na aba "Recursos". Em seguida o módulo "Configuração do CP" deve ser expandido. Nesta aba pode ser visualizado e configurado a maioria das configurações necessárias para a utilização dos controladores DU350/DU351.

O módulo "Barramento" pode ser acessado, clicando no "+" para expandir suas opções.

Figura 3-1. Barramento

Entradas

Os controladores DU350 e DU351 possuem as suas entradas dividas em:

- Entradas Digitais
- Entradas Analógicas
- Entradas Rápidas

Essas opções podem ser vistas na figura abaixo, e serão descritas no decorrer do capítulo.

Figura 3-2. Entradas

Entradas Digitais 0/1/2

Os controladores DU350 e DU351 possuem 3 blocos de entradas digitais com um total de 20 entradas digitais. Quando existir a necessidade de diferenciar as entradas rápidas, as demais entradas estão definidas neste manual como Entradas Digitais Comuns. Os 3 blocos estão divididos da seguinte estrutura:

Número de	20 entradas digitais divididas em 3 grupos de isolação:
entradas	100108 - 9 entradas – Grupo 0
	I10I18 - 9 entradas – Grupo 1
	120121 - 2 entradas – Grupo 2

Tabela 3-1. Descrição dos Blocos de Entrada

As 3 entradas I00, I01 e I02 do Grupo 0 e as 3 entradas I10, I11 e I12 do Grupo 1 também podem ser utilizadas como entradas rápidas. Caso nenhuma função de entrada rápida esteja configurada, todas as 20 entradas trabalham como entradas digitais comuns.

Todas as entradas digitais estão previamente atribuídas a operando especiais descritos abaixo:

BLOCO 0	
100	Entrada Digital 100
101	Entrada Digital 101
102	Entrada Digital 102
103	Entrada Digital 103
104	Entrada Digital 104
105	Entrada Digital 105
106	Entrada Digital 106
107	Entrada Digital 107
108	Entrada Digital 108
	BLOCO 1
110	Entrada Digital I10
l11	Entrada Digital I11
l12	Entrada Digital I12
113	Entrada Digital I13
l14	Entrada Digital I14
l15	Entrada Digital I15
116	Entrada Digital I16
l17	Entrada Digital 117

l18	Entrada Digital I18
BLOCO 2	
120	Entrada Digital I20
I21	Entrada Digital I21

Tabela 3-2. Distribuição dos Blocos de Entradas Digitais

Estes operandos especiais, já estão previamente mapeados em uma região específica de memória. Desta forma, basta utilizá-los como uma variável global. Os nomes dos operandos e o modo de acessá-los encontram-se melhor descritos na lista de operandos especiais na seção "Manutenção" - "Diagnósticos" - "Lista de Operandos Reservados".

Entradas Analógicas

Os controladores DU350 e DU351 possuem 4 entradas analógicas. Cada canal possui 3 tipos de configuração, sendo elas independentes entre canais de:

- Tensão: 0 a 10 Vdc
- Corrente: 0 a 20 mA
- Corrente: 4 a 20 mA

As entradas analógicas encontram-se nos pinos descritos na tabela abaixo

Configuração do borne	AV0 – entrada de tensão canal 0
	Al0 – entrada de corrente canal 0
	AV1 – entrada de tensão canal 1
	Al1 – entrada de corrente canal 1
	C9 – comum para entradas 0 e 1
	AV2 – entrada de tensão canal 2
	Al2 – entrada de corrente canal 2
	AV3 – entrada de tensão canal 3
	Al3 – entrada de corrente canal 3
	C10 – comum para entradas 2 e 3

Tabela 3-3. Descrição dos Pinos de Entradas Analógicas

A configuração das entradas é feita através da árvore de configuração. Para realizar a configuração, abra o MasterTool IEC e clique em "Configurações do CP", localizada na aba "Recursos". Em seguida o módulo "Configuração do CP" deve ser expandido. Nesta aba encontram-se a maioria das configurações necessárias para a utilização do DU350/DU351.

As configurações das entradas analógicas estão localizadas no módulo "Barramento". Ao expandir este módulo irão aparecer os módulos "Entradas" e "Saídas". Para a configuração das entradas analógicas, deve-se expandir o módulo "Entradas" e depois o submódulo "Entradas Analógicas".

Na opção "Tipo do Canal", o usuário escolhe que tipo de entrada será utilizada naquele canal. As opções são "Tensão: 0 a 10 Vdc", "Corrente: 0 a 20 mA", "Corrente: 4 a 20 mA" ou "Canal Desabilitado", conforme descrito anteriormente.

Figura 3-3. Entradas Analógicas

Após configurar o tipo de entrada, o usuário deve configurar o filtro associado a respectiva entrada analógica, na caixa "Filtro", podendo escolher entre filtros de 2 ms, 90 ms, 1 s, 15 s para entradas de corrente e 90 ms, 140 ms, 1 s, 15 s para entradas de tensão. Também é necessário configurar o fundo de escala na caixa abaixo, que pode variar de 0 a 30000.

Os valores das entradas analógicas estão previamente atribuídos a operandos especiais. São eles:

- AI0 = Valor do Canal 0
- **AI1** = Valor do Canal 1
- AI2 = Valor do Canal 2
- **AI3** = Valor do Canal 3

Esses operandos especiais, já estão previamente mapeados em uma região específica de memória. Dessa forma, basta utilizá-los como uma variável global. Os nomes dos operandos e o modo de acessá-los encontram-se melhor descritos na lista de operandos especiais na seção "Manutenção" - "Diagnósticos" - "Lista de Operandos Reservados".

As entradas analógicas são atualizadas a cada 60 ms, isto significa que o tempo mínimo para percepção da variação de uma determinada entrada é de 60 ms. O tempo de estabilização do sinal da entrada analógica dependerá do filtro selecionado. A taxa de atualização é independente do filtro selecionado e do número de entradas analógicas utilizadas. É indicado a utilização do maior filtro possível de acordo com as necessidade do sistema de controle ou de monitoração.

O valor correspondente ao fundo de escala das entradas analógicas é configurável. Esta configuração não altera o valor físico do fundo de escala que é de 10 V para entradas analógicas de tensão e 20 mA para entradas analógicas de corrente, mas sim o valor correspondente ao fundo de escala físico que será lido pela aplicação. Essa função é útil para facilitar a leitura das entradas analógicas pelo usuário. Ex: pode ser interessante a configuração do fundo de escala em 10000 para uma entrada analógica de tensão de 0 V a 10 V, nesse caso cada unidade de leitura corresponde 1 mV. É importante reforçar que a sensibilidade das entradas analógicas é fixa, logo o aumento do valor do fundo de escala para o valor máximo (30000) não acarretara melhoria na sensibilidade, mas sim poderá ser útil para o tratamento do dado de leitura em uma aplicação específica. Não é indicado a utilização de um valor do fundo de escala menor que 4095 (12 bits) pois neste caso ocorrerá uma perda de resolução da respectiva entrada analógica.

Entradas Rápidas

Os controladores DU350 e DU351 apresentam dois blocos de contadores de 32 bits, Bloco 0 e Bloco 1. Cada bloco pode operar como um contador bidirecional ou até dois contadores unidirecionais (Bloco 0: Contador 0 e Contador 1; Bloco 1: Contador 2 e Contador 3).

Existem 6 bornes de entrada rápida utilizados para manipulação de contadores, chamados de I00, I01, I02, I10, I11 e I12. Estes bornes também podem ser utilizados como entradas digitais comuns, caso as entradas rápidas não forem utilizadas.

Os 6 bornes são configurados como dois blocos de contagem, denominados Bloco 0 e Bloco 1. O Bloco 0 utiliza os bornes I00 e I01 para realizar as contagens e o borne I02 para a entrada configurável. O Bloco 1, por sua vez, utiliza os bornes I10 e I11 para realizar as contagens e o borne I12 para a entrada configurável.

Cada um dos blocos, pode ser configurado independentemente para que os 2 bornes de contagens realizem sua contagem de forma bidirecional (utilizando os dois pinos de contagem para somente um contador) ou unidirecional (utilizando um pino de contagem para cada contador).

Caso o bloco seja utilizado como contador bidirecional, o mesmo possuirá somente um contador. Para o Bloco 0 é utilizado somente o contador 0 e para o Bloco 1 é utilizado apenas o contador 2.

É permitido também que o bloco configurado como unidirecional trabalhe com apenas um contador utilizando somente um borne de entrada de pulso, possibilitando a utilização do segundo borne como entrada comum.

Cada um dos blocos possui uma entrada de controle. Esta entrada de controle pode ser utilizada para:

- Zeramento
- Congelamento
- Preset
- Amostragem

A entrada de controle também pode ser desabilitada para ser utilizada como uma entrada digital comum.

Configuração das Entradas Rápidas

O primeiro passo para configurar as entradas rápidas é abrir a árvore de configurações. Para tanto, abra o MasterTool IEC e clique em Configuração do CP, localizada na aba Recursos. Em seguida o módulo "Configuração do CP" deve ser expandido. Nesta aba encontram-se a maioria das configurações necessárias para a utilização dos controladores DU350 e DU351.

As configurações das entradas rápidas estão localizadas no módulo "Barramento". Ao expandir este módulo irão aparecer os módulos "Entradas" e "Saídas". Para a configuração dos contadores, expanda o módulo "Entradas" e depois o submódulo "Entradas Rápidas". A figura abaixo ilustra tal procedimento:

Figura 3-4. Entradas Rápidas

Como exemplo será utilizado o Bloco 0 de contagem para descrever os processos de configuração, tendo em vista que as configurações também se aplicam ao Bloco 1 de contagem.

Ao expandir o "Bloco 0" encontra-se um módulo denominado "Desabilitado", pois ainda não foi realizada nenhuma configuração de entrada rápida no controlador. Ao clicar com o botão direito do mouse na palavra "Desabilitado" aparecerá uma janela com as opções "Substituir Elemento", "Calcular Endereços" e "Copiar". Ao selecionar a opção "Substituir Elemento" visualiza-se as opções "Bidirecional" e "Unidirecional" para o Bloco 0:

Figura 3-5. Configurando para contador bidirecional

Os registradores que armazenam o número de contagem dos contadores estão previamente atribuídos a operando especiais. Estes operandos especiais, são mapeados em uma região específica de

memória. Desta forma, basta utilizá-los como uma variável global. O registrador que armazena número de contagem é chamado de:

• **CNTx** = Valor de Contagem

Onde x é o número do contador.

Os nomes dos operandos e o modo de acessá-los encontram-se melhor descritos na lista de operandos especiais na seção "Manutenção" - "Diagnósticos" - "Lista de Operandos Reservados".

Abaixo é descrito o funcionamento de cada uma das opções de configuração.

Bidirecional

No caso de selecionar o Bloco 0 como bidirecional, uma janela com a configuração do modo de contagem aparecerá no lado direito. Ela permite configurar o contador bidirecional nos modos:

Modo 0: A incrementa, B decrementa – Nesse modo uma borda de subida aplicada ao canal A (I00 ou I10) produz um incremento no valor do contador, enquanto no canal B (I01 ou I11) produz um decremento no valor da contagem.

Figura 3-6. Bidirecional Modo 0

fc – Freqüência de contagem

Bloco 0 fc \leq 40 kHz

Bloco 1 fc ≤ 20 kHz

- \mathbf{tp} Duração do pulso \mathbf{tp} > 10 µs
- te Espaçamento mínimo te > 10 μ s

Modo 1: A contagem, B sentido – Nesse modo a entrada A (I00 ou I10) é responsável pela contagem, enquanto o sentido é determinado pela entrada B (I01 ou I11).

Se o sinal da entrada B estiver em nível lógico 0 durante uma borda de subida na entrada A, o contador será incrementado, caso B estiver em nível lógico 1 durante uma borda de subida na entrada A o contador será decrementado.

Figura 3-7. Bidirecional Modo 1

fc – Freqüência de contagem

Bloco 0 fc \leq 40 kHz

Bloco 1 fc ≤ 20 kHz

 \mathbf{tp} – Duração do pulso \mathbf{tp} > 10 µs

te – Espaçamento mínimo te > 10 μ s

Modo 2 e Modo 3: Quadratura 4x e **Quadratura 2x** – Nesses modos a unidade de contagem decodifica os sinais de entrada em quadratura de acordo com o padrão usualmente fornecidos por transdutores óticos de posição.

O sentido de contagem é obtido a partir da relação de fase entre os sinais (a contagem é incrementada se o pulso na entrada de contagem A estiver adiantado em relação ao pulso de entrada de contagem B e decrementado se o pulso B estiver adiantado em relação ao pulso em A), enquanto os pulsos de contagem estão relacionados com as transições de estados.

No modo 2 (quadratura 4x) são gerados 4 pulsos de contagem por período dos sinais de entradas (bordas de subida e descida das duas entradas de contagem), onde a cada pulso é gerado uma contagem. Desta maneira se utilizar um sinal de entrada de 20 kHz o contador será incrementado (ou decrementado) com uma freqüência de 80 kHz.

No modo 3 (quadratura 2x) são gerados 2 pulsos de contagem por período dos sinais de entrada (bordas de subida e descida de apenas uma entrada de contagem, a segunda entrada de contagem é utilizada para definir o sentido de contagem), onde a cada pulso é gerado uma contagem. Desta maneira se utilizar um sinal de entrada de 40 kHz o contador será incrementado (ou decrementado) com uma freqüência de 80 kHz.

Figura 3-8. Bidirecional Modo 2 e 3

fc – Freqüência de contagem

Modo 2

Bloco 0 fc \leq 20 kHz Bloco 1 fc \leq 10 kHz **tp** – Duração do pulso tp > 20 µs **te** – Espaçamento mínimo te > 20 µs ϕ – Relação de fase $\phi = 90\pm10^{\circ}$

Modo 3

Bloco 0 fc \leq 40 kHz

Bloco 1 fc ≤ 20 kHz

 $\label{eq:product} \mbox{tp} - \mbox{Duração do pulso} \qquad \mbox{tp} > 10 \ \mbox{\mu s}$

te – Espaçamento mínimo te > 10 μ s

 ϕ – Relação de fase $\phi = 90\pm10^{\circ}$

A figura abaixo ilustra o local de configuração dos modos de contagens bidirecionais.

Figura 3-9. Contador Bidirecional

Unidirecional

No caso de selecionar o bloco como unidirecional, dois submódulos estarão anexados, o módulo "Contador 0" e o módulo "Contador 1". Ao clicar sobre um dos contadores, é possível configurar o modo de contagem no campo "Modo de Contagem" encontrado no lado direito da tela. Os contadores unidirecionais podem ser configurados com os seguintes modos de contagem:

- Progressivo
- Regressivo

No caso de um dos contadores do bloco não ser utilizado, pode-se desabilitar um deles clicando sobre o mesmo com o botão direito do mouse, selecionando a opção "Substituir Elemento" e clicando em "Desabilitado".

Figura 3-10. Contador Unidirecional

Entradas Configuráveis

Após a configuração do tipo de contagem, é possível configurar a entrada configurável do bloco para realizar um determinado comando escolhido pelo usuário. Essa configuração é feita no módulo "Entrada Configurável do Bloco x", sendo x o número do bloco. Ao expandir esse módulo a entrada configurável estará desabilitada, para habilitá-la, basta selecionar a função que a entrada configurável terá para o respectivo contador, está configuração encontra-se no canto direito superior da tela quando selecionado o respectivo contador. As entradas configuráveis não podem ser utilizadas para os Contadores 1 e 3. Se o Bloco 0 estiver configurado como bidirecional é utilizado o Contador 0, e para o Bloco 1 o contador correspondente é o Contador 2.

A entrada configurável do Bloco 0 está ligada ao borne I02, e a entrada configurável do Bloco 1 está ligado ao borne I12.

Após escolher qual contador será utilizado, é possível optar pelo tipo de comando associado a entrada configurável. O comando que se deseja executar deve ser selecionado na caixa Comando. A entrada configurável pode ser configurada como:

- Zeramento para carregar o contador com o valor 0
- Congelamento para pausar o contador
- **Preset** para carregar o contador com o valor contido no operando CNTx_PRESET, onde x corresponde ao índice do contador
- Amostragem (HOLD) para copiar o valor do contador para o operando CNTx_HOLD, onde x corresponde ao índice do contador

Figura 3-11. Entrada de Comando

Os registradores das entradas configuráveis estão previamente atribuídos a operandos especiais. Esses operandos especiais, já estão previamente mapeados em uma região específica de memória. Dessa forma, basta utilizá-los como uma variável global. Esses registradores são chamados de:

- **CNTx_PRESET** = Valor de Carga do Preset
- **CNTx_HOLD** = Valor de amostragem
- **CNTx_CMP0** = Valor do Comparador 0
- **CNTx_CMP1** = Valor do Comparador 1

Onde x é o número do contador.

Caso o usuário não queira utilizar o borne de entrada configurável, os comandos também podem ser realizados por software. Para tanto, basta utilizar o byte de comando, sem a necessidade de efetuar nenhuma configuração na árvore de configuração.

Os registradores de comando estão previamente atribuídos a operandos especiais. Esses operandos especiais, já estão previamente mapeados em uma região específica de memória. Dessa forma, basta utilizá-los como uma variável global. Esses registradores são chamados de:

- **CNTx_CLR** = Zera registrador de contagem
- **CNTx_STOP** = Desabilita contagem do contador (congelar o valor do contador)
- **CNTx_LOAD** = Carrega PRESET
- **CNTx_AMG** = Amostragem da contagem (HOLD)
- **CNTx_OVER** = Zera os bits de status de overflow e underflow

Onde x é o número do contador.

Diagnóstico dos Contadores

Os diagnósticos relacionados aos contadores estão descritos no capítulo "Diagnósticos" - "Entradas Rápidas".

Saídas de Comparador dos Contadores

A utilização das saídas rápidas de comparação está descrita no capítulo: "Configurações" - "Saídas" - "Saídas Rápidas" - "Saída rápida de Comparador dos Contadores". A utilização das saídas comuns de comparação está descrita no capítulo: "Configurações" - "Saídas" - "Saída comum de Comparador dos Contadores".

Saídas

Os controladores DU350 e DU351 possuem as suas saídas dividas em:

- Saídas Digitais, sendo que duas podem operar como saída de comparador dos contadores
- Saídas Analógicas
- Saídas Rápidas, sendo que as duas podem ser utilizadas como saídas digitais, saídas de comparador dos contadores, saídas PWM/VFO ou saídas PTO

Essas opções podem ser vistas na figura abaixo, e serão descritas no decorrer do capítulo.

Figura 3-12. Saídas

Saídas Digitais

Os controladores DU350 e DU351 possuem 2 blocos de saídas digitais com um total de 16 saídas digitais divididas em 2 grupos de isolação. O DU350 possui as 16 saídas (2 rápidas e 14 saídas normais) a transistor, enquanto o DU351 possui as 14 saídas normais a relé e 2 saídas rápidas a transistor. A distribuição das saídas pode ser vista nas tabelas abaixo:

	DU350
Número de saídas comuns	16 saídas digitais a transistores divididas em 2 grupos de isolação:
	Q00 a Q07 – 8 saídas – Grupo 0
	Q10 a Q17 – 8 saídas – Grupo 1

Tabela 3-4. Saídas comuns DU350
	DU351
Número de saídas	2 saídas digitais a transistores:
	Q00 a Q01 – 2 saídas – Grupo 0
	14 saídas digitais a relé divididas em 2 grupos de isolação:
	Q02 a Q07 – 6 saídas – Grupo 0
	Q10 a Q17 – 8 saídas – Grupo 1

Tabela 3-5. Saídas comuns DU351

As 2 saídas Q00 e Q01 podem ser utilizadas como saídas normais, saídas rápidas (PWM/VFO ou PTO) ou saídas de comparação dos contadores, enquanto as saídas Q02 e Q03 podem ser configuradas como saídas normais ou saídas de comparação dos contadores. Caso essas saídas estiverem sendo utilizadas com uma função especial, as mesmas não poderão ser utilizadas como saída digital comum.

Todas as saídas digitais estão previamente atribuídas a operandos especiais. São eles:

BLOCO 0		
Q00	Saída Digital Q00	
Q01	Saída Digital Q01	
Q02	Saída Digital Q02	
Q03	Saída Digital Q03	
Q04	Saída Digital Q04	
Q05	Saída Digital Q05	
Q06	Saída Digital Q06	
Q07	Saída Digital Q07	
BLOCO 1		
Q10	Saída Digital Q10	
Q11	Saída Digital Q11	
Q12	Saída Digital Q12	
Q13	Saída Digital Q13	
Q14	Saída Digital Q14	
Q15	Saída Digital Q15	
Q16	Saída Digital Q16	
Q17	Saída Digital Q17	

Tabela 3-6. Operandos de saídas digitais

Esses operandos especiais, já estão previamente mapeados em uma região específica de memória. Desta forma, basta utilizá-los como uma variável global. Os nomes dos operandos e o modo de acessá-los encontram-se melhor descritos na lista de operandos especiais na seção "Diagnóstico" - "Lista de Operandos Reservados".

Saídas Analógicas

Os controladores DU350 e DU351 possuem 2 saídas analógicas. Cada canal pode ser configurado individualmente como saída de:

- Tensão: 0 a 10 Vdc
- Corrente: 0 a 20 mA

As saídas analógicas encontram-se nos pinos descritos na tabela abaixo:

Configuração do borne	C3 – comum para a saída canal 0	
	AO0 – saída analógica canal 0	
	C4 – comum para a saída canal 1	
	AO1 – saída analógica canal 1	

Tabela 3-7. Descrição dos Pinos de Saídas Analógicas

A configuração das saídas analógicas, é feita através da árvore de configuração. Para realizar a configuração, abra o MasterTool IEC e clique em "Configuração do CP", localizada na aba "Recursos". Em seguida o módulo "Configuração do CP" deve ser expandido. Nessa aba encontramse a maioria das configurações necessárias para a utilização do controlador DU350/DU351.

As configurações das saídas analógicas estão localizadas no módulo "Barramento". Ao expandir este módulo irão aparecer os módulos "Entradas" e "Saídas". Para a configuração das saídas analógicas, deve ser expandido o módulo de "Saídas" e depois o submódulo "Saídas Analógicas".

Na opção "Tipo de Canal", o usuário escolhe que tipo de saída que será utilizada no respectivo canal selecionado. As saídas podem ser configuradas como: saídas analógicas de corrente (0-20 mA), saídas analógicas de tensão (0-10 V) ou como canal desabilitado.

Figura 3-13. Saída Analógicas

O usuário após configurar o tipo de saída, deve configurar o fundo de escala na caixa de texto abaixo, que pode variar de 0 a 30000.

O valor das saídas analógicas está previamente atribuído a operandos especiais. São eles:

- AOO = Valor do Canal 0;
- AO1 = Valor do Canal 1.

Esses operandos especiais, já estão mapeados em uma região específica de memória. Dessa forma, basta utilizá-los como uma variável global. Os nomes dos operandos e o modo de acessá-los encontram-se melhor descritos na lista de operandos especiais na seção "Diagnóstico" - "Lista de Operandos Reservados".

O valor correspondente ao fundo de escala das saídas analógicas é configurável. Essa configuração não altera o valor físico do fundo de escala que é de 10 V para as saídas analógicas de tensão e 20 mA para saídas analógicas de corrente mas sim o valor correspondente ao fundo de escala físico que será escrito pela aplicação. Essa função é útil para facilitar a escrita das saídas analógicas pelo usuário. Ex: pode ser interessante a configuração do fundo de escala em 100 para uma saída analógica de tensão de 0 V a 10 V, neste caso cada unidade de leitura corresponde a 1% da fundo de escala (10V). É importante reforçar que a sensibilidade das saídas analógicas é fixa, logo o aumento do valor do fundo de escala para o valor máximo (30000) não acarretara melhoria na sensibilidade, mas sim poderá ser útil para o tratamento do dado de escrita em uma aplicação específica. Não é

indicado a utilização de um valor do fundo de escala menor que 4095 (12 bits) pois neste caso ocorrerá uma perda de resolução da respectiva entrada analógica.

Saídas Rápidas

Os controladores DU350 e DU351 possuem 2 (duas) saídas rápidas. Essas estão no conector do grupo de isolação 0 das saídas digitais.

As saídas rápidas encontram-se nos pinos descritos na tabela abaixo:

Configuração do borne	Q00 a Q01 – saída rápida 0 a 1 do grupo de isolação 0.
	C5 – 0V grupo de isolação 0.(compartilhado com as saídas Q02 a Q07 a transistor(DU350)).
	C6 – Alimentação grupo de isolação 0. (compartilhado com as saídas Q02 a Q07 a relé(DU351)/transistor(DU350)).Tensão máxima 30 Vdc

Tabela 3-8. Descrição dos Pinos de Saídas Rápidas

As duas saídas rápidas, Q00 e Q01, podem ser configuradas como:

- PTO ("Pulse Train Output" Saída de Trem de Pulsos)
- VFO ("Variable Frequency Output" Saída de Freqüência Variável)
- PWM ("Pulse Width Modulation" Modulação por Largura de Pulso)
- Saídas rápidas de comparação dos contadores

Caso não seja utilizada nenhuma das configurações especiais descritas acima, as saídas rápidas Q00 e Q01 podem ser utilizadas como uma saída normal a transistor.

CUIDADO:

Para a utilização das saídas rápidas, é indicado a utilização de cabo blindado em caso de comprimentos maiores que 1 metro ou em casos de utilização de outros cabos próximos ao cabo das saídas rápidas.

A configuração das saídas rápidas, é feita através da árvore de configuração. Para realizar a configuração, abra o MasterTool IEC e clique em "Configuração do CP", localizada na aba "Recursos". Em seguida o módulo "Configuração do CP" deve ser expandido. Nessa aba encontramse a maioria das configurações necessárias para a utilização do controlador DU350/DU351.

As configurações das saídas rápidas, estão localizadas no módulo "Barramento". Ao expandir esse módulo irão aparecer os módulos "Entradas" e "Saídas". Para a configuração das saídas rápidas, deve ser expandido o módulo de "Saídas" e depois o submódulo "Saídas Rápidas".

As 2 saídas rápidas são mostradas, permitindo configurá-las de 4 modos distintos:

- PTO
- VFO/PWM
- Comparador Contador 0 ou 2
- Comparador Contador 1 ou 3

Além disso, no modo desabilitado, as saídas trabalham como saídas digitais comuns. Abaixo, encontra-se a descrição de cada uma das configurações das saídas rápidas.

РТО

Figura 3-14. Saídas Rápidas

A saída PTO gera um trem de pulsos (duty cycle de 50%) com número de pulsos totais, número de pulsos em aceleração/desaceleração e freqüência configuráveis via aplicativo.

A seguir tem-se um exemplo do funcionamento da saída PTO configurada para gerar 20.000 pulsos no total, sendo 5.000 na fase de aceleração/desaceleração. O eixo vertical representa a freqüência e o eixo horizontal representa o tempo.

Figura 3-15. Exemplo Saída PTO

Na fase de aceleração, a freqüência de saída parte de 0 Hz até a freqüência definida pelo usuário, então se inicia a fase de regime permanente, na qual é gerado o número total de pulsos configurado complementar aos pulsos das fases de aceleração/desaceleração.

Após completar o número de pulsos da fase de regime permanente, a saída rápida entra na fase de desaceleração, onde a freqüência do trem de pulsos varia do valor predefinido até 0 Hz, completando o acionamento da saída rápida. Dessa forma, a nova posição, representada pelo número total de pulsos definido pelo usuário, é alcançada.

A principal utilização das saídas PTO é em projetos que envolvam controle de posicionamento. Pela característica de gerar apenas um determinado número de pulsos programado, esta saída é de grande valia neste tipo de aplicação.

Outro ponto importante das saídas PTO é que essas possibilitam o arranque dos motores utilizados com uma aceleração suave. Isso implica em que o motor não execute a aceleração em uma única etapa, saindo do repouso direto para a velocidade nominal, mas sim acelerar em etapas até atingir a velocidade de regime permanente. Desta forma é possível colocar grandes sistemas em movimento, retirando o sistema do repouso suavemente.

A seguir será apresentado como podem ser calculados os parâmetros da função tendo como ponto de partida os dados do projeto.

Perfis de Aceleração

Por perfil se compreende a forma como ocorre à variação da freqüência do sinal da saída rápida em função do tempo. As saídas PTO podem ser configuradas com perfil trapezoidal ou perfil tipo S.

Os parâmetros das saídas PTO são: número total de pulsos; número de pulsos em aceleração/desaceleração; freqüência de regime permanente. Esses parâmetros não necessitam ser configurados a cada novo disparo das saídas PTO. No disparo de um novo trem de pulsos, caso tenha sido alterado o operando de número de pulsos em rampa de aceleração/desaceleração (**Fx_PLS_RMP**) ou o operando de freqüência de regime (**Fx_FREQ**), o controlador recalcula a distribuição dos pulsos para a geração da nova rampa. O tempo utilizado para o respectivo cálculo é inversamente proporcional ao número de pulsos em rampa utilizado, este tempo pode variar de 1ms à 3,5ms.

Perfil do Tipo Trapezoidal

Nesse tipo de perfil o motor é acelerado de forma linear, ou seja, com aceleração constante.

Figura 3-16. Gráfico gerado por uma saída PTO utilizando o perfil do tipo Trapezoidal

O gráfico da Figura 3-16 mostra uma aquisição real da curva gerada por uma saída PTO configurada com perfil trapezoidal, 5000000 de pulsos totais, 1000000 de pulsos em aceleração/desaceleração e 50 kHz de freqüência de regime permanente.

Para o cálculo do número de degraus de freqüência que serão executados durante a aceleração/desaceleração, para um perfil trapezoidal, utilize a seguinte expressão:

$divs \approx \sqrt{2 * Fx_PLS_RMP}$

Onde a parte inteira de divs é o número de degraus da rampa e Fx_PLS_RMP é o número de pulsos em rampa (aceleração/desaceleração) configurado pelo usuário.

Com valores entre 0 e 10000 pulsos em rampa de aceleração/desaceleração, obtém-se uma quantidade de 0 a 100 degraus na rampa, obedecendo a expressão acima. A quantidade de degraus em rampa será limitada a 100 degraus para valores maiores que 10000 pulsos em rampa, porém o número de pulsos por degraus crescerá proporcionalmente ao número de pulsos em rampa.

Devido aos arredondamentos que acontecem durante o cálculo do perfil, alguns pulsos da rampa podem não acontecer durante a rampa, sendo compensados durante a fase de regime permanente. Nos piores casos o erro por degrau será de um pulso.

Perfil do Tipo S

O valor da aceleração é menor no início e no fim do perfil, sendo que ela é máxima na parte intermediária e é 3,6 vezes maior que a aceleração de um perfil do tipo trapezoidal equivalente. As curvas de aceleração e desaceleração são simétricas.

Figura 3-17. Gráfico gerado por uma saída PTO utilizando o perfil do tipo S

O gráfico da Figura 3-17 mostra uma aquisição real da curva gerada por uma saída PTO configurada com perfil S, 20000000 de pulsos totais, 5000000 de pulsos em aceleração/desaceleração e 50 kHz de freqüência de regime permanente.

Para o cálculo do número de degraus de freqüência que serão executados durante a aceleração/desaceleração, para um perfil trapezoidal, utilize a seguinte expressão:

$$divs^3 + 2 * divs^2 + divs + 4 * Fx_PLS_RMP = 0$$

Onde a parte inteira da parte real das raízes complexas de divs é o número de degraus da rampa e Fx_PLS_RMP é o número de pulsos em rampa (aceleração/desaceleração) configurado pelo usuário.

Com valores entre 0 e 256000 pulsos em rampa de aceleração/desaceleração, obtém-se uma quantidade de 0 a 100 degraus na rampa, obedecendo a expressão acima. A quantidade de degraus em rampa será limitada a 100 degraus para valores maiores que 256000 pulsos em rampa, porém o número de pulsos por degraus crescerá proporcionalmente ao número de pulsos em rampa.

Devido aos arredondamentos que acontecem durante o cálculo do perfil, alguns pulsos da rampa podem não acontecer durante a rampa, sendo compensados durante a fase de regime permanente. Nos piores casos o erro por degrau será de um pulso.

Parada suave

Cada saída PTO possui um comando de parada suave, este comando também é conhecido como softstop. A parada suave é a desaceleração antecipada do sistema disparada por um comando, assim, permitindo gerar uma parada suave antes do término do trem de pulsos.

Uma parada suave pode ser realizada a qualquer momento do trem de pulsos, inclusive na rampa de aceleração. Quando um softstop for gerado na rampa de desaceleração o trem de pulsos não sofrerá alterações em seu comportamento, pois o sistema já estará desacelerando. Ver Figura 3-18.

O operando responsável pela parada suave é o Fx_PTO_SOFTSTOP.

No caso de erro no número de pulsos em aceleração devido ao arredondamento durante uma parada suave o status de Fx_PTO_REG pode ser acionado durante alguns ciclos enquanto esta compensação está sendo executada mesmo que não tenha sido atingida a velocidade de regime.

Figura 3-18. Em azul um trem de pulsos completo e em vermelho exemplos de paradas suaves

Contadores de pulsos interno

Cada saída rápida possui dois contadores de pulsos, um relativo e um absoluto. Ambos os contadores mostram em tempo real informações do número de pulsos gerados por uma saída do tipo PTO.

O contador relativo é resetado a cada novo disparo de um trem de pulsos e seu valor é sempre crescente ao longo do trem de pulsos.

O contador absoluto possui o valor absoluto de pulsos gerados pela saída PTO e seu valor é crescente ou decrescente conforme o comando Fx_PTO_CNT_DIR. O valor deste contador pode ser resetado através do comando Fx_PTO_CNT_CLR, assim, definindo uma nova referência para este contador.

Os registradores de contagem e controle de pulsos PTO são:

Fx_PTO_CNT_REL: Contador de pulsos relativo da saída Fx. Este contador possuí apenas o sentido positivo, sendo ele zerado a cada novo disparo de um trem de pulsos.

Fx_PTO_CNT_ABS: Contador de pulsos absoluto da saída Fx. Este contador é incrementado ou decrementado conforme for o estado do operando Fx_PTO_CNT_DIR.

Fx_PTO_CNT_DIR: Define a direção de contagem do contador absoluto. Quando em FALSE o contador conta no sentido positivo, quando em TRUE o contador conta no sentido negativo. Este registrador é lido uma vez a cada disparo e alterações em seu valor durante um trem de pulsos não influênciam no sentido de contagem.

Fx_PTO_CNT_CLR: Reseta contador de pulsos absoluto da saída Fx.

Fx_PTO_CNT_CMP0: Comparador 0 do contador de pulsos absoluto da saída Fx. Este operando deve ser configurado com o valor de comparação desejado.

Fx_PTO_CNT_CMP1: Comparador 1 do contador de pulsos absoluto da saída Fx. Este operando deve ser configurado com o valor de comparação desejado.

Fx_PTO_CNT_DG: Variável contendo os diagnósticos do contador de pulsos da PTO. Os diagnósticos são: Bit 0 – Fx_PTO_CNT_MAX_CMP0 e Bit 1 – Fx_PTO_CNT_MAX_CMP1.

Fx_PTO_CNT_MAX_CMP0: Sinaliza que o contador de pulsos absoluto de Fx é maior que o comparador 0.

Fx_PTO_CNT_MAX_CMP1: Sinaliza que o contador de pulsos absoluto de Fx é maior que o comparador 1.

Cálculo da freqüência de regime

Em geral, os motores utilizados para posicionamento tem especificado qual é a sua resolução, ou seja, quantos passos são necessários para se completar uma volta. Os motores de passo, por exemplo,

possuem como um de seus parâmetros o ângulo desenvolvido a cada passo. Sendo assim o número de passos por volta pode ser conhecido dividindo 360 por este valor.

$$p = \frac{360}{\theta}$$

onde: p = número de passos por volta $\theta =$ ângulo desenvolvido a cada passo

Já os servos possuem este dado diretamente indicado nas características dos seus drivers.

Para fazer o cálculo da freqüência de regime é necessário saber também a velocidade nominal do motor. Os motores de passo em geral não tem este parâmetro muito bem definido. Os fabricantes definem uma curva de torque por velocidade. Cabe então ao projetista identificar qual o tipo de aplicação e qual o torque desejado. Em função disso é possível determinar a melhor velocidade de regime. Já nos servomotores esta característica é bem definida. Num gráfico de torque por velocidade fica clara uma faixa de velocidades na qual o torque se mantém constante. Estas velocidades são normalmente definidas em RPM (rotações por minuto).

De posse destes dados é possível calcular a freqüência de regime da saída como sendo:

$$f = \frac{p \times V}{60}$$

onde:

p = número de passos por volta f = freqüência de regime da saída PTO em Hz V = velocidade de regime do motor em RPM

Cálculo dos parâmetros de aceleração

A aceleração máxima a qual o motor pode ser submetido é diretamente proporcional ao torque do motor e inversamente proporcional a soma da inércia do motor e a inércia de carga.

$$A = 95,5 \times 10^6 \times \frac{T}{J}$$

onde: A = aceleração em rpm/s

 $T = torque \ do \ motor$

 $J = inércia total em g.m^2 = Jm (inércia do motor) + Jc (inércia de carga)$

Para uma aceleração linear (perfil trapezoidal) o tempo de aceleração pode ser calculado da seguinte maneira:

$$t = \frac{V}{A}$$

onde: $t = tempo \ de \ aceleração$

Este tempo calculado, é o tempo de aceleração, para que a aceleração seja máxima e que foi calculado em função dos parâmetros do motor. Este é o tempo mínimo que o motor deve permanecer na fase de aceleração. A partir deste valor é possível calcular o número de passos durante a fase de aceleração, parâmetro este que é passado para o registrador Fx_PLS_RMP.

$$N = \frac{5,5 \times f \times t}{10}$$

onde: N = número de pulsos na fase de aceleração/desaceleração

É importante salientar que para um perfil do tipo S a aceleração máxima é 3,6 vezes maior que a aceleração para o perfil trapezoidal. Desta forma para um perfil S o tempo de aceleração deve ser 3,6 vezes maior que o calculado para um perfil trapezoidal de mesma freqüência de regime, de modo que a aceleração máxima não ultrapasse a aquela calculada em função dos parâmetros do motor.

Configuração PTO

Para realizar a configuração da saída como PTO, após seguir os passos descritos acima, deve-se clicar com o botão direito do mouse sobre o submódulo "Saída Rápida 0 Desabilitada", no caso da saída zero. Será exibida uma janela com as opções "Substituir Elemento", "Calcular Endereço" e "Copiar". Dentro do item "Substituir Elemento" há as seguintes opções: "Saída Rápida 0 Desabilitada", "PTO", "VFO/PWM", "Comparador Contador 0" e "Comparador Contador 1".

Ao clicar sobre "PTO", aparecerá a direita da tela a aba "PTO", onde é possível realizar a configuração do tipo de curva da PTO, os tipos de curvas são "Trapezoidal" ou "Curva S".

Figura 3-19. PTO

É necessário também realizar a configurações de alguns operandos especiais referentes à PTO. São eles:

- Fx_FREQ = Valor da freqüência para PTO/VFO/PWM [1 → 50.000] Hz
- **Fx_PLS_TOT** = Valor dos pulsos totais para PTO $[1 \rightarrow 4294967295]$
- **Fx_PLS_RMP** = Valor dos pulsos em rampa para PTO $[1 \rightarrow ((PLS_TOT-1)/2)]$

Onde x é o número da saída.

No caso das saídas PTO, o duty cycle é fixo em 50%.

Os operandos especiais para freqüência, pulsos totais e pulsos em rampa estão mapeados em uma região específica de memória. Dessa forma, basta utilizá-los como uma variável global. Os nomes dos operandos encontram-se melhor descritos na lista de operandos especiais na seção "Diagnóstico" - "Lista de Operandos Reservados".

Para iniciar ou parar a geração de pulsos, dois operandos especiais devem ser utilizados:

- **Fx_PTO_START** = Dispara trem de pulsos (PTO) na saída rápida correspondente;
- **Fx_PTO_STOP** = Cessa a geração de pulsos (PTO) na saída rápida correspondente. Se houver um disparo pendente, o mesmo será descartado.
- **Fx_PTO_SOFTSTOP** = Inicia a curva de desaceleração para realizar uma parada suave. Caso este bit seja setado durante a aceleração, uma desaceleração simétrica a etapa anterior será gerada. Se setado durante o regime permanente a curva de desaceleração será antecipada.

Onde x é o número da saída. O valor lógico 1 ativa a função do operando.

Quando os comandos Fx_PTO_START, Fx_PTO_STOP e Fx_PTO_SOFTSTOP forem ativados, o sistema identifica-os, reseta-os (coloca o valor lógico 0) e executa o comando.

Fx_PTO_STOP é mais prioritário que Fx_PTO_SOFTSTOP, sendo assim, quando ambos forem setados no mesmo ciclo, apenas o comando Fx_PTO_STOP será atendido, gerando uma para abrupta.

Durante a execução de um trem de pulsos é possível escrever novamente no operando Fx_PTO_START, preparando um novo trem de pulsos que será executado ao final do primeiro disparo. É possível colocar apenas um novo disparo na fila e este disparo utilizará os valores de freqüência, de número de pulsos totais e de número de pulsos em rampa que estiverem configurados no momento da execução do novo disparo.

CUIDADO: O comando Fx_PTO_STOP cessa abruptamente o trem de pulsos iniciado pelo comando Fx_PTO_START.

VFO/PWM

As saídas rápidas de freqüência variável (VFO) e de modulação por largura pulso (PWM) são utilizadas principalmente para interligação com conversores de freqüência-tensão, possibilitando, por exemplo, a implementação de duas saídas analógicas adicionais. A diferença entre os dois tipos de saídas é o parâmetro que será controlado. Na VFO o duty cycle é constante e a freqüência é variável, enquanto a modulação PWM é o inverso, ou seja, a freqüência é constante e o duty cycle é variável.

A figura a seguir demostra o comportamento da saída em ambos os modos.

Figura 3-20. VFO/PWM

Para realizar a configuração da saída como VFO/PWM, expanda o submódulo "Saídas Rápidas" (descrito anteriormente), clique com o botão direito do mouse no submódulo "Saída Rápida 0 Desabilitada", para configurar a saída rápida 0. Selecione a opção "Substituir Elemento", selecione a opção "VFO/PWM".

Figura 3-21. Configurando para VFO/PWM

Além disso, deve-se configurar os parâmetros necessários para a geração do sinal. Estes parâmetros estão atribuídos a operandos especiais:

- **Fx_FREQ** = Valor da freqüência para PTO/VFO/PWM [1 50000] Hz
- **Fx_DUTY** = Valor do Duty Cycle para VFO/PWM [0 100] %
- **Fx_DUTY_HR** = Valor do Duty Cycle de alta resolução para VFO/PWM [0,00 100,00] %
- **Fx_DUTY_SRC** = Define a origem do parâmetro de duty. Fx_DUTY ou Fx_DUTY_HR.

Onde x é o número da saída.

Para utilizar o duty de alta resolução é necessário primeiramente configurar Fx_DUTY_SRC escolher Fx_DUTY_HR como origem do duty.

O duty de alta resolução permite utilizar um duty com a resolução de até duas casas decimais.

Os operandos especiais de configuração da freqüência e duty cycle já estão previamente mapeados em uma região específica de memória. Dessa forma, basta utilizá-los como uma variável global. Os nomes dos operandos encontram-se melhor descritos na lista de operandos especiais na seção "Diagnóstico" - "Lista de Operandos Reservados".

Para iniciar ou terminar a geração de pulsos PTO/PWM, é utilizado o operando especial:

• $Fx_VFO = 0$ (FALSE) \rightarrow Desabilita o VFO/PWM na saída rápida correspondente

1 (TRUE) \rightarrow Habilita o VFO/PWM na saída rápida correspondente

Onde x é o número da saída.

Saída rápida de Comparador dos Contadores

Para realizar a configuração da saída como comparador dos contadores, expanda o submódulo "Saídas Rápidas", descrito anteriormente, clique com o botão direito do mouse na palavra "Saída Rápida 0 Desabilitada", para configurar a saída rápida 0. Selecione a opção "Substituir elemento" e em seguida a opção "Comparador Contador 0" ou "Comparador Contador 1". A configuração da saída rápida 1 é realizada da mesma maneira, porém a essa saída pode ser vinculado o comparador dos contadores 2 ou 3.

Após clicar sobre "Comparador Contador 0", selecione a lógica de comparação a ser utilizada, opção no lado direito da tela do programador MasterTool IEC. É possível realizar a configuração do tipo de comparação, dentre as opções:

- Contador > Comparador 0
- Contador < Comparador 1
- Comparador 0 < Contador < Comparador 1

Quando a comparação possuir o valor lógico 1 (comparação é verdadeira) a saída rápida será setada para 1 (nível alto). Quando a comparação possuir o valor lógico 0 (comparação é falsa) a saída será setada para 0 (nível baixo). O valor dos comparadores são configurados em operandos especiais. São eles:

- **CNTx_CMP0** = Valor do Comparador 0
- CNTx_CMP1 = Valor do Comparador 1

Onde x é o número do contador.

Os operandos especiais Comparador 0 e Comparador 1 já estão previamente mapeados em uma região específica de memória. Dessa forma, basta utilizá-los como uma variável global. Os nomes dos operandos encontram-se melhor descritos na lista de operandos especiais na seção "Diagnóstico"

- "Lista de Operandos Reservados".

Figura 3-22. Configurando para Saída Rápida de Comparador dos Contadores VFO/PWM

Saída comum de Comparador dos Contadores

Os controladores DU350 e DU351 possuem 2 (duas) saídas comuns que podem ser configuradas como saídas de comparação de contadores.

A configuração das saídas comuns como Saída de Comparação de Contador é feita através da árvore de configuração. Para realizar a configuração, abra o MasterTool IEC e clique em "Configuração do CP", localizada na aba "Recursos". Em seguida o módulo "Configuração do CP" deve ser expandido. Nessa aba encontram-se a maioria das configurações necessárias para a utilização do controlador DU350/DU351.

As configurações das saídas comuns como saída de comparação de contador estão localizadas no módulo "Barramento". Ao expandirmos o mesmo, aparecerão os módulos "Entradas e "Saídas". Para a configuração das saídas comum como Saída de Comparação de Contador, devemos expandir o módulo "Saídas Comum de Contador".

As 2 saídas comuns são mostradas e é possível realizar a configuração das saídas como saídas de comparação de contador. Os pinos que recebem as saídas de comparação do Bloco 0 e do Bloco 1 de contadores são respectivamente as saídas Q02 e Q03. Caso a saída não esteja configurada como saída de comparador, as saídas podem ser utilizadas como saídas digitais comuns.

As saídas comuns de comparação são verificadas e atualizadas a cada 1 milisegundo.

🖃 🗣 Configuração do CP 📃 🔺	·
🗄 😔 Comunicação[FIX]	Saída de Comparador
🛱 🗤 🖉 Barramento[FIX]	Tipo de Comparação
🖶 🛶 🏓 Entradas[FIX]	Comparador 0 < Contador < Comparador 1
🖾 🍋 Saídas[FIX]	
🛱 🛱 Saídas Digitais 0[FIX]	
⊞ \$3 Saídas Digitais 1[FIX]	
🕀 🛶 Saídas Analógicas[FIX]	
🕀 🚥 🙀 Saídas Rápidas[FIX]	
🖻 🔤 Saídas Comum de Contador[FIX]	
Comparador Contador 0[SLOT]	
📉 🗙 Saída do Bloco 1 Desabilitada[SLOT]	
🗄 🐇 Eventos Externos[FIX]	

Figura 3-23. Configurando a saída comum de contador

Funções de Posicionamento

Para facilitar as operações de posicionamento utilizando as entradas rápidas, saídas rápidas e saídas analógicas do Duo são disponibilizadas para este produto um conjunto de blocos funcionais responsáveis pelo posicionamento de eixos. Não se faz necessária nenhuma configuração na árvore de configuração para as entradas rápidas, saídas rápidas ou saídas analógicas.

As funções a seguir estão disponíveis na biblioteca DuoMotionLib.lib. Além desta biblioteca também deve ser inserido ao projeto as bibliotecas SysDuoHwConfig.lib e SysDuoMotionLib.lib que possuem funções de uso interno da biblioteca DuoMotionLib.

Esta biblioteca utiliza um conjunto de funções comuns que fazem a inicialização e referenciamento dos eixos e um conjunto de funções específicas de posicionamento que são utilizadas para cada tipo de saída de controle.

Os posicionamentos são de quatro tipos:

- 1. Utilização de Saídas Rápidas do Tipo PTO para posicionar o motor conectado ao eixo sem um retorno de outro tipo para validar o movimento. Utiliza a Função PTO_MOTION para o posicionamento.
- Utilização de Saídas Rápidas do Tipo PTO para posicionar o motor conectado ao eixo sem um retorno de outro tipo para validar o movimento, porém durante o referenciamento utiliza a entrada de zero do encoder para referenciar. Utiliza a Função PTO_MOTION para o posicionamento.
- Utilização de Saídas Rápidas do Tipo PTO para posicionar o motor conectado ao eixo sendo o controle fechado através de uma entrada de contagem rápida conectada a um encoder também ligado ao eixo. Utiliza a Função PTO_MOTION para o posicionamento.
- 4. Utilização de Saídas Analógicas de tensão para posicionar o motor conectado ao eixo sendo o controle fechado através de uma entrada de contagem rápida conectada a um encoder também ligado ao eixo. Utiliza a Função ANALOG_MOTION para o posicionamento.

Para cada eixo controlado deve ser criada uma estrutura do tipo S_MOVE descrita adiante. Esta estrutura é responsável por descrever os padrões físicos do eixo a ser posicionado. O parâmetro TIPO_CONTROLE_BYTE indica qual desses tipos de movimento será realizado. Após inicializar a estrutura para uma dada entrada e saída deve ser chamada a função de posicionamento com o mesmo tipo usado nesta estrutura de dados.

As funções de inicialização ANALOG_INI e PTO_INI não executam movimentações, e devem ser chamadas dentro do programa PLC_PRG ou dentro de uma POU chamada dentro deste. Já as funções de posicionamento ANALOG_MOTION e PTO_MOTION devem ser chamadas dentro de programas por interrupção de tempo.

ATENÇÃO: Esta funcionalidade está disponível somente a partir da versão (1.11) do software executivo e (1.04) do Mastertool IEC.

Funções de Inicialização ANALOG_INI e PTO_INI

Figura 3-24. Blocos Funcionais ANALOG_INI e PTO_INI

Entrada

SMOVE: É uma instancia da estrutura de configuração S_MOVE utilizada para definir os parâmetros da máquina. Previamente deve ser executa a função POS_INI que verifica os parâmetros e consiste se existe algum tipo de erro.

Saídas

EXEC_BOOL: Inicialização executada com sucesso. Caso exista algum erro ou inconsistência nos parâmetros da estrutura de movimentação então está saída não será ligada e será indicado um código de erro na saída CODIGO_ERRO_INT.

CODIGO_ERRO_INT: Indica o tipo de erro que causa o término da execução da função com erro. Pode ser consultada a causa na Tabela 3-10 de Códigos de Erro.

Funcionamento

Para utilizar as funcionalidades de controle de posição, primeiramente é necessário realizar a inicialização através das funções ANALOG_INI ou PTO_INI, conforme o tipo de controle desejado. Estas funções realizam a consistência dos parâmetros da estrutura S_MOVE e a configuração do hardware.

Antes de executar uma função de inicialização é necessário preencher uma estrutura do tipo S_MOVE conforme os limites da tabela abaixo, e então executar a função correspondente ao tipo de controle escolhido.

A função PTO_INI realiza a inicialização de controles do tipo 1 (COUNT_PTO), 2 (PTO) e 4 (REFER_PTO), enquanto a função ANALOG_INI inicializa apenas controles do tipo 3 (COUNT_ANALOG).

Quando uma função de inicialização é executada com sucesso, ou seja, a estrutura S_MOVE está com todos os seus valores corretos, a saída EXEC_BOOL será TRUE e a saída CODIGO_ERRO_INT mostrará o valor 0, indicando que não ocorreram erros na inicialização.

Toda a alteração nos parâmetros da estrutura S_MOVE deve ser realizada com o sistema parado e seguido de uma chamada da respectiva função de inicialização. O sistema está parado quando as funções de posicionamento, ANALOG_MOTION e PTO_MOTION, estiverem com a saída EXECUTANDO_BOOL em FALSE.

As funções de posicionamento possuem uma verificação de inicialização correta, assim, só será possível executar uma função de posicionamento quando a função ANALOG_INI ou PTO_INI for executada com sucesso, caso contrário um erro será retornado.

Estrutura de Configuração para COUNT_PTO, PTO, COUNT_ANALOG e REFER_PTO

Variável da estrutura	Unidade	Valores permitidos	Descrição da variável	
Variáveis para PTO, COUNT_PTO e COUNT_ANALOG				
TIPO_CONTROLE_BYTE		1 – COUNT_PTO 2 – PTO 3 – COUNT_ANALOG 4 – REFER_PTO	Tipo de controle. COUNT_PTO, controle através de uma saída rápida com realimentação por um encoder ligado à entrada rápida. PTO, controle através de uma saída rápida sem realimentação. COUNT_ANALOG, controle através de uma saída analógica com realimentação por um encoder ligado à entrada rápida. REFER_PTO, controle através de uma saída rápida sem realimentação mas utilizando a entrada de zeramento do contador rápido para zeramento durante	
SAIDA_BYTE		0 – Saída rápida F0 / Saída analógica AO0 1 – Saída rápida F1 / Saída analógica AO1	o referenciamento. Indica qual a saída PTO ou analógica será usada para a função de posicionamento e referenciamento. O tipo de saída depende do tipo do controle escolhido.	
ENTRADA_BYTE		0 – Contador 0 (CNT0) 1 – Contador 2 (CNT2)	Indica qual o contador utilizado para a função de posicionamento e referenciamento. Para o controle do tipo PTO, este parâmetro não é	
MODO_ENCODER_BYTE		0 – A incrementa e B decrementa 1 – A incrementa ou decrementa e B dá o sentido 2 – Quadratura 2X 3 – Quadratura 4X	Define a configuração da entrada de contagem rápida. Para mais informações dos modos de contagem, ver capítulo "Configuração" – "Entradas" – "Entradas rápidas". Para o controle do tipo PTO, este parâmetro não é relevante.	
CONFIRMACOES_WORD		1 a 65.535	Número de ciclos de confirmações da posição dentro da faixa de erro para validar um movimento completo.	
PERFIL_BYTE		0 – Perfil trapezoidal 1 – Perfil S	Define o perfil de aceleração/desaceleração que será utilizado.	
AMOSTRAGEM_TIME	tempo	t#1ms a t#1s	Tempo de chamada da função de posicionamento. Para o controle do tipo PTO ou COUNT_PTO, este parâmetro não é relevante.	
REFER_SENTIDO_BOOL		FALSE – Sentido de busca positivo TRUE – Sentido de busca negativo	Indica se o sentido de busca pela zona de referenciamento é feito com nível lógico "0" ou "1".	
REFER_VELOCIDADE_INICI AL_DWORD	um/s	1 a 2.000.000.000	Indicia qual a velocidade inicial de busca pela zona de referenciamento. Este parâmetro permite que a velocidade seja diferente daquela configurada no campo VELOCIDADE_REGIME_DWORD.	
REFER_PERCENTUAL_VEL OCIDADE_INICIAL_BYTE	%	1 a 100	É o percentual com relação a velocidade inicial que será utilizado para finalizar a busca pelo zero da máquina. Se for configurada como velocidade inicial 10mm/s e este parâmetro for 20, a velocidade final de busca pelo zero será de 2 mm/s, que corresponde a 20% do valor inicial.	
REFER_TEMPO_INVERSAO _ZONA_TIME	tempo	t#0ms a t#1m	Define o tempo após o qual será invertido o sentido de busca caso o mesmo inicie no sentido contrário ao sinal de busca. Como o tempo de desaceleração também é relevante neste sentido o tempo total para inversão depende do tempo de desaceleração acrescido deste parâmetro.	
VELOCIDADE_REGIME_DW ORD	um/s	1 a 2.000.000.000	Define a velocidade de regime (velocidade após a aceleração) do eixo em unidade de comprimento por segundos.	
TENSAO_VELOCIDADE_RE GIME_WORD	mV	1 a 10.000	Tensão, que fornecida ao servocontrole, causa a velocidade máxima. Para o controle do tipo PTO ou COUNT_PTO, este	

			parâmetro não é relevante.
TENSAO_MAXIMA_WORD	mV	1 a 10.000	Tensão máxima que será fornecida ao servocontrole. Recomenda-se utilizar no mínimo 10% maior que TENSAO_VELOCIDADE_REGIME_WORD para permitir "overshoot".
			parâmetro não é relevante.
KP_REAL		0 a 50	Ganho proporcional do laço de posicionamento.
			Para o controle do tipo PTO ou COUNT_PTO, este parâmetro não é relevante.
KI_REAL		0 a 50	Ganho integral do laço de posicionamento, ativado apenas ao final para corrigir o erro em regime.
			Para o controle do tipo PTO ou COUNT_PTO, este parâmetro não é relevante.
TEMPO_ACELERACAO_TIM E	tempo	t#0s a t#10m	Tempo da aceleração/desaceleração do motor.
LIMITE_DE_PARADA_DINT	um	1 a 10.000.000	Faixa de tolerância em torno da posição de parada. Caso aconteça escorregamento maior que o tolerável a malha de controle será aberta.
			Para o controle do tipo PTO ou COUNT_PTO, este parâmetro não é relevante.
ERRO_MAXIMO_DINT	um	0 a 10.000.000	Erro máximo permitido para o deslocamento de um eixo para uma posição.
FIM_CURSO_SW_POSITIVO _DINT	um	1 a 2.000.000.000	Fim de curso por software no sentido positivo do eixo. Quando o valor atual da posição for maior que o valor especificado neste parâmetro é feita uma parada suave. Deve ser estabelecido este parâmetro de forma que este valor permita que a parada aconteça antes do limite físico positivo do eixo.
FIM_CURSO_SW_NEGATIV O_DINT	um	-1 a -2.000.000.000	Fim de curso por software no sentido negativo do eixo. Quando o valor atual da posição for menor que o valor especificado neste parâmetro é feita uma parada suave. Deve ser estabelecido este parâmetro de forma que este valor permita que a parada aconteça antes do limite físico negativo do eixo.
TIMEOUT_TIME	tempo	t#1s a t#10h	Timeout para execução do referenciamento do eixo. Se o referenciamento não for concluído após o tempo estabelecido neste parâmetro é executada uma parada suave da saída sem a conclusão do posicionamento.
COMPENSACAO_DE_FOLG A_DINT	um	-10.000.000 a 10.000.000	Compensador de folga para sistemas com medição indireta.
			O sinal da compensação é utilizado para diferenciar entre a situação em que o sistema de medição conta, mas o eixo, devido à folga, não desloca-se (utilizar sinal +) e aquela em que o eixo desloca-se o sistema de medição, devido à folga, inicia atrasado a contagem (utilizar sinal -).
			Caso o valor da folga seja diferente de zero e nas funções PTO_MOTION e ANALOG_MOTION tentar se utilizar um movimento relativo as funções irão retornar erro.
NUMERO_PULSOS_MOTOR _DINT	pulsos	1 a 1.000.000	Define o número de pulsos necessários para que um motor de passo ou outro motor execute uma volta do eixo.
			Para o controle do tipo COUNT_ANALOG, este parâmetro não é relevante.
DESLOCAMENTO_MOTOR_ DINT	um	1 a 10.000.000	Define o deslocamento em unidade de comprimento que corresponde a uma volta do motor.
			Para o controle do tipo COUNT_ANALOG, este parâmetro não é relevante.
NUMERO_PULSOS_ENCOD ER_DINT	pulsos	1 a 1.000.000	Define o número de pulsos gerado por um encoder quando este executa uma volta do eixo. Deve ser preenchido com o número de pulsos nominal do encoder.
DESLOCAMENTO_ENCODE R_DINT	um	1 a 10.000.000	Define o deslocamento em unidade de comprimento que corresponde a uma volta do encoder.

Tabela 3-9. Variáveis	de uma estrut	ura do tipo S_MOVE
-----------------------	---------------	--------------------

ATENÇÃO: O erro máximo deve ser maior ou igual à razão (DESLOCAMENTO_ENCODER_DINT / NUMERO_PULSOS_ENCODER_DINT), o mesmo que a resolução em μm/pulso, e esta resolução deve ter um valor de no mínimo 1.

Funcionamento de um Referenciamento

Figura 3-25. Diagrama de referenciamento

A Figura 3-25 mostra o diagrama para o referenciamento de um eixo. Nele está representado o perfil de aceleração do eixo para a movimentação e as entradas do sensor da zona de referenciamento, REFER_SENSOR_ZONA_BOOL, assim como a saída do encoder que indica passagem por zero. A zona de referenciamento é a faixa do eixo onde o pulso de zero do encoder é analisado pela entrada de referenciamento. Desta forma um referenciamento começa deslocando o eixo no sentido declarado no parâmetro REFER_SENTIDO_BOOL da estrutura S_MOVE. O eixo é acelerado até atingir a velocidade de busca pela zona de referenciamento REFER_VELOCIDADE_INICIAL_DWORD. Ao encontrar uma borda de subida em REFER_SENSOR_ZONA_BOOL é executada uma parada suave do eixo desacelerando até que este pare.

Se durante este movimento um zero já foi detectado dentro da zona de referenciamento este será considerado a posição zero da máquina. Em caso contrário a máquina continua se deslocando no mesmo sentido porém com um percentual da velocidade inicial declarado em REFER_PERCENTUAL_VELOCIDADE_INICIAL_BYTE. Quando encontrar um zero vindo da saída do encoder este ponto é o zero da máquina e uma parada suave é realizada.

Sempre que a COMPENSACAO_DE_FOLGA_DINT (configurada na estrutura S_MOVE) for maior que zero, após encontrar o zero da máquina, um deslocamento do tamanho da folga do sistema será gerado, com o objetivo de garantir que a folga estará compensada ao final do referenciamento.

Ao final deste processo caso o eixo esteja parado dentro da tolerância de erro, ERRO_MAXIMO_DWORD, nenhum movimento é realizado. Caso esteja fora, novos movimentos devem ser executados para permanecer dentro da faixa de erro máximo em torno do zero.

Antes do disparo do referenciamento a entrada REFER_SENSOR_ZONA_BOOL é testada e caso esteja em "True" o referenciamento irá iniciar a busca no sentido contrário a REFER_SENTIDO_BOOL, afim de sair da zona de referenciamento. Após detectar uma borda de descida do sensor de referenciamento o eixo permanece com a velocidade inicial de busca, REFER_VELOCIDADE_INICIAL_DWORD, por um tempo definido em

REFER_TEMPO_INVERSAO_ZONA_TIME, para depois começar a desacelerar. Ao cessar este movimento a busca prossegue de maneira normal no sentido de busca definido no parâmetro REFER_SENTIDO_BOOL da função.

Recomenda-se que o sensor de zona seja montado de forma que, após ter uma borda de subida, este permaneça em estado "1" até o final do eixo. Se não for desta forma pode acontecer do eixo estar posicionado fora da zona mas do lado oposto ao sentido de busca. Acontecendo isso o eixo será parado bruscamente pelo fim de curso posicionado deste lado do eixo.

No caso de um controle utilizando somente a saída PTO, o contador é zerado para indicar o zero da máquina na borda de subida do REFER_SENSOR_ZONA_BOOL. Isso acontece pois como não é utilizado o encoder não existe a indicação de passagem pelo zero do encoder.

Montagem mecânica de um eixo

Figura 3-26. Montagem do eixo

Funções de Referenciamento e Posicionamento

As bibliotecas de motion do DU350 e DU351 possuem duas funções de posicionamento e referenciamento, onde uma das funções de controle utiliza como atuador uma saída rápida configurada para a geração de trem de pulsos (PTO) e a outra função utiliza uma saída analógica.

Função PTO_MOTION

A função PTO_MOTION utiliza uma saída rápida configurada como PTO para atuar no sistema. Esta função pode ser configurada para utilizar um contador bidirecional com um encoder associado ou um contador de pulsos interno como realimentação da malha de controle. A diferenciação de qual o comportamento desejado é feita através do parâmetro TIPO_CONTROLE_BYTE da estrutura SMOVE. Neste caso quando este parâmetro é igual a 1 (COUNT_PTO) o laço será fechado utilizando um contador rápido. Já no caso de se configurado como 2 (PTO) o controle é feito utilizando o próprio contador absoluto da saída rápida PTO.

Além disso existe um outro modo para ser configurado que reúne as características dos outros dois modos que envolvem a saída PTO. Para este caso o parâmetro TIPO_CONTROLE_BYTE deve ser 4 (REFER_PTO). Nesta configuração o comportamento é idêntico ao da configuração como PTO para o posicionamento, porém se o eixo possui uma indicação de posição do zero através de um encoder, por exemplo, este modo deve ser utilizado e o contador de posição será zerado no posição do pulso de zeramento quando o eixo for referenciado.

Para selecionar qual o tipo de controle deve ser utilizado deve ser levado em consideração qual o tipo de acionamento é utilizado. Nos casos em que o servoacionamento possui controle de posição, ou seja, o laço de controle é fechado dentro do próprio driver, o controle a ser utilizado é o PTO direto. Caso este sistema possua a informação de passagem por zero devesse utilizar o posicionamento do tipo REFER_PTO para aumentar a acuidade do referenciamento. Porém se sistema utiliza um driver com lógica combinacional, como é o caso dos drivers para acionamentos de motores de passo, sendo estes acoplados a um eixo de um encoder, deve-se escolher a utilização do controle do tipo COUNT_PTO.

Esta função deve ser chamada periodicamente através de uma POU acionada por interrupção de tempo, o qual deve ser configurado conforme mostra o capítulo "Configuração" – "POUs acionadas por interrupção de tempo". Para ter um controle mais preciso, recomenda-se utilizar o menor tempo possível para a chamada desta função.

Após configurar este módulo de controle através da função PTO_INI e chamar periodicamente a função PTO_MOTION esta irá monitorar periodicamente as entradas da função. Caso o disparo de um referenciamento ou posicionamento seja solicitado através das entradas a função passa a executar a máquina de estados responsável por cada uma funções. Enquanto estiver executado não será permitido um novo posicionamento ou referenciamento a não ser após concluído o movimento ou em caso de uma parada forçada através de parada de emergência (EMERGENCIA_BOOL) ou parada suave (SOFTSTOP_BOOL). Enquanto estiver executado a saída EXECUTANDO_BOOL permanece ligada. Caso ocorra algum erro a saída ERRO_BOOL é acionada e o erro respectivo é colocado na variável CODIGO_ERRO_INT.

Normalmente este tipo de função não precisa de CONFIRMACOES_WORD maior que 1. Porém em sistemas com uma inércia grande se faz necessário aumentar o número de confirmações afim que seja garantido o posicionamento dentro de ERRO_MAXIMO_DINT. Caso o valor do erro seja muito pequeno pode ocorrer do eixo não ser posicionado corretamente. O número de confirmações só é utilizado para função do tipo COUNT_PTO.

No caso do posicionamento não ser encerrado corretamente existe o parâmetro de TIMEOUT_TIME que para o movimento após um tempo estabelecido mesmo que o movimento não tenha sido concluído com sucesso.

Função ANALOG_MOTION

A função ANALOG_MOTION utiliza uma saída analógica para atuar no processo e o controle é realimentado através de um encoder. Esta saída analógica, que excursiona de 0 a 10 Volts, possui uma saída digital associada para definir o sentido do movimento, onde FALSE define o sentido positivo e TRUE o sentido negativo.

O controle analógico é do tipo proporcional-integral, os ganhos são configurados pelos parâmetros KP_REAL, ganho proporcional, e KI_REAL, ganho integral, na estrutura S_MOVE. Porém, o controle integral é ativado somente ao final do traçado do perfil teórico, tendo como finalidade corrigir o erro característico de um sistema que utiliza apenas um controle proporcional. Caso não haja a necessidade de um controle integral, o parâmetro KI_REAL deve ser configurado com o valor zero.

Esta função deve ser chamada periodicamente através de uma POU acionada por interrupção de tempo, a qual deve ser configurado conforme mostra o capítulo "Configuração" – "POUs acionadas por interrupção de tempo". Para ter um controle mais preciso, recomenda-se utilizar o menor tempo possível para a chamada desta função (1 ms).

Após configurar este módulo de controle através da função ANALOG_INI e chamar periodicamente a função ANALOG_MOTION, o laço de controle iniciará em aberto, sinalizado com FALSE em CLOSED_LOOP_BOOL. Para fechar o laço de controle é necessário forçar o seu fechamento através do comando CLOSE_LOOP_BOOL, disparar um posicionamento através do comando DISP_POS_BOOL ou disparar um referenciamento através do comando DISP_REFER_BOOL.

Quando o laço de controle está fechado, a verificação do limite de parada estará sendo realizado. Esta verificação serve para garantir que em caso de perda de controle ou movimentações indevidas, geradas por causas externas ao sistema, o laço será aberto, evitando acidentes. O parâmetro LIMITE_DE_PARADA_DINT da estrutura S_MOVE é o responsável pela configuração do valor do limite de parada.

A abertura do laço de controle pode acontecer das seguintes maneiras: pelo comando de emergência (EMERGENCIA_BOOL), pela passagem do limite de parada (LIMITE_DE_PARADA_DINT), pelo acionamento de um dos fim de curso por hardware (FIM_CURSO_HW_POSITIVO_BOOL ou FIM_CURSO_HW_NEGATIVO_BOOL), pela reinicialização do módulo de controle com valores

errados na estrutura S_MOVE, pelo estouro da posição atual ou pela tentativa de disparo de um posicionamento com um valor de posição (POSICAO_DINT) fora da faixa permitida.

Ao disparar um posicionamento ou um referenciamento a saída EXECUTANDO_BOOL será setada e somente será limpa ao final do posicionamento, que pode acontecer devido a um posicionamento concluído com sucesso ou devido a alguma exceção, por exemplo, a colisão em um fim de curso.

O erro de acompanhamento entre o perfil teórico gerado pelo módulo de posicionamento e a posição atual media através do encoder é mostrada na saída ERRO_ACOMPANHAMENTO_DWORD e seu sinal é informado na saída SINAL_ERRO_ACOMPANHAMENTO_BOOL, com este dado é possível enxergar o comportamento do sistema em relação aos ganhos definidos na estrutura S_MOVE. Caso o erro de acompanhamento esteja aumentando constantemente é sinal de que o ganho proporcional não está com um valor suficiente para fazer a posição real acompanhar a posição teórica com um erro constante, assim o ganho proporcional deve ser aumentado.

Outra informação importante para a calibração do controle é a saída SATURADO_BOOL. Esta saída é setada quando o sinal teórico de controle ultrapassa a tensão máxima da saída analógica configurada no parâmetro TENSAO_MAXIMA_WORD na estrutura S_MOVE. A saturação do sinal leva o erro de acompanhamento a aumentar constantemente, conforme descrito no parágrafo anterior.

A conclusão de um posicionamento acontece quando a posição do eixo for verificada o número de confirmações consecutivas, configurada no parâmetro CONFIRMACOES_WORD da estrutura S_MOVE. Caso o sistema não encontre a posição e uma parada de emergência não for disparada, o controle será aberto após passar o tempo de timeout e um código de erro será gerado.

Os motivos que levam o sistema a não encontrar a posição final são: ERRO_MAXIMO_DINT muito pequeno para a dinâmica do sistema, tempo de chamada da função ANALOG_MOTION muito grande ou ganho integral muito pequeno para um sistema que necessita de um torque relativamente alto para funcionar com um controle apenas proporcional.

РТО_МОТ	10N
DISP_REFER_BOOL: BOOL DISP_POS_BOOL: BOOL SMOVE: S_MOVE REFER_SENSOR_ZONA_BOOL: BOOL POSICAO_DINT: DINT MODO_POSICIONAMENTO_BOOL: BOOL AUTO_MANUAL_BOOL: BOOL FIM_CURSO_HW_POSITIVO_BOOL: BOOL FIM_CURSO_HW_NEGATIVO_BOOL: BOOL EMERGENCIA_BOOL: BOOL SOFTSTOP_BOOL: BOOL SAIDA_SENTIDO_IN_BOOL: BOOL	EXECUTANDO_BOOL : BOOL REFERENCIADO_BOOL : BOOL POSICIONADO_BOOL : BOOL ERRO_BOOL : BOOL CODIGO_ERRO_INT : INT SAIDA_SENTIDO_OUT_BOOL : BOOL POSICAO_ATUAL_DINT : DINT

Figura 3-27. Bloco Funcional PTO_MOTION

	ANALOG_MOTION			
	DISP_REFER_BOOL : BOOL DISP_POS_BOOL : BOOL SMOVE : S_MOVE REFER_SENSOR_ZONA_BOOL : BOOL POSICAO_DINT : DINT MODO_POSICIONAMENTO_BOOL : BOOL AUTO_MANUAL_BOOL : BOOL FIM_CURSO_HW_POSITIVO_BOOL : BOOL	EXECUTANDO_BOOL : BOOL REFERENCIADO_BOOL : BOOL POSICIONADO_BOOL : BOOL ERRO_BOOL : BOOL CODIGO_ERRO_INT : INT SAIDA_SENTIDO_OUT_BOOL : BOOL POSICAO_ATUAL_DINT : DINT CLOSED_LOOP_BOOL : BOOL		
_	FIM_CURSO_HW_NEGATIVO_BOOL : BOOL EMERGENCIA_BOOL : BOOL	SATURACAO_BOOL: BOOL ERRO_ACOMPANHAMENTO_DWORD: DWORD		
_	SOFTSTOP_BOOL:BOOL SAIDA SENTIDO IN BOOL:BOOL	SINAL_ERRO_ACOMPANHAMENTO_BOOL : BOOL	<u> </u>	
	CLOSE_LOOP_BOOL : BOOL			

Figura 3-28. Bloco Funcional ANALOG_MOTION

Compensação de folga

As funções de posicionamento possuem uma compensação de folga para sistemas que utilizem medição indireta, onde o motor é ligado ao encoder através de um sistema.

Para utilizar a compensação de folga é necessário configurar o parâmetro COMPENSACAO_DE_FOLGA_DINT na estrutura S_MOVE. Quando não houver a necessidade de compensação de folga, este parâmetro deve ser configurado com o valor zero.

O sinal da compensação é utilizado para diferenciar entre a situação em que o sistema de medição conta, mas o eixo, devido à folga, não desloca-se (utilizar sinal positivo) e aquela em que o eixo desloca-se e o sistema de medição, devido à folga, inicia atrasado a contagem (utilizar sinal negativo).

A compensação de folga somente irá funcionar quando o movimento é absoluto. Em caso de movimento relativo e compensação diferente de zero função retorna um código de erro.

Entradas

DISP_REFER_BOOL: Entrada utilizada para disparar um novo referenciamento. A entrada é sensível a nível. Depois de energizada a função ela permanece executando com a saída EXECUTANDO_BOOL acionada até que o referenciamento seja concluído. Após a conclusão a saída REFERENCIADO_BOOL é ligada e um novo referenciamento ou um posicionamento podem ser realizados.

DISP_POS_BOOL: Entrada utilizada para disparar um novo posicionamento. A entrada é sensível a nível. Quando a função for executada com esta entrada ligada se um posicionamento não estiver em andamento então um novo posicionamento será executado. Depois de energizada a função ele permanece executando com a saída EXECUTANDO_BOOL acionada até que o posicionamento seja concluído. Após a conclusão a saída POSICIONADO_BOOL é ligada e um novo posicionamento ou um referenciamento podem ser realizados.

SMOVE: É uma instancia da estrutura de configuração S_MOVE, utilizada para definir os parâmetros da máquina. Previamente deve ser executa a função POS_INI que verifica os parâmetros e consiste se existe algum tipo de erro. Qualquer alteração nesta estrutura deve ser realizada quando o sistema estiver parado, ou seja, quando EXECUTANDO_BOOL for igual a FALSE.

REFER_SENSOR_ZONA_BOOL: Entrada para o sensor de zona de referenciamento. A zona de referenciamento é sempre indicada pelo nível lógico "1" nesta entrada.

POSICAO_DINT: Indica a nova posição para o próximo movimento. No caso de movimento absoluto este valor deve ser a nova posição. No caso de movimento relativo esta valor representa o deslocamento relativo a posição atual. Para o controle analógico, num referenciamento o valor deste parâmetro é utilizado como a posição absoluta para um novo posicionamento realizado automaticamente ao final do referenciamento.

MODO_POSICIONAMENTO_BOOL: Indica se o movimento a ser realizado para o próximo disparo é absoluto ou relativo. Quando esta entrada for FALSE o movimento é absoluto e o posicionamento será realizado de forma que o eixo se posicione no valor indicado pela entrada POSICAO_DINT. Quando este entrada for TRUE o movimento é relativo e o posicionamento será realizado de forma que o valor atual mais o valor da entrada POSICAO_DINT.

AUTO_MANUAL_BOOL: Esta entrada é utilizada para bypassar o estado das entradas de fim de curso físico FIM_CURSO_HW_POSITIVO_BOOL e FIM_CURSO_HW_NEGATIVO_BOOL. Quando esta entrada for FALSE as entradas de fim de curso são tratadas normalmente. Se está entrada for TRUE então as entradas de fim de curso serão ignoradas e os movimentos poderão ser realizados mesmo que o eixo esteja em um dos limites físicos. Esta entrada só existe para possibilitar que o eixo possa ser retirado do limite físico em caso de parada devido ao sensor de fim de curso. Neste caso a entrada deve ser acionada e deve se ter cuidado com a direção em que o movimento será realizado a fim de evitar danos ao equipamento. Esta entrada só é interpretada no caso da entrada DISP_POS_BOOL ser acionada, ou seja não sendo interpretada no caso da tentativa de um referenciamento. Após um referenciamento concluído no caso da entrada igual a TRUE o a saída de erro não permanecerá ligada mesmo que o eixo se encontre sobre um dos fins de curso por hardware.

FIM_CURSO_HW_POSITIVO: Esta entrada é utiliza para indicar qual é o limite físico no sentido positivo do eixo. Quando esta entrada é acionada indica para as funções que não é desejado que o movimento permaneça acontecendo nesta direção sob pena de danificar a estrutura deste eixo. Desta forma ao detectar este sensor ativo uma parada busca é realizada no eixo para que este pare imediatamente sem desaceleração. Caso esteja parado nesta situação somente será possível movimentar o eixo através de um posicionamento com a entrada AUTO_MANUAL_BOOL acionada ou através de deslocamento forçado.

FIM_CURSO_HW_NEGATIVO: Esta entrada é utiliza para indicar qual é o limite físico no sentido negativo do eixo. Quando esta entrada é acionada indica para as funções que não é desejado que o movimento permaneça acontecendo nesta direção sob pena de danificar a estrutura deste eixo. Desta forma ao detectar este sensor ativo uma parada busca e realizada no eixo para que este pare imediatamente sem desaceleração. Caso esteja parado nesta situação somente será possível movimentar o eixo através de um posicionamento com a entrada AUTO_MANUAL_BOOL acionada ou através de deslocamento forçado.

EMERGENCIA_BOOL: Esta entrada é utilizada para parada de emergência. A parada de emergência gera uma parada brusca no eixo e não pode ser bypassada na função, de maneira que possa ser acionada caso os mecanismos de segurança como os fins de curso venham a falhar.

SOFTSTOP_BOOL: Se um posicionamento estiver em andamento, e o sistema estiver acelerando ou em velocidade de regime, esta entrada inicia uma para suave.

SAIDA_SENTIDO_IN_BOOL: Saída digital utilizada para indicar o sentido do movimento executado pelo motor. Deve ser declarado o mesmo parâmetro que na SAIDA_SENTIDO_OUT_BOOL.

CLOSE_LOOP_BOOL: Fecha a malha de controle caso a mesma esteja aberta. Esta entrada é utilizada nos casos em que uma parada brusca (emergência ou fim de curso por hardware) foi executada e portanto a malha de controle foi aberta. Todo o acionamento de DISP_REFER_BOOL e DISP_POS_BOOL fecha automaticamente a malha. Esta entrada é utilizada apenas no controle analógico.

Saídas

EXECUTANDO_BOOL: Execução da função realizada com sucesso

REFERENCIADO_BOOL: Finalização do referenciamento do eixo no último ciclo do programa aplicativo.

POSICIONADO_BOOL: Finalização do referenciamento do eixo no último ciclo do programa aplicativo.

ERRO_BOOL: Ocorreu algum erro durante a execução da função. O erro pode ser visto na saída COD_ERRO da função. Este bit permanece apenas um ciclo com o valor de erro, sendo necessária a verificação constante do mesmo.

CODIGO_ERRO_INT: Indica o tipo de erro que causa o término da execução da função com erro. Esta variável permanece apenas um ciclo com o valor de erro, sendo necessária a verificação constante da mesma. Pode ser consultada a causa na tabela Tabela 3-10 de Códigos de Erro.

SAIDA_SENTIDO_OUT_BOOL: Saída digital utilizada para indicar o sentido do movimento executado pelo motor. Quando o movimento acontecer no sentido positivo do eixo a saída será setada para o estado lógico "0". Quando o movimento for no sentido negativo do eixo a saída será setada para o estado lógico "1".

POSICAO_ATUAL_DINT: Posição atual em unidade de comprimento definida pelo usuário conforme;

CLOSED_LOOP_BOOL: Indica se a malha de controle está fechada. Normalmente esta saída é utilizada para definir o momento em que o freio deve ser acionado. Quando a malha for aberta recomenda-se desligar o servoacionamento através de sua entrada de enable. Esta saída é utilizada apenas pelo controle analógico.

SATURACAO_BOOL: Indica que o sinal teórico de controle passou da tensão máxima declarada na estrutura S_MOVE. Esta saída é utilizada apenas pelo controle analógico.

ERRO_ACOMPANHAMENTO_DWORD: Mostra o valor da diferença entre a posição teórica e a posição real do sistema. Este dado, juntamente com a variável SATURACAO_BOOL, é importante para definir o valor de ganho proporcional, KP_REAL, que deve ser utilizado no controle. Quando em velocidade de regime este valor deve estar tendendo a ficar em torno de um valor "constante", caso este valor esteja crescendo constantemente, o sinal de saída está saturando e o giro máximo do motor não é suficiente para fazer o sistema acompanhar o perfil teórico. Esta saída é utilizada apenas pelo controle analógico.

SINAL_ERRO_ACOMPANHAMENTO_BOOL: Indica qual é o sinal da variável ERRO_ACOMPANHAMENTO_DWORD.

Códigos de Erro

Erro da Função	Código do Erro Função	Descrição do Erro da Função
Códigos de Erros Gerais		
COD_ERRO_EMERGENCIA	1	Quando ocorre uma parada brusca devido ao acionamento da entrada de emergência.
COD_ERRO_FIM_CURSO_HW_POSITIVO	2	Quando ocorre uma parada brusca devido ao estado lógico "1" na entrada de fim de curso positivo.
COD_ERRO_FIM_CURSO_HW_NEGATIVO	3	Quando ocorre uma parada brusca devido ao estado lógico "1" na entrada de fim de curso negativo.
COD_ERRO_FIM_CURSO_SW_POSITIVO	4	Quando ocorre uma parada suave devido a posição atual maior que o valor configurado no fim de curso por software positivo.
COD_ERRO_FIM_CURSO_SW_NEGATIVO	5	Quando ocorre uma parada suave devido a posição atual menor que o valor configurado no fim de curso por software negativo.
COD_ERRO_NAO_INICIALIZADO	6	Tentativa de executar um posicionamento ou referenciamento sem antes ter executado uma inicialização através da função ANALOG_INI ou PTO_INI.
COD_ERRO_INTERTRAVAMENTO	7	Retorna este erro ao tentar executar uma função quando outra ainda está sendo executada utilizando o mesmo recurso, por exemplo a mesma saída PTO.
COD_ERRO_TIMEOUT	8	Quando um movimento ultrapassou o tempo de timeout estabelecido pelo usuário
COD_ERRO_SOFTSTOP	9	Quando ocorre uma parada suave devido ao acionamento da entrada de softstop.

COD_ERRO_POSICAO_ATUAL	10	Falha no cálculo da posição atual devido ao estouro do limite das variáveis.
COD_ERRO_POSICAO	11	Parâmetro de posição fora da faixa.
Códigos de Erros de referenciamento		
COD_ERRO_BUSCA	80	Erro interno da função na máquina de estados de busca por zero.
COD_ERRO_BUSCA_INV	81	Erro interno da função na máquina de estados de busca por zero.
Códigos de Erros da Função PTO_MOTION		
COD_ERRO_ESTADO_PTO	110	Erro interno da função na máquina de estados de posicionamento.
COD_ERRO_ESTADO_COUNT_PTO	140	Erro interno da função na máquina de estados de posicionamento.
Códigos de Erros da Função ANALOG_MOTION	1	
COD_ERRO_LIMITE_DE_PARADA	170	O deslocamento do eixo, quando deveria estar parado, passou do limite de parada.
COD_ERRO_ESTADO_COUNT_ANALOG_PO S	171	Erro interno da função na máquina de estados de posicionamento.
COD_ERRO_ESTADO_COUNT_ANALOG_RE FER_1	172	Erro interno da função na máquina de estados de referenciamento.
COD_ERRO_ESTADO_COUNT_ANALOG_RE FER_2	173	Erro interno da função na máquina de estados de referenciamento.
Erros nos parâmetros da Estrutura Smove		
COD_ERRO_PARAM_ERRO_MAXIMO	200	Valor do erro máximo é menor que a resolução do motor ou do encoder. Este Código também é utilizado para indicar que a variável de erro máximo tem uma valor menor que zero.
COD_ERRO_PARAM_PERFIL	201	Tipo de perfil inválido
COD_ERRO_PARAM_MODO_ENCODER	202	Valor do modo do encoder inválida
COD_ERRO_ PARAM_SAIDA	203	Valor da saída inválido
COD_ERRO_ PARAM_ENTRADA	204	Valor do contador inválido
COD_ERRO_ PARAM_TIPO_CONTROLE	205	Valor do tipo de controle de posicionamento inválido
COD_ERRO_ PARAM_VELOCIDADE_REGIME	206	Valor da velocidade de regime fora da faixa de velocidade ou, no caso de controle utilizando a saída PTO, a freqüência está fora da faixa permitida. Neste caso a freqüência é calculada como: (VELOCIDADE*NUMERO_PULSOS_MOTOR_DINT/ DESLOCAMENTO_MOTOR_DINT)
COD_ERRO_ PARAM_NUMERO_PULSOS_MOTOR	207	Valor de numero de pulsos por volta do motor está fora da faixa.
COD_ERRO_ PARAM_DESLOCAMENTO_MOTOR	208	Valor do deslocamento por volta do motor de passo está fora da faixa.
COD_ERRO_ PARAM_NUMERO_PULSOS_ENCODER	209	Valor de numero de pulsos por volta do encoder está fora da faixa.
COD_ERRO_ PARAM_DESLOCAMENTO_ENCODER	210	Valor do deslocamento por volta do encoder está fora da faixa.
COD_ERRO_TEMPO_ACELERACAO	211	Valor do tempo de aceleração fora da faixa permitida.
COD_ERRO_PARAM_COMPENSACAO_DE_ FOLGA	212	Valor do compensador de folga diferente de zero e fora da faixa permitida ou diferente de zero e menor que o erro máximo (ERRO_MAXIMO_DWORD). Além disso este código também é gerado quando é disparado uma movimento relativo com compensação de folga diferente de zero.
COD_ERRO_PARAM_FIM_CURSO_SW_POS ITIVO	213	Valor do fim de curso por software positivo fora da faixa permitida.
COD_ERRO_PARAM_FIM_CURSO_SW_NEG ATIVO	214	Valor do fim de curso por software negativo fora da faixa permitida.
COD_ERRO_PARAM_TIMEOUT	215	Valor do tempo para timeout fora da faixa permitida.
COD_ERRO_PARAM_REFER_PERCENTUAL _VELOCIDADE_INICIAL	216	Parâmetro de percentual de velocidade na zona fora da faixa de 1 a 100%
COD_ERRO_PARAM_TEMPO_INVERSAO_Z ONA	217	O tempo de inversão ao sair da zona de referenciamento fora da faixa permitida.
COD_ERRO_PARAM_REFER_VELOCIDADE_	218	Velocidade inicial de busca maior que velocidade de

INICIAL		regime configurada na estrutura, fora da faixa de velocidade ou, no caso de controle utilizando a saída PTO, a freqüência está fora da faixa permitida. Neste caso a freqüência é calculada como: (VELOCIDADE*NUMERO_PULSOS_MOTOR_DINT/ DESLOCAMENTO_MOTOR_DINT)
COD_ERRO_PARAM_CONFIRMACOES	219	Valor de confirmações de posicionamento fora da faixa permitida.
Erros nos parâmetros da Estrutura SMOVE espe	cíficos do controle	analógico
COD_ERRO_PARAM_AMOSTRAGEM	220	Tempo de amostragem fora da faixa permitida.
COD_ERRO_PARAM_TENSAO_VELOCIDAD E_REGIME	221	Tensão de velocidade de regime fora da faixa permitida ou maior que a tensão máxima.
COD_ERRO_PARAM_TENSAO_MAXIMA	222	Tensão máxima fora da faixa permitida.
COD_ERRO_PARAM_KP	223	Ganho proporcional fora da faixa permitida.
COD_ERRO_PARAM_KI	224	Ganho integral fora da faixa permitida.
COD_ERRO_PARAM_LIMITE_DE_PARADA	225	Valor do limite de parada fora da faixa permitida ou menor que o erro máximo.

Tabela 3-10. Códigos de erro das funções de motion

Comunicação

Para configurar as portas, abra o MasterTool IEC e clique em "Configuração do CP", localizada na aba "Recursos". Em seguida o módulo "Configuração do CP" deve ser expandido.

As configurações das Portas COM estão localizadas no módulo Comunicação. Ao expandir esse módulo irão aparecer os módulos de "COM1" e "COM2". Para a configurar a COM1, por exemplo, clique no modulo "COM1". Ao lado direito, aparecerá uma aba com as configurações da porta. Nela podem ser configuradas:

- Paridade:
 - Sem paridade
 - Ímpar
 - Par
 - Sempre 1
 - Sempre 0
- Stop Bits:
 - 1 Stop Bit
 - 2 Stop Bits
- Sinais de Modem:
 - Sem RTS/CTS
 - Com RTS/CTS
 - Com RTS sem CTS
 - RTS sempre ligado
- Delay:
 - 5 a 1000 ms

- Baud Rate (bps bits por segundo):
 - 1200
 - 2400
 - 4800
 - 9600
 - 19200
 - 38400
 - 57600
 - 115200

ATENÇÃO:

O tempo definido no campo delay indica o tempo mínimo entre o recebimento de um pacote MODBUS e o envio de um outro pacote MODBUS (delay entre frames). Essa definição refere-se ao tempo **mínimo**, esse tempo pode variar conforme os tempos de execução das POUs utilizadas. Ex: caso exista uma POU com um tempo de execução de 20 ms o delay entre frames poderá ser de aproximadamente 20 ms mesmo estando configurado como 5 ms.

ATENÇÃO:

Ao tempo definido no campo delay, para a COM2, sempre é acrescido um tempo de 30 ms devido a maneira como está construída esta interface serial. Neste caso quando for configurado um tempo de 15 ms o delay na prática será de 45 ms.

A configuração do protocolo MODBUS nas duas portas é descrito a seguir.

Figura 3-29. Configurando COM1

ATENÇÃO: Para relação entre o tempo de ciclo da UCP e a comunicação com o MasterTool IEC, ver mensagem de advertência no capítulo "Descrição Técnica" - "Desempenho" - "Tempo de Ciclo".

ATENÇÃO:

Os operandos reservados Ixx (entradas digitais), Qxx (saídas digitais), AIx (entradas analógicas) e AOx (saídas analógicas) estão mapeados em operandos I e Q acessíveis via MODBUS, para a verificação do endereço de memória utilizado para cada operando utilize a tabela Lista de Operandos Reservados presente neste manual.

MODBUS Mestre

As duas portas COM podem ser configuradas tanto como MODBUS Mestre, quanto como MODBUS Escravo. Para configurar a porta COM1 como MODBUS Mestre, abra o MasterTool IEC e clique em "Configuração do CP", localizada na aba "Recursos". Em seguida o módulo "Configuração do CP" deve ser expandido.

As configurações das Portas COM estão localizadas no módulo Comunicação. Ao expandir o mesmo, aparecerão os módulos de "COM1" e "COM2". Para configurar a COM1, o módulo "COM1" deve ser expandido, da mesma maneira deve ser expandido o módulo "COM2" para configurar a interface de comunicação COM2.

Ao expandir este bloco a porta COM1 não estará habilitada para MODBUS, para habilitá-la, é necessário clicar com o botão direito do mouse sobre o módulo "MTooIIEC" e selecionar a opção "Substituir elemento" em seguida escolha "MODBUS Mestre" para habilitar a COM1 como MODBUS Mestre. Para a configuração da porta COM2, deve se realizar o mesmo procedimento, porém para esta interface de comunicação não existira a opção "MTooIIEC".

Clicando sobre o modulo habilitado "MODBUS Mestre", aparecerão ao lado direito duas caixas de texto contendo as seguintes opções:

- Time-out (ms) Configura quanto tempo o controlador aguardará uma resposta do escravo. Se o tempo de resposta for maior que o valor configurado no campo Time-out, o controlador indicará um erro de comunicação no respectivo operando (caso não exista mais retentativas). Em caso de time-out o controlador retransmite o pacote a um determinado escravo o número de vezes definido no campo Retentativas antes de executar uma nova relação MODBUS definida. O time-out pode ser configurado com valores de 1ms a 10s (10000ms);
- Retentativas Configura o número de vezes que o Mestre irá retransmitir o pacote no caso do Escravo não responder (após aguardar o tempo de time-out configurado). O número de retentativas pode ser configurado com valores de 1 a 10.

Após configurar estas duas configurações, é necessário habilitar as relações MODBUS desejadas.

Figura 3-30. MODBUS Mestre

Relação MODBUS

Uma relação MODBUS, nada mais é que uma mensagem do protocolo MODBUS endereçada a um determinado módulo Escravo. No total, é possível utilizar até 32 relações MODBUS distribuídas entre as duas portas COM, sendo o limite 16 relações por porta COM. O tratamento das relações é feito de forma seqüencial, conforme as mesmas forem adicionadas a Árvore de Configuração.

As relações MODBUS podem ser adicionadas ao Mestre clicando-se com o botão direito do mouse sobre o módulo "MODBUS Mestre" e selecionando-se a opção "Incluir Relação MODBUS". Dessa forma, será adicionado o submódulo "Relação MODBUS" ao MODBUS Mestre.

Caso o operando COMx_DR estiver com o valor TRUE, as relações da porta de comunicação x estarão desabilitadas. Onde x, é o número da porta de comunicação podendo assumir os valores de 1 ou 2.

Cada relação possui os seguintes parâmetros de configuração que devem ser ajustados:

Função MODBUS		Read Coils	Lê um número variável de saídas digitais	
Endereço do Dispositivo		1 – 247	Endereço do Escravo	
Quantidade		1 – 2000	Quantidade a ser lido	
Endereço MODBUS		1 – 65535	Endereço MODBUS inicial de leitura no escravo	
Polling		0 – 10000 ms	Tempo entre o disparo da relação e um novo disparo	
Тіро: %М		%MX0 - %MX3186	Faixa de endereço para escrita do valor da resposta do comando	
Operando MasterTool		% QX0 - %QX63	Faixa de endereço para escrita do valor da resposta do comando	
120	Tipo: %l	Não é permitido escrever nas entradas	Faixa de endereço para escrita do valor da resposta do comando	

Função MODBUS		Read Discrete Inputs	Lê um número variável de entradas digitais	
Endereço do Dispositivo		1 – 247	Endereço do Escravo	
Quantidade		1 – 2000	Quantidade a ser lido	
Endereço MO	DBUS	1 – 65535	Endereço MODBUS inicial de leitura no escravo	
Polling		0 – 10000 ms	Tempo entre o disparo da relação e um novo disparo	
Tipo: %		%MX0 - %MX3186	Faixa de endereço para escrita do valor da resposta do comando	
Operando MasterTool	Tipo: %Q	% QX0 - %QX63	Faixa de endereço para escrita do valor da resposta do comando	
	Tipo: %l	Não é permitido escrever nas entradas	Faixa de endereço para escrita do valor da resposta do comando	

Tabela 3-11. Função Read Coils

Tabela 3-12. Função Read Discrete Inputs

Função MODE	3US	Read Holding Registers	Lê um número variável de registros	
Endereço do Dispositivo		1 – 247	Endereço do Escravo	
Quantidade		1 – 123	Quantidade a ser lido	
Endereço MODBUS		1 – 65535	Endereço MODBUS inicial de leitura no escravo	
Polling		0 – 10000 ms	Tempo entre o disparo da relação e um novo disparo	
	Tipo: %M	%MW0 - %MW3186	Faixa de endereço para escrita do valor da resposta do comando	
Operando MasterTool	Tipo: %Q	% QW0 - %QW63	Faixa de endereço para escrita do valor da resposta do comando	
120	Tipo: %l	Não é permitido escrever nas entradas	Faixa de endereço para escrita do valor da resposta do comando	

Tabela 3-13. Função Read Holding Registers

Função MODBUS		Read Input Registers	Lê um número variável de registros de entrada	
Endereço do Dispositivo		1 – 247	Endereço do Escravo	
Quantidade		1 – 123	Quantidade a ser lido	
Endereço MODBUS		1 – 65535	Endereço MODBUS inicial de leitura no escravo	
Polling		0 – 10000 ms	Tempo entre o disparo da relação e um novo disparo	
Тіро: %М		%MW0 - %MW3186	Faixa de endereço para escrita do valor da resposta do comando	
Operando MasterTool		% QW0 - %QW63	Faixa de endereço para escrita do valor da resposta do comando	
.20	Tipo: %l	Não é permitido escrever nas entradas	Faixa de endereço para escrita do valor da resposta do comando	

Tabela 3-14. Função Read Input Registers

Função MODE	BUS	Write Single Coil	Força uma única bobina	
Endereço do Dispositivo		1 – 247	Endereço do Escravo	
Quantidade		1 – 1	Quantidade a ser escrito	
Endereço MO	DBUS	1– 65535	Endereço MODBUS inicial de escrita no escravo	
Polling		0 – 10000 ms	Tempo entre o disparo da relação e um novo disparo	
	Tipo: %M	%MX0 - %MX3186	Faixa de endereço para leitura do valor a ser enviado no comando	
Operando MasterTool	Tipo: %Q	%QX0 - %QX63	Faixa de endereço para leitura do valor a ser enviado no comando	
i Lu	Tipo: %	%IX0 - %IX63	Faixa de endereço para leitura do valor a ser enviado no comando	

Tabela 3-15. Write Single Coil

Função MODBUS		Write Single Register	Preset de um único registro	
Endereço do Dispositivo		1 – 247	Endereço do Escravo	
Quantidade		1 – 1	Quantidade a ser escrito	
Endereço MO	DBUS	1 – 65535	Endereço MODBUS inicial de escrita no escravo	
Polling 0 – 10000 ms Tempo ent		0 – 10000 ms	Fempo entre o disparo da relação e um novo disparo	
Tipo: %M		%MW0 - %MW3186	Faixa de endereço para leitura do valor a ser enviado no comando	
Operando MasterTool	Tipo: %Q	%QW0 - %QW63	Faixa de endereço para leitura do valor a ser enviado no comando	
.20	Tipo: %I	%IW0 - %IW63	Faixa de endereço para leitura do valor a ser enviado no comando	

Tabela 3-16. Função Write Single Register

Função MODBUS		Write Multiple Coils	Força uma quantidade variável de bobinas	
Endereço do Dispositivo		1 – 247	Endereço do Escravo	
Quantidade		1 – 1968	Quantidade a ser escrito	
Endereço MODBUS		1 – 65535	Endereço MODBUS inicial de escrita no escravo	
Polling		0 – 10000 ms	Tempo entre o disparo da relação e um novo disparo	
Тіро: %М		%MX0 - %MX3186	Faixa de endereço para leitura do valor a ser enviado no comando	
Operando MasterTool	Tipo: %Q	%QX0 - %QX63	Faixa de endereço para leitura do valor a ser enviado no comando	
120	Tipo: %l	%IX0 - %IX63	Faixa de endereço para leitura do valor a ser enviado no comando	

Tabela 3-17. Funçã	ão Write	Multiple	Coils
--------------------	----------	----------	-------

Função MODBUS		Write Multiple Registers	Preset de uma quantidade variável de registros	
Endereço do Dispositivo		1 – 247	Endereço do Escravo	
Quantidade		1 – 120	Quantidade a ser escrito	
Endereço MODBUS 1 – 65535 Endereg		1 – 65535	Endereço MODBUS inicial de escrita no escravo	
Polling		0 – 10000 ms	Tempo entre o disparo da relação e um novo disparo	
Tipo: %		%MW0 - %MW3186	Faixa de endereço para leitura do valor a ser enviado no comando	
Operando MasterTool	Tipo: %Q	%QW0 - %QW63	Faixa de endereço para leitura do valor a ser enviado no comando	
ieo	Tipo: %l	%IW0 - %IW63	Faixa de endereço para leitura do valor a ser enviado no comando	

Tabela 3-18. Função Write Multiple Registers

Figura 3-31. Relação MODBUS

MODBUS Escravo

As duas portas COMs podem ser configuradas tanto como MODBUS Mestre, quanto como MODBUS Escravos. Para configurar a porta COM1 como MODBUS Escravo, abra o MasterTool IEC e clique em "Configurações do CP", localizada na aba "Recursos". Em seguida o módulo "Configuração do CP" deve ser expandido.

As configurações das Portas COM estão localizadas no módulo Comunicação. Ao expandir o mesmo, aparecerão os módulos de "COM1" e "COM2". Para configurar a COM1, o módulo "COM1" deve ser expandido, da mesma maneira deve ser expandido o módulo "COM2" para configurar a interface de comunicação COM2.

Ao expandir este bloco a porta COM1 não estará habilitada para MODBUS, para habilitá-la, é necessário clicar com o botão direito do mouse sobre o módulo "MToolIEC" e selecionar a opção "Substituir Elemento" em seguida escolha "MODBUS Escravo" para habilitar a COM1 como MODBUS Escravo. Para a configuração da porta COM2, deve ser realizado o mesmo procedimento, porém para esta interface de comunicação não há a opção "MToolIEC".

Clicando sobre o modulo habilitado "MODBUS Escravo", aparecerão ao lado direito uma caixa de texto referente ao endereço MODBUS:

Figura 3-32. Relação MODBUS

O único parâmetro a ser configurado no MODBUS Escravo é o seu endereço, que indica qual é o endereço do escravo. A relação entre os operandos MODBUS e os operandos MasterTool IEC é fixa e descrita na tabela abaixo.

Coils			
1 – 1024	%QX0.0 - %QX63.15		
1025 – 2048	%MX2872.8 - %MX2936.7		
	Input		
1 – 1024	%IX0.0 - %IX63.15		
1025 – 2048	%MX2936.8 - %MX3000.7		
	Holding Register		
1 – 2000	%MW0 - %MW1999		
Inputing Register			
1 – 870	%MW2000 - %MW2869		

 Tabela 3-19. Áreas de dados Escravo MODBUS

As Relações entre operandos MODBUS e operandos MasterTool IEC indicam em que posição de memória estarão os valores de cada operando MODBUS, possibilitando a utilização do protocolo de forma simples. Nas tabelas abaixo encontram-se exemplos de utilização:

Endereço MODBUS	Operandos MasterTool IEC				
	Coil	Input	Holding Register	Inputing Register	
1	%QX0.0	%IX0.0	%MW0	%MW 2000	
16	%QX0.15	%IX0.15	%MW15	%MW 2015	
17	%QX1.0	%IX1.0	%MW16	%MW2016	
1024	%QX63.15	%IX63.15	%MW1023	-	
1025	%MX2872.8	%MX2936.8	%MW1024	-	
2048	%MX2936.7	%MX3000.7	-	-	

Tabela 3-20. Relação entre Endereço MODBUS e Endereço MasterTool IEC

Operando Reservado	Descrição	Operando MasterTool IEC	Endereço MODBUS	Tamanho	Função MODBUS
AO0	Saída Analógica	%QW3	49	16	Write Multiple Coils
AO1	Saída Analógica	%QW4	65	16	Write Multiple Coils
AIO	Entrada Analógica	%IW4	65	16	Read Discrete Inputs
Al1	Entrada Analógica	%IW5	81	16	Read Discrete Inputs
AI2	Entrada Analógica	%IW6	97	16	Read Discrete Inputs
AI3	Entrada Analógica	%IW7	113	16	Read Discrete Inputs

Tabela 3-21. Endereço MODBUS das saídas e entradas analógicas para acesso direto

Protocolo genérico de comunicação

As portas de comunicação (COM1 e COM2) podem ser configuradas para suportar um protocolo de comunicação genérico, sendo possível receber ou transmitir frames de até 256 caracteres. Para tanto, deve ser selecionado o elemento "Protocolo Genérico" nas mesmas. A figura a seguir ilustra essa seleção na Configuração do CP.

Figura 3-33. Opção "Protocolo genérico" para as portas de comunicação

ATENÇÃO: Esta funcionalidade está disponível somente a partir da versão (1.02) do executivo e (1.01) do Mastertool IEC.

Para selecionar essa opção nas portas de comunicação é necessário substituir o elemento atualmente configurado. Ao pressionar o botão direito do MOUSE na porta desejada, um sub-menu aparece e o comando "Substituir elemento" pode ser efetuado. A figura a seguir ilustra esse procedimento.

Figura 3-34. Procedimento de substituição de elemento em uma porta de comunicação

Biblioteca UartLib

Para que todos os recursos das funções de comunicação do protocolo genérico possam ser utilizados é necessário adicionar a biblioteca (extensão ".lib") **UartLib**.

Para incluí-la no projeto deve-se selecionar o menu "Inserir" no Gerenciador de bibliotecas, onde estará disponível o comando "Biblioteca adicional" (tecla de atalho "Ins"). A figura a seguir mostra essa seleção.

Figura 3-35. Procedimento de inclusão de uma biblioteca

Na seqüência deve-se selecionar a biblioteca desejada para inclusão no projeto pressionando, em seguida, o botão "Abrir" (ver figura a seguir).

	Abrir	
⊕ 🖻 Biblioteca DU35x.lib 7.11.08 09:53:12: v	Examinar: 🚺 Lib 🔻 🗲 🖆 🏢 🕶	
Biblioteca lecsfc.lib 13.4.06 15:51:28: va Biblioteca Navigation.lib 29.10.08 14:09: Biblioteca SysLibTargetVisu.lib 25.4.08 C Biblioteca UartLib.lib 19.3.09 15:32:44: v Variáveis globais Monofiguração de alarmes	Nome Modificado em Tipo Tamanho SysLibEvent.lib SysLibFile.lib SysLibMem.lib SysLibStr.lib	4 III
····· III Configuração de CP	UartLib.lib	-
Configurações de dispositivo Gerenciador de bibliotecas Gerenciador de monitoração e receitas LOG	Nome: UartLib Abr Tipo: Biblioteca Master Tool IEC powered by CoL Cancer	ir elar
Area de trabalho	Diretório da biblioteca: C:\Program Files\Common Files\CAA-Targets\Altus\	(-

Figura 3-36. Inclusão da biblioteca UartLib

Biblioteca SerialCommunicationLib

O protocolo genérico opera através de uma biblioteca específica (extensão ".lib") denominada **SerialCommunicationLib** a qual deve ser adicionada ao projeto para que ela possa ser utilizada.

O procedimento é o mesmo adotado na inclusão da biblioteca Uart.

➢ Master Tool IEC powered by CoDeSys - Modelo_DU350_DU351.pro* - [Gerenciador de bibliotecas]							
🞁 Arquivo Editar Projeto In	nserir Extras Comunicação Janela Ajuda						
" ≥ ■ 40 ∞ 48 ≥ ≥ 44 × 10 € 14 44							
	Abrir 📃						
Biblioteca DU35x.lib 7.11.08	Examinar: 📙 Lib 💌 🖛 🖻 💣 🎰						
世***回 Biblioteca lecstc.lib 13.4.06 1 使*** (回) Biblioteca Navigation.lib 29.11	Nome Modificado em Tipo Tamanho 🔺						
 Biblioteca SysLibTargetVisu.li Variáveis globais Configuração de alarmes Configuração de tarefas Configuração do CP Configurações de dispositivo Gerenciador de bibliotecas Gerenciador de monitoração LOG Navegador - CP 	Analyzation.lib AnalyzationNew.lib DU35x.lib Navigation.lib SerialCommunicationLib.lib SvsLibCallback.lib Nome: SerialCommunicationLib Tipo: Biblioteca Master Tool IEC powered by CoL Cancelar						
Area de trabalho	Diretório da biblioteca: C:\Program Files\Common Files\CAA-Targets\Altus\[

Figura 3-37. Inclusão da biblioteca de comunicação

Após a inclusão a biblioteca aparecerá como indicado na figura a seguir.

Figura 3-38. Biblioteca de comunicação carregada

Esta biblioteca é formada por três blocos funcionais: ENVIAR_DADOS, LER_DADOS e MESTRE, cujas características serão detalhadas a seguir. Bloco funcional é um tipo de POU (Unidade de Organização de Programa) que se caracteriza por ser um elemento encapsulado de software, o qual pode ser reutilizado. Ele define o comportamento (lógica interna), a estrutura de dados (instância) e a interface externa (parâmetros de entrada e saída).

ENVIAR_DADOS

Este bloco funcional tem três entradas (VAR_INPUT) e duas saídas (VAR_OUTPUT) conforme mostrado na figura a seguir.

SerialCommunicationLib.lib 27	FUNCTION_BLOCK ENVIAR_DADOS
UartLib.lib 19.3.09 15:32:44	VAR_INPUT
DU35x.lib 7.11.08 09:53:12	PORTA SERIAL : sPORTA;
Navigation.lib 29.10.08 14:09:4	BUFFER : POINTER TO BYTE;
SysLibTargetVisu.lib 25.4.08 0	QUANTIDADE : WORD;
Standard.lib 30.10.08 14:26:10	END VAR
lecsfc.lib 13.4.06 15:51:28	VAROUTPUT
SYSLIBCALLBACK.LIB 25.4.0	PRONTO : BOOL;
	ERRO : BOOL;
	END_VAR
	<
۰ III ا	
	ENVIAR_DADOS
ENVIAR_DADOS (FB)	
MESTRE (FB)	

Figura 3-39. Detalhamento da declaração das entradas e saídas do bloco funcional ENVIAR_DADOS

Descrição das entradas

A entrada **PORTA_SERIAL** é do tipo estrutura (sPORTA). Estrutura é um agrupamento de elementos de diferentes tipos de dados. A sPORTA é formada pelos elementos indicados a seguir:

• PORTA do tipo BYTE, a qual permite selecionar o tipo de porta de comunicação. A opção "1" equivale à RS-232 e "2" à RS-485

- BAUDRATE do tipo DWORD onde é definida a velocidade de comunicação, aceitando valores entre 1200 a 115200. A unidade "bps" é implícita
- PARIDADE do tipo BYTE que possibilita as seguintes configurações: 0 sem paridade; 1 ODD; 2 – EVEN; 3 – FORCED_0; 4 – FORCED_1
- STOPBITS do tipo BYTE, a qual permite a escolha entre 1 ou 2 bits de parada (1 1 bit de parada e 2 2 bits de parada)
- DELAY do tipo TIME define o intervalo de tempo mínimo entre o recebimento e um novo envio. Esta entrada não é utilizada para este bloco funcional

A entrada **BUFFER** do tipo POINTER TO BYTE configura o endereço de memória do buffer. Neste caso, deve ser utilizada a função ADR do MasterTool IEC.

A entrada **QUANTIDADE** do tipo WORD define o número de bytes a serem enviados, podendo variar de 1 a 256.

Descrição das saídas

A saídas são ativadas de acordo com o comportamento descrito na seção a seguir (funcionamento). Elas permanecem nos seus estados pelo período de um ciclo, sendo limpas no próximo.

Funcionamento

Ao chamar o bloco funcional o mesmo verificará se o canal não está sendo usado por outra instância. Caso não esteja em uso, o próximo passo a ser realizado é a verificação da configuração. Se algum dos parâmetros da estrutura sPORTA foi alterado em relação a última configuração, o canal é reconfigurado. Na ocorrência de algum problema nessa etapa, a saída ERRO é ativada e a execução da instância é finalizada.

Ao haver sucesso na abertura da porta, a instância sinaliza que ela está utilizando a porta serial. Em seguida, os dados estão prontos para serem enviados e o processo é inicializado. Se ocorrer uma falha na inicialização do envio, novamente é sinalizado através da saída ERRO e a instância é encerrada liberando o canal de comunicação. No caso de sucesso, a instância libera o processamento, pois ela não trava o aplicativo aguardando a conclusão do envio. Dessa forma, é necessário processar o bloco funcional com um POLLING de acordo com a necessidade do usuário para o reconhecimento do final da escrita. Ele é sinalizado através da saída PRONTO.

Para implementar protocolos que necessitem de um tempo de silencio na linha para sinalizar o fim de pacote, deve-se utilizar a POU GET_TIME da biblioteca DU35x.lib para se criar um delay conforme o requisito do protocolo.

LER_DADOS

Este bloco funcional tem três entradas (VAR_INPUT), quatro saídas (VAR_OUTPUT) e um parâmetro de entrada e saída (VAR_IN_OUT) conforme mostrado na figura a seguir.

Figura 3-40. Detalhamento da declaração das entradas e saídas do bloco funcional LER_DADOS

Descrição das entradas

A exemplo do bloco funcional descrito anteriormente, a entrada **PORTA_SERIAL** é do tipo estrutura (sPORTA). A sPORTA é formada pelos elementos indicados a seguir:

- PORTA do tipo BYTE, a qual permite selecionar o tipo de porta de comunicação. A opção "1" equivale à RS-232 e "2" à RS-485
- BAUDRATE do tipo DWORD onde é definida a velocidade de comunicação, aceitando valores entre 1200 a 115200. A unidade "bps" é implícita
- PARIDADE do tipo BYTE que possibilita as seguintes configurações: 0 sem paridade; 1 ODD; 2 – EVEN; 3 – FORCED_0; 4 – FORCED_1
- STOPBITS do tipo BYTE, a qual permite a escolha entre 1 ou 2 bits de parada (1 1 bit de parada e 2 2 bits de parada)
- DELAY do tipo TIME define o intervalo de tempo mínimo entre o recebimento e um novo envio. Esta entrada não é utilizada para este bloco funcional

A entrada **BUFFER** do tipo POINTER TO BYTE configura o endereço de memória do buffer. Neste caso deve ser utilizada a função ADR do MasterTool IEC.

A entrada **QUANTIDADE** do tipo WORD define o número de bytes a serem recebidos e copiados para o BUFFER, podendo variar de 1 a 256.

A variável **RESET** do tipo BOOL atua tanto como parâmetro de entrada como de saída (VAR_IN_OUT). Ela zera as máquinas de estado e limpa os BUFFERS de dados internos.

Descrição das saídas

A saídas são ativadas de acordo com o comportamento descrito na seção de funcionamento a seguir. Elas permanecem nos seus estados pelo período de um ciclo, sendo limpas no próximo.

Funcionamento

Ao chamar o bloco funcional o mesmo verificará se o canal não está sendo usado por outra instância. Caso não esteja em uso, o próximo passo a ser realizado é a verificação da configuração. Se algum dos parâmetros da estrutura sPORTA foi alterado em relação a última configuração, o canal é reconfigurado. Na ocorrência de algum problema nessa etapa, a saída ERRO é ativada e a execução da instância é finalizada.

Ao haver sucesso na abertura da porta, a instância sinaliza que ela está utilizando a porta serial. Em seguida, o canal está pronto para receber os dados e o processo é inicializado. Se ocorrer uma falha durante a recepção dos dados (FRAMMING, erro de paridade, STOPBITS...), novamente é sinalizado através da saída ERRO e a instância é encerrada liberando o canal de comunicação. No caso de sucesso, a instância libera o processamento, pois ela não trava o aplicativo aguardando o recebimento de um FRAME. Dessa forma, é necessário processar a função com um POLLING de acordo com a necessidade do usuário para o reconhecimento do pacote de dados. Ele é sinalizado através da saída PRONTO. Juntamente com essa sinalização, a quantidade de bytes lidos e copiados para o buffer do usuário é quantificado na saída QTD_LIDO. Caso ainda existam bytes que não foram copiados no BUFFER da UART, essa quantidade é expressa na saída QTD_REST. A sinalização de PRONTO permanecerá ativa até que todos os bytes recebidos pela UART sejam consumidos pelo usuário, ou seja, a quantidade restante deve ser igual a ZERO.

NOTA:

Nos blocos funcionais LER_DADOS e ENVIAR_DADOS não é utilizado o DELAY da estrutura sPORTA. Isso se deve ao fato dos blocos poderem operar individualmente não existindo tempo entre transmitir e receber. No caso de utilização destas duas funções em conjunto para implementação de um protocolo o delay deve ser controlado na aplicação.

NOTA:

Os blocos de função ENVIAR_DADOS e LER_DADOS não podem ser desabilitados durante uma transmissão ou recepção de dados, sempre se deve aguardar até que a saída PRONTO indique que a operação foi finalizada. Caso está condição não seja respeitada o bloco de função poderá não liberar a porta serial para uma nova transmissão ou recepção. Para liberar a porta serial manualmente é necessário passar a variável global PORTA_OCUP[x] para a FALSE, sendo que x=0 para a COM1 e x=1 para a COM2.

MESTRE

Este bloco funcional tem seis entradas (VAR_INPUT), quatro saídas (VAR_OUTPUT) e um parâmetro de entrada e saída (VAR_IN_OUT) conforme mostrado na figura a seguir.

Figura 3-41. Detalhamento da declaração das entradas e saídas do bloco funcional MESTRE

Descrição das entradas

A entrada **PORTA_SERIAL** é do tipo sPORTA (estrutura comentada anteriormente). A sPORTA é formada pelos elementos indicados a seguir:

- PORTA do tipo BYTE, a qual permite selecionar o tipo de porta de comunicação. A opção "1" equivale à RS-232 e "2" à RS-485
- BAUDRATE do tipo DWORD onde é definida a velocidade de comunicação, aceitando valores entre 1200 a 115200. A unidade "bps" é implícita
- PARIDADE do tipo BYTE que possibilita as seguintes configurações: 0 sem paridade; 1 ODD; 2 – EVEN; 3 – FORCED_0; 4 – FORCED_1
- STOPBITS do tipo BYTE, a qual permite a escolha entre 1 ou 2 bits de parada (1 1 bit de parada e 2 2 bits de parada)
- DELAY do tipo TIME define o intervalo de tempo mínimo entre o recebimento e um novo envio. Esta entrada pode variar entre 5 ms (T#5ms) e 1 s (T#1000ms)

A entrada **TIME_OUT** também do tipo TIME estabelece o intervalo de tempo máximo entre o final do envio e o recebimento. Esta entrada pode variar entre 100 ms (T#100ms) e 10 s (T#10000ms).

A entrada **BUFFER_WR** do tipo POINTER TO BYTE define o endereço de memória do buffer de escrita. Para tal deve-se utilizar a função ADR do MasterTool IEC.

A entrada **QUANTIDADE_WR** do tipo WORD define o número de bytes a serem enviados, podendo variar de 1 a 256.

A entrada **BUFFER_RD** do tipo POINTER TO BYTE indica o endereço de memória do buffer de leitura. Para tal deve-se utilizar a função ADR do MasterTool IEC.

A entrada **QUANTIDADE_RD** do tipo WORD define o número de bytes a serem recebidos e copiados para o BUFFER, podendo variar de 1 a 256.

A variável **RESET** do tipo BOOL atua tanto como parâmetro de entrada como de saída (VAR_IN_OUT). Ela zera as máquinas de estado e limpa os BUFFERS de dados internos.

Descrição das saídas

A saídas são ativadas de acordo com o comportamento descrito na seção de funcionamento a seguir. Elas permanecem nos seus estados por um período de um ciclo, sendo limpas no próximo.

Funcionamento

Ao chamar o bloco funcional o mesmo verificará se o canal não está sendo usado por outra instância. Caso não esteja em uso, o próximo passo a ser realizado é a verificação da configuração. Se algum dos parâmetros da estrutura sPORTA foi alterado em relação a última configuração, o canal é reconfigurado. Na ocorrência de algum problema nessa etapa, a saída ERRO é ativada e a execução da instância é finalizada. Ao haver sucesso na abertura da porta, a instância sinaliza que ela está utilizando a porta serial.

Em seguida, os dados estão prontos para serem enviados e o processo é inicializado. Se ocorrer uma falha na inicialização do envio, novamente é sinalizado através da saída ERRO e a instância é encerrada liberando o canal de comunicação. No caso de sucesso, a instância libera o processamento, pois ela não trava o aplicativo aguardando a conclusão do envio. É necessário processar a função com um POLLING de acordo com a necessidade do usuário. Vale lembrar que é recomendado que esse valor seja inferior ao menor DELAY dos demais dispositivos conectados à rede.

Ao concluir o envio, imediatamente é liberada a recepção e seu processo é inicializado. Se ocorrer uma falha durante a recepção dos dados (FRAMMING, erro de paridade, STOPBITS, recebimento de resposta maior que 256 bytes...), novamente é sinalizado através da saída ERRO e a instância é encerrada liberando o canal de comunicação.

No caso de sucesso, a instância libera o processamento, pois ela não trava o aplicativo aguardando o recebimento de um FRAME. Novamente vale lembrar que é necessário processar a função com um POLLING. O recebimento de um pacote é sinalizado através da saída PRONTO. Juntamente com essa sinalização, a quantidade de bytes lidos e copiados para o buffer do usuário é quantificado na saída QTD_LIDO. Caso ainda existam bytes que não foram copiados no BUFFER da UART, essa quantidade é indicada na saída QTD_REST. A sinalização de PRONTO permanecerá ativa até que todos os bytes recebidos pela UART sejam consumidos pelo usuário, ou seja, a quantidade restante deve ser igual a ZERO.

NOTAS:

1- No bloco funcional MESTRE não existe indicação de que o frame de requisição acabou de ser enviado, existem apenas as indicações de que o pacote de resposta foi recebido pela UART (liga PRONTO) e de que o pacote de resposta foi copiado para o BUFFER de aplicação do usuário (desliga PRONTO). Portanto não há como utilizar os sinais de MODEM, visto que não há como saber o momento de desligar o RTS.

2- O tempo de silêncio para fim de pacote é de 5 caracteres.

NOTA:

A UART serial utilizada não detecta erros quando a comunicação ocorre com menos bits. Por exemplo: Um computador configurado com 8 bits de dados e com paridade comunicando com um Duo com 8 bits de dados e sem paridade. Nesse caso a funções de comunicação não irão indicar erro. O byte recebido deve ser consistido para verificar se o frame está de acordo o esperado. O mesmo acontece se neste mesmo exemplo o computador estivesse configurado para 5 bits de dados por exemplo.

Sinais de MODEM

Os sinais de MODEM podem ser acessados através de variáveis especiais. A figura a seguir ilustra a declaração das variáveis globais da biblioteca de operandos especiais enfatizando a atribuição dos sinais de MODEM RTS e CTS às posições de memória %MB6373 e %MB6374 respectivamente.

Figura 3-42. Sinais de MODEM

ATENÇÃO: Todas as variáveis reservadas estão listadas no capítulo Diagnóstico (Lista de operandos reservados).

Melhores práticas de programação

Os blocos funcionais são projetados para serem utilizados com apenas uma instância. Ou seja, a idéia consiste em modificar os BUFFERS de entrada e saída de acordo com a necessidade. Sendo assim, a criação de múltiplas instâncias pode apresentar comportamentos não desejados.

Outro ponto que deve ser levado em conta é o fato de o bloco funcional MESTRE ser desenvolvido para facilitar o desenvolvimento de aplicativos. Dessa forma, ele é simplificado, não possuindo controle de sinais de MODEM. Caso deseja-se utilizá-los é recomendado empregar os blocos funcionais LER_DADOS e ENVIAR_DADOS.

Tratamento de estouro de BUFFER (overflow)

O BUFFER de recebimento do Duo possui a capacidade de 256 bytes, assim como o BUFFER de envio. Caso tente-se escrever mais de 256 bytes, o bloco funcional irá sinalizar erro através da saída apropriada e não irá transmitir nada. Já o bloco funcional de recebimento, caso receba mais de 256 bytes irá copiar os 256 bytes para o BUFFER e sinalizará o estouro do BUFFER através das saídas PRONTO e ERRO, acionando-as.

Prioridade de tratamento

Os blocos funcionais MESTRE e ENVIAR_DADOS possuem preferência em relação ao bloco LER_DADOS. Dessa forma, esses blocos podem interromper as instâncias do bloco LER_DADOS e assumir o controle do canal. Vale salientar que os blocos MESTRE e ENVIAR_DADOS não interrompem um ao outro, sendo necessário que um complete as suas ações, com sucesso ou erro, para o outro iniciar o seu processo.

A utilização de múltiplas instâncias deve ser controlada de acordo com o seu resultado. Isso porque, ao interromper o processamento de uma delas, sem que essa tenha sido concluída, pode ocorrer a situação de o canal permanecer alocado para a instância e os demais não conseguirem atuar sobre ele.

ATENÇÃO:

Deve-se ter um cuidado especial na configuração dos atributos da tarefa cíclica KEYBOARD_USAGE no que se refere ao seu intervalo de execução, pois comportamentos inesperados podem ocorrer se uma requisição de comunicação é efetuada antes que a serial seja reconfigurada.

ATENÇÃO:

A tarefa de processamento do visor *MAINTARGETVISU_PAINT_CODE* pode consumir até 30 ms. Devido a essa característica em uma comunicação em que o polling de requisição de um mestre seja menor que este tempo pode levar a perda de pedaços de pacote nos ciclos em que ocorrer o processamento desta tarefa. Por isso é recomendado para evitar perda de pacotes que no caso de comunicação genérica seja configurado nos mestres um tempo de polling maior que 30 ms. Também deve ser somando a este tempo de polling do mestre o tempo da tarefa PRINCIPAL quando este for maior que 1ms(grande quantidade de código e laços em software podem aumentar o tempo de execução). O tempo pode ser medido através de acionamento de saídas e atualização instantânea com os blocos AES, ou através de temporizadores na própria aplicação.

IHM – Interface Homem-Máquina

Os controladores DU350 e DU351 possuem um Visor gráfico monocromático 128 x 64 com backlight e controle de contraste e um Teclado de membrana com 25 teclas utilizados para realizar a interface com o usuário.

Visor Gráfico

A ferramenta de desenvolvimento MasterTool IEC, utilizada na programação dos controladores DU350 e DU351, possui uma interface de programação de IHM integrada que torna simples e amigável a integração entre aplicativo e IHM.

Para a adição de uma nova tela, clique na pasta "Visualizações", clique com o botão direito em "Visualizações" (texto dentro da aba "Visualizações"), selecione a opção "Acrescentar objeto", digite o nome da tela com apenas letras maiúsculas e clique em OK.

Na aba "Visualizações" as telas são ordenadas em ordem alfabética, a tela inicial após a energização do produto será a primeira tela presente na aba "Visualizações". Para que o controlador inicie com uma tela diferente deve ser utilizado o Bloco Funcional NAVIGATION ou a função CHANGE_SCREEN descritas neste manual.

Para a utilização da IHM, é necessário adicionar uma chamada para a função MAINTARGETVISU_PAINT_CODE. Esta função é responsável pela atualização das telas.

É recomendado utilizar uma tarefa do tipo "Cíclico" com período de 500 ms para a chamada da função *MAINTARGETVISU_PAINT_CODE*. Caso seja necessário a utilização de uma atualização mais freqüente da tela, o período da respectiva tarefa deve ser reduzido. Ao reduzir o tempo entre chamadas da função de atualização da tela *MAINTARGETVISU_PAINT_CODE*, ocorre uma perda de capacidade de processamento do demais ciclos. A função *MAINTARGETVISU_PAINT_CODE* pode consumir entre 15 e 30 ms dependendo da complexidade da tela a ser desenhada.

Para controle de contraste do visor, utiliza-se o operando reservado CONTRASTE, este operando pode ser carregado com valores inteiros entre 0 e 100, tendo equivalência com 0% (menor contraste possível) e 100% (maior contraste possível). O controle do tempo que o backlight permanecerá aceso após alguma tecla ser pressionada, pode ser modificado através do operando BACKLIGHT, este operando pode ser carregado com valores inteiros entre 0 e 255. A valor no operando BACKLIGHT representa o tempo na unidade de segundos.

O Visor utilizado nos controladores DU350 e DU351 é um Visor gráfico monocromático 128 x 64, devido a restrições de resolução do visor, os seguintes itens disponíveis no software MasterTool IEC não podem ser exibidos no Visor da IHM de forma clara:

Função "Polígono": Funciona adequadamente, porém a funcionalidade de preenchimento de cor desta função não tem efeito, permanecendo o elemento sem preenchimento mesmo que esta opção seja configurada.

Função "Visualização": O seu funcionamento ocorre de forma adequada, porém, seu uso não é indicado para o controladores DU350 e DU351 por ocupar muito espaço em memória.

Função "Tendência": Não suportada pelo produto.

Função "Barra de rolagem": Não suportada pelo produto.

Função "Botão": A função botão funciona corretamente tanto no MasterTool IEC quanto na IHM. Porém, em modo supervisório é possível associar o botão a um clique de mouse, enquanto na IHM a associação do botão a alguma tecla da IHM deve ser realizada através das ações referentes a Visualização (Extras – Keyboard usage)

Função "Retângulo arredondado": Não suportada pelo produto.

Função "PIE": Não suportada pelo produto.

Função "Arquivo WMF": Não suportada pelo produto.

Função "Tabela ": Funciona corretamente no MasterTool IEC. Na IHM dos controladores DU350 e DU351 as tabelas são exibidas de forma correta, porém, não podem ser editadas através do teclado.

Função "Bitmap": Não suportada pelo produto.

Função "Tabela de Alarmes" : Não suportada pelo produto.

Função "Elemento ActiveX": Não suportada pelo produto.

Função "Barra de Rolagem": Não suportada pelo produto.

Configuração de "Largura da linha": Esta configuração funciona somente quando associada a um objeto do tipo Rectangle (retângulo).

Configuração de "Cores": A IHM possui um Visor gráfico monocromático 128 x 64, de modo que todas as cores sejam convertidas em preto/branco na IHM.

ATENÇÃO:

Alguns itens disponíveis no software poderão não ser exibidos no CP conforme o MasterTool IEC os exibe, sendo necessário fazer ajustes nos tamanhos dos objetos, orientações e em seu conteúdo exibido.

Teclado

O teclado utilizado nos controladores DU350 e DU351 é de membrana com 25 teclas.

A ação de uma tecla pode ser associada a alguma Tela (Visu) ou através da utilização da função isKeyPressed().

Para realizar o tratamento de uma tecla em função da tela que esta habilitada, basta selecionar a tela desejada e clicar no menu "Extras" – "Funções do teclado". Aparecerá uma janela contendo as ações de botão que ocorrerão enquanto a tela estiver habilitada. Para alterar de tela ao pressionar um botão, selecione a opção "ZOOM" no campo "Ação", selecione a respectiva tecla no campo "Chave" e escreva no campo "Expressão" o nome da respectiva tela que deve ser habilitada ao pressionar a tecla selecionada. Na tabela abaixo pode ser verificado a associação das teclas com o nome das teclas no software MasterTool IEC. Ex: para a utilização da tecla "Seta para cima" habilitando uma tela, deve ser selecionado a opção "VK_UP" no campo "Chave", "ZOOM" no campo "Ação" e digitar o nome da tela a ser habilitada no campo "Expressão". Para utilizar a associação das teclas com as telas, é necessário adicionar no projeto a POU MAINTARGETVISU_INPUT_CODE. Esta POU é definida internamente e é utilizada na atualização do teclado, recomenda-se a utilização de uma tarefa do tipo "Cíclico" com o período de 20 ms para chamar a POU MAINTARGETVISU_INPUT_CODE. O tratamento do teclado identifica o pressionamento de somente uma tecla de cada vez, caso duas teclas estiverem pressionadas simultaneamente o sistema considera que não existem teclas pressionadas. Desta forma o teclado deve ser utilizado acionando apenas uma tecla de cada vez. Caso uma tecla

permaneça pressionada o tratamento do teclado considera somente uma vez o pressionamento da tecla independente do tempo que a mesma permaneça pressionada.

O modo de utilização das demais opções presentes no campo "Ação" podem ser verificadas no manual do programador MasterTool IEC (MU299608).

A utilização das teclas através da função isKeyPressed(), presente na biblioteca SysLibTargetVisu.lib, é realizada através do código da tecla. A função retorna TRUE se somente a tecla cujo código foi passado como parâmetro for pressionada. Caso contrario o retorno é FALSE. Ex. isKeyPressed(16#24,0,0), retorna TRUE caso a tecla Main esteja pressionada. É importante salientar que nos controladores DU350 e DU351 os parâmetros de entrada da função isKeyPressed são necessariamente: Código da tecla, 0 e 0.

ATENÇÃO:

Na utilização do teclado em uma tela ou com a função isKeyPressed() é utilizada a amostragem. Desta forma após fazer a leitura da tecla ela não pode ser lida novamente. Desta forma não podem ser utilizados os dois recursos a mesmo para a mesma tecla.

ATENÇÃO:

Quando utilizada a função ControleTelas() (presente na lógica de navegação) não podem ser utilizadas as teclas MAIN, UP e DOWN com as funções IsKeyPressed ou em Telas.

ATENÇÃO:

Ao ser pressionada uma tecla ela permanece registrada quando o módulo muda de estado, se isso for feito no modo stop então poderá ser registrado um evento quando o módulo passar para estado "Run".

Posição no Teclado	Simbolo no Overlay	Sigla Utilizado no MasterTool IEC	Código da tecla
1	F1	F1	16#70
2	F2	F2	16#71
3	F3	F3	16#72
4	F4	F4	16#73
5	F5	F5	16#74
6	F6	F6	16#75
7	F7	F7	16#76
8	Main	VK_HOME	16#24
9	7 [abc]	7	16#37
10	8 [def]	8	16#38
11	9 [ghi]	9	16#39
12	Seta para cima	VK_UP	16#26
13	<u>- +</u>	Não suportado por sigla	16#2E
14	4 [jkl]	4	16#34
15	5 [mno]	5	16#35
16	6 [pqrs]	6	16#36
17	Seta para esquerda	VK_LEFT	16#25
18	Seta para direita	VK_RIGHT	16#27
19	Esc	VK_ESCAPE	16#1B

A tabela com as associações de siglas e botões e código do teclado presentes da IHM é apresentada abaixo.

20	Seta de Retorno	VK_RETURN	16#0D
21	0	0	16#30
22	1 [tuv]	1	16#31
23	2 [wxzy]	2	16#32
24	3 [%\$/]	3	16#33
25	Seta para baixo	VK_DOWN	16#28

Tabela 3-22. Tabela de Códigos para Utilização do Teclado

Notas

13: A tecla 13 tem como função alterar o valor do sinal de uma variável entre "+" e "-" ou ainda adicionar o ponto decimal "." em variáveis reais. No caso de edição de strings esta tecla é utilizada para permitir inserir os caracteres "+", "-" e ".". Função tecla momentânea (KEY_PRESSED)

Através da função KEY_PRESSED é possível fazer a leitura do estado atual de cada tecla do controlador DU350 ou DU351. O uso desta função permite realizar ações contínuas pelo teclado sem a necessidade de pressionar e soltar múltiplas vezes uma determinada tecla, portanto o seu funcionamento é diferente ao da função isKeyPressed.

Esta função possui um único parâmetro, o qual deve ser preenchido com o código da tecla de interesse. Os códigos das teclas estão na Tabela 3-22.

O retorno da função KEY_PRESSED é uma variável do tipo BOOL, onde TRUE sinaliza que a tecla de interesse estava pressionada no momento em que a função foi executada e FALSE sinaliza que a tecla não estava pressionada.

É possível ler o estado de uma determinada tecla com até três teclas pressionadas ao mesmo tempo. Se mais de três teclas estiverem pressionadas ao mesmo tempo o retorno da função poderá não ser o esperado.

Exemplo de utilização da função KEY_PRESSED:

LEFT_BOOL := KEY_PRESSED(16#25);

Quando a seta para a esquerda (VK_LEFT) estiver pressionada, LEFT_BOOL será igual a TRUE, caso contrário será igual a FALSE.

Edição de Variáveis

Para editar uma variável via IHM é necessário selecionar o campo 'Entrada de texto da variável Textdisplay' conforme mostrado na Figura 3-43, no objeto em que a variável está sendo exibida. Os campos 'Min:' e 'Max' devem ser preenchidos para a edição de variáveis numéricas. Para variáveis boleanas ou String estes campos não tem efeito na variável em edição.

Categoria: Formato Texto Variáveis de texto Largura da linha Cores Variáveis cor Movimento absoluto Movimento relativo Variáveis Entrada Texto para tooltip Segurança Programabilidade	Entrada Alternar variável Pulsar variável Pulsar FALSE Zoom na vis.: Executar programa: Entrada de texto da variável 'Textdisplay' Texto Min:	OK Cancelar
	T Escondido Max: 30000	

Figura 3-43. Edição de Variáveis

A navegação entre os objetos editáveis em uma mesma tela é feita através das teclas Setas para a direita ou esquerda, situação que tornará o objeto selecionado com o fundo escuro. Para desmarcar o objeto selecionado basta pressionar a tecla Esc.

Para chamar a edição do objeto selecionado basta pressionar alguma das teclas numéricas, situação na qual será aberta a tela de edição com o valor da tecla pressionada no campo da variável em edição ou pressionar a tecla Enter, situação na qual a tela de edição será chamada, mas a variável em edição manterá o valor atual da mesma até que a mesma seja editada.

Para editar a variável basta utilizar o teclado alfa-numérico. Já para apagar algum caractere basta utilizar a tecla Seta para esquerda. Se a tecla Esc for pressionada, a edição será cancelada e a tela principal será exibida novamente. Para confirmar a edição, a tecla Enter deve ser pressionada.

Edição de Variáveis do Tipo BOOL: Para se editar variáveis do tipo BOOL basta pressionar na tela de edição a tecla 0 para 'FALSE' ou tecla 1 para 'TRUE'.

Edição de Variáveis do Tipo DATE, TIME_OF_DAY, DATE_AND_TIME: O seu funcionamento é possível utilizando a tecla 3 para os caracteres especiais "-" e ":". Não é necessário indicar o tipo quando se esta editando pela interface do controlador, como ocorre no supervisório por meio do PC.

Edição de Variáveis do Tipo TIME: O funcionamento é possível utilizando as teclas 5 e 6 para os caracteres "m" e "s". Não é necessário indicar o tipo quando se esta editando pela interface do controlador, como ocorre no supervisório por meio do PC.

ATENÇÃO:

O número máximo de objetos editáveis em uma mesma tela é de 12 objetos.

Para maiores detalhes dos formatos e separações dos tipos de variáveis descritos acima, verifique o manual do Programador MasterTool IEC.

Teclas de Atalho

Os controladores DU350 e DU351 possuem 5 seqüências de teclas que realizam operações especiais. São elas:

[MAIN + SETA PARA CIMA] = Exibe/Oculta as Telas Especiais (a navegação entre as telas é feita com as teclas para cima e para baixo);

[MAIN + SETA PARA BAIXO] = Troca entre protocolo MODBUS e protocolo de programação na porta COM1;

[PRESSIONANDO ESC AO REINICIAR] = Inicia o controlador sem carregar a aplicação do usuário, possibilitando regravar a aplicação em caso de watchdog ou falha grave. Para voltar a executar a aplicação gravada, basta desenergizar e energizar o controlador sem pressionar ESC.

As funções das seqüências de teclas especiais já estão previamente configuradas. O usuário não necessita de nenhuma configuração especial para poder utilizá-las.

Telas Especiais

Os controladores DU350 e DU351 possuem 7 telas especiais previamente incluídas na UCP para facilitar o diagnostico e utilização dos periféricos presentes:

- 1- DIGITAL INPUTS Apresenta o estado das 20 entradas digitais presentes na UCP;
- 2- DIGITAL OUTPUTS Apresenta o estado das 16 saídas digitais presentes na UCP;
- 3- ANALOG Apresenta os valores dos registradores das 4 entradas analógicas e das 2 saídas analógicas;
- 4- **INFORMATION** Apresenta informações de Modelo (Model), versão de software (Version) e número de série (Serial Number);
- 5- COUNTER Apresenta os valores dos registradores dos 4 contadores presentes na UCP;
- 6- CONTRASTE Tela de ajuste do contraste do visor gráfico;
- 7- BACKLIGHT Tela de ajuste de tempo de backlight do visor gráfico.

Para ativar e desativar as telas especiais, pressione MAIN + SETA PARA CIMA simultaneamente.

Para navegar entre as telas especiais utilize as teclas SETA PARA CIMA e SETA PARA BAIXO.

Para alterar o valor do contraste e do tempo de backlight pelas telas especiais, selecione a tela de interesse e pressione SETA PARA ESQUERDA para decrementar ou SETA PARA DIREITA para incrementar o valor em uma unidade.

Relógio RTC

Os controladores DU350 e DU351 possuem um relógio interno que pode ser utilizado através da biblioteca standard.lib. O bloco funcional RTC, retorna a data e a hora atual a partir do valor previamente configurado para a mesma no formato DT#1970-01-01-00:00:00.

Resolução = 1 segundo.

Variação máxima = 2 segundos por dia.

RTCinst RTC	0
VarBOOI1-EN Q	—VarBOOL2
DT#2003-01-30-00:00:00PDT_CDT-dandt_1=DT#2003-01-30-00:00:17.	

Figura 3-44. Bloco funcional RTC

A utilização do relógio é feita através do bloco funcional, no seguinte formato RTC(EN,PDT,Q,CDT), onde:

EN e PDT são variáveis de entrada, EN é do tipo BOOL e PDT é do tipo DT. Q e CDT por sua vez são variáveis de saída, Q é do tipo BOOL e CDT é do tipo DT. Quando EN está em FALSE, as duas saídas Q e CDT recebem respectivamente os valores FALSE e DT#1970-01-01-00:00:00.

Na primeira borda de subida da entrada EN o bloco funcional verifica se ocorreu a perda da data e hora do relógio de tempo real. Caso tenha ocorrido a perda da data e hora, o bloco funcional carrega o relógio de tempo real com o valor de PDT. Caso o relógio não tenha perdido a hora e data, não acontecerá a atualização do mesmo com o valor da variável PDT.

Para atualizar a hora e data do relógio de tempo real com o valor da variável PDT quando o relógio não estiver sinalizando perda de data e hora (FALHA_RTC), é necessário ocorrer uma borda de descida seguido de uma borda de subida da entrada EN.

Enquanto o sinal de entrada EN estiver habilitado, CDT é atualizado com a data e hora do relógio de tempo real.

O Diagnostico de perda de Relógio está mapeado em um operando especial chamado de:

FALHA_RTC - Indica a perda das informações do relógio quando em TRUE

Após o tratamento do operando FALHA_RTC, poderá ser atribuído para o mesmo o valor FALSE.

O operando especial do Relógio já está previamente mapeado em uma região específica de memória. Dessa forma, basta utilizá-lo como uma variável global. O nome do operando encontra-se melhor descritos na lista de operandos especiais na seção "Diagnóstico" - "Lista de Operandos Reservados".

ATENÇÃO:

Deve-se utilizar datas a partir do ano 2000 até o ano 2105.

ATENÇÃO:

Não é possível utilizar o bloco funcional RTC em POUs acionadas por interrupção de tempo.

Exibição do relógio em telas

Para exibir o valor do relógio em uma tela da aplicação é necessário declarar a variável de saída CDT utilizada na instância do bloco funcional RTC, no campo 'Variáveis' 'Texto' do objeto onde será exibido o relógio.

Configuração de elem	iento regular (#0)	×
Categoria: Formato Texto Variáveis de texto Largura da linha Cores Variáveis cor Movimento absoluto Movimento relativo Variáveis Entrada Texto para tooltip Segurança Programabilidade	Variáveis Invisível: Desabilitar entrada: Trocar cor: Texto: Texto: DT_RTC Tooltip: TODO:ausgat	OK Cancelar

Figura 3-45. Declaração da variável do relógio

No campo 'Texto' 'Conteúdo' o valor do relógio só poderá ser exibido utilizando %s, ou seja será incluído o texto desejado e no lugar do %s aparecerá a data e hora.

Configuração de eleme	ento regular (#0)	
Categoria: Formato Texto Variáveis de texto Largura da linha Cores Variáveis cor Movimento absoluto Movimento relativo Variáveis Entrada Texto para tooltip Segurança Programabilidade	Texto Conteúdo: Data e hora: %s ?? Horizontal Esquerda • Centro C Direita Vertical Superior • Centro C Inferior Fonte Fonte original	OK Cancelar

Figura 3-46. Configuração do objeto para exibição do relógio

Além de exibir o valor do relógio no formato data e hora pode-se exibi-lo também no formato somente de data ou somente de hora. Para isso utiliza-se as funções de conversão DT_TO_DATE e DT_TO_TOD respectivamente.

ATENÇÃO:

Deve ser utilizado para exibição %s em minúsculo. A exibição não será feita caso esta declaração seja feita com letras maiúsculas.

ATENÇÃO:

Não deve ser utilizado %t nas telas pois este utilizado pelo MasterTool IEC para exibir o tempo do sistema do computador onde esta rodando o programador em modo online.

Chamadas de POUs

Cada POU definida pelo usuário deve ser relacionada a uma tarefa. Uma tarefa, possui prioridade e intervalo de ativação. Se duas tarefas estiverem "prontas" a serem executadas, após passar o tempo do intervalo definido para cada tarefa, primeiramente será executada a tarefa de maior prioridade. Se durante a execução de uma determinada tarefa, uma segunda tarefa mais prioritária se tornar "pronta", após passar o tempo do intervalo definido para a tarefa, ela somente será executada após a completa execução da tarefa menos prioritária. A prioridade de cada tarefa deve ser configurada com os valores de 0 a 31, sendo 0 a maior prioridade e 31 a menor prioridade.

POUs acionadas por interrupção de tempo

Caso exista a necessidade de uma determinada tarefa cíclica possuir um intervalo de execução preciso (sem ser atrasada por outras tarefas menos importantes), a mesma deve ser configurada para acionamento a partir do evento externo TIMER_INT. O intervalo desta tarefa acionada por interrupção de tempo deve ser configurado na árvore de configurações da seguinte forma: abra a aba "Recursos" e selecione "Configurações do CP". Expanda a árvore de configurações clicando no "+" ao lado de "Configurações do CP" e em seguida expanda a opção "Eventos Externos" novamente clicando no "+". Selecione "Evento Temporizado" e digite o intervalo desejado no campo Intervalo em milésimos de segundo (ms). O intervalo definido deve ser um número inteiro entre 1 e 1000 que corresponde ao tempo entre as chamadas desta tarefa.

Para a criação e configuração de uma nova tarefa clique em "Configuração de tarefas" localizado na aba "Recursos", clique no "+" ao lado da palavra "Configuração de tarefas", clique com o botão direito do mouse em "Eventos de sistema" e selecione a opção "Insere Tarefa". Altere o nome da tarefa e suas configurações conforme a descrição acima. Para relacionar uma POU com uma tarefa, clique com o botão direito na tarefa desejada e selecione a opção "Inclui Chamada de Programa" e selecione a POU desejada no campo "Chamada de".

Em caso de utilização de tarefas acionadas por interrupção de tempo (TIMER_INT) deve ser verificado com extremo cuidado se existe outra POU que escreva em endereços de memória comuns (presentes na mesma DWORD de memória, Ex: os operandos Q00 e Q01 compartilham o mesmo BYTE (%QB0) e DWORD (%QD0) na memória) aos utilizados nas POUs acionadas por interrupção de tempo. Caso ocorra esta condição, durante a atribuição de algum valor a estes operandos nas demais POUs deve ser utilizado a função "EXT_EVENT_OFF" para desabilitar momentaneamente a tarefa acionada por interrupção de tempo. Para reabilitar a tarefa acionada por interrupção de tempo deve ser utilizado a função "EXT_EVENT_OFF".

ATENÇÃO:

Quando utilizado MasterTool IEC em modo de simulação do programa aplicativo o recurso de interrupção de tempo não está disponível.

Atualização Instantânea de Entradas e Saídas (AES)

Em caso de utilização de um tempo de ciclo elevado ou de uma rotina executada por POUs acionadas por interrupção de tempo é possível utilizar as funções AES para atualizar o valor dos operandos de entradas e saídas e seus respectivos diagnósticos durante o processamento de uma rotina.

AES_DIGITAL_INPUT

Esta função atualiza os operandos de entradas digitais normais com o valor atual das entrada digitais, Ixx.

AES_DIGITAL_OUTPUT

Este comando atualiza as saídas digitais normais com o valor atual dos operandos de saídas digitais, Qxx.

AES_ANALOG_INPUT

Esta função atualiza os operandos de valor de entrada analógica e de diagnóstico de entrada analógica, AIx, AIx_DG e AIx_OPN. A taxa de atualização das entradas analógicas permanece em 60 ms, ou seja, ao utilizar o comando AES_ANALOG_INPUT os valores das entradas analógicas são atualizados com os valores lidos (e processados pelo filtro correspondente) no último ciclo completo de 60 ms.

AES_ANALOG_OUTPUT

Esta função atualiza as saídas analógicas com os valores atuais dos operandos, AOx, e atualiza os operandos de diagnósticos, AOx_DG, AOx_ERR.

AES_COUNTERS

Esta função atualiza o contador com os valores dos operandos de controle, CNTx_PRESET, CNTx_CMP0, CNTx_CMP1, CNTx_CMD, CNTx_CLR, CNTx_STOP, CNTx_LOAD, CNTx_AMG, CNTx_OVER, e atualiza os operandos de valor e de diagnóstico dos contadores, CNTx, CNTx_HOLD, CNTx_DG, CNTx_OVERFLOW, CNTx_UNDERFLOW, CNTx_DIR, CNTx_MAX_CMP0, CNTx_MAX_CMP1, CNTx_EQ_CMP0, CNTx_EQ_CMP1, CNTx_ZERO.

AES_FAST_OUTPUTS

Esta função atualiza as saídas rápidas com os valores dos operandos de controle, Fx_FREQ, Fx_PLS_TOT, Fx_PLS_RMP, Fx_DUTY, PTO_CMD, VFO_CMD, Fx_PTO_START, Fx_PTO_STOP, Fx_VFO e atualiza os operandos de diagnóstico das saídas rápidas, Fx_PTO_DG, VFO_DG, Fx_PTO_ON, Fx_PTO_ACE, Fx_PTO_REG, Fx_PTO_DES, Fx_PTO_PRM, Fx_PTO_ERR, Fx_VFO_ON, Fx_VFO_PRM, Fx_VFO_ERR.

Esta função AES retorna TRUE se a mesma foi executada com sucesso, caso contrário, retorna FALSE, isto acontece apenas quando a mesma for chamada em uma POU acionada por interrupção de tempo durante uma chamada anterior em outra POU (presentes no ciclo principal) que exista alguma alteração nos operandos utilizados para controle e configuração das saídas rápidas tipo PTO. Caso os operandos utilizados para controle e configuração da PTO forem somente alterados no laço principal ou somente alterados na POU ativada por Timer não é necessário o tratamento do retorno da função AES_FAST_OUTPUTS pois o mesmo sempre retornara TRUE para estas condições.

Navegação nas Telas de Usuário via teclado (NAVIGATION)

O bloco funcional NAVIGATION, definida na biblioteca Navigation.lib, habilita a navegação utilizando as teclas direcionais para cima e para baixo ou utilizando as entradas de controle do bloco.

Lista de Telas (VISU_LIST):

O bloco funcional NAVIGATION possui uma entrada do tipo ARRAY [0..30] OF STRING(10), este array possui 30 posições de string de até 10 caracteres. Desta maneira é possível utilizar até 30 telas com navegação pelo bloco funcional, cada tela deve possuir até 10 caracteres. Não é necessário que

todas as telas da aplicação estejam na lista de telas utilizadas pela navegação, neste caso a navegação utilizando o bloco funcional ficara limitada às telas adicionadas na lista.

Tecla "MAIN", direcional para cima e direcional para baixo:

Ao pressionar a tecla "MAIN" dos controladores DU350 e DU351 o bloco funcional habilita a tela adicionada na posição 0 da lista de telas. Ao pressionar a tecla direcional para cima, o bloco funcional habilita a próxima tela da lista em relação a última tela habilitada pela bloco funcional NAVIGATION utilizado. Ao pressionar a tecla direcional para baixo, o bloco funcional habilita a tela anterior da lista em relação a última tela habilitada pelo bloco funcional NAVIGATION utilizado.

Ent radas de controle ENABLE_UPDW, UP, DOWN:

A entrada de controle ENABLE_UPDW habilita a utilização das entradas UP e DOWN. A entrada UP comporta-se da mesma forma que a tecla direcional para cima, e a entrada DOWN comporta-se da mesma forma que a tecla direcional para baixo.

Exemplo de utilização:

Pode ser verificado um exemplo de utilização do bloco funcional NAVIGATION no modelo de projeto e no capítulo "Programação Inicial" - "Analisando o Modelo".

Habilitação de Tela (CHANGE_SCREEN)

A função CHANGE_SCREEN, definida na biblioteca Navigation.lib, habilita uma determinada tela definida na entrada VISU_NAME quando a entrada ENABLE for igual a TRUE. Esta função é utilizada para habilitar alguma tela em função de alguma lógica interna definida pelo usuário.

Tela a ser habilitada (VISU_NAME)

O bloco funcional CHANGE_SCREEN possui uma entrada do tipo STRING(10), esta entrada deve possuir o nome da tela de usuário a ser habilitada quando a entrada ENABLE for igual a TRUE. O nome da tela deve possuir no máximo 10 caracteres.

Entrada ENABLE

Quando a entrada ENABLE possuir o valor TRUE, a tela VISU_NAME será habilitada, quando a entrada ENABLE possuir o valor FALSE, a tela VISU_NAME permanecerá atualizada até outra tela ser habilitada.

Upload

Os controladores DU350 e DU351 possibilitam a gravação de um projeto na memória do produto que pode ser recuperada e reutilizada através do software MasterTool IEC.

Para armazenar um projeto na memória do produto o DU350/DU351 deve estar em modo "logado" e no estado "Stop". No menu "Comunicação" deve ser selecionado a opção "Download de código fonte".

Para recuperar o projeto previamente armazenado deve ser selecionado a opção "Abrir" do menu "Arquivo". Na tela de seleção de arquivo, deve-se clicar no botão "CP...". Na tela seguinte, deve ser selecionado o controlador DU35x no campo "Configuração".

ATENÇÃO:

O tamanho da área de memória para armazenar um projeto no DU350/351 é de 256kB.

ATENÇÃO:

O Upload recupera o último projeto armazenado no controlador conforme descrito nos parágrafos anteriores. Caso ocorra apenas o carregamento para execução de um determinado aplicativo, o mesmo não poderá ser recuperado pela procedimento de Upload.

Watchdog

Os controladores DU350 e DU351 possuem um sistema de watchdog que indica ao usuário que ocorreu um tempo de ciclo maior que 2 segundos. Ao identificar um watchdog, a UCP exibe uma tela informando que o sistema entrou em watchdog. Em caso de watchdog, as saídas físicas vão para o estado seguro e a UCP permanece travada até ser reinicializada (desenergizada e energizada novamente). O operando WATCHDOG é setado quando ocorrer um watchdog, este operando pode ser lido na próxima inicialização do sistema. Caso o valor do operando seja TRUE, significa que ocorreu um watchdog na execução anterior. O operando pode ser limpo escrevendo o valor FALSE no mesmo, facilitando aplicações de verificação e tratamento de diagnóstico de watchodog.

Caso a aplicação esteja gerando watchdog continuamente, para a gravação de uma nova aplicação é necessário pressionar a tecla ESC ao reiniciar o CP, conforme o capítulo "Configuração" - "IHM - Interface Homem - Máquina" - "Teclado" - "Teclas de Atalho", impossibilitando a execução da aplicação e permitindo a comunicação com o software MasterTool IEC, assim, é possível realizar a gravação de um novo aplicativo.

O operando especial de indicação de watchdog já está previamente mapeado em uma região específica de memória. Dessa forma, basta utilizá-lo como uma variável global.

Brownout

Os controladores DU350 e DU351 possuem um sistema de brownout que informa ao usuário quando o nível de tensão na alimentação do CP estiver abaixo de 19 V. Nesse momento, existem duas formas de diagnosticar a queda.

1 – Caso o CP permaneça com a tensão de alimentação abaixo dos 19 V por mais de três segundos, o CP exibe uma tela indicando o acontecimento de um brownout, as saídas físicas vão para um estado seguro e o CP permanece travado até ser reinicializado (desenergizado e energizado novamente).

2 – Caso a alimentação do CP tenha uma queda de tensão para menos de 19 V e retornar para um valor acima de 19 V em menos de três segundos, o CP é reinicializado, uma tela sinalizando que o controlador foi reinicializado por brownout é exibida durante o boot e o operando especial BROWNOUT é setado em TRUE, indicando que a execução da aplicação está ocorrendo após uma reinicialização por brownout. O usuário pode alterar o valor do operando de BROWNOUT para FALSE durante a execução do aplicativo, facilitando aplicações de verificação e tratamento de diagnóstico de brownout.

O operando especial BROWNOUT já está previamente mapeado em uma região específica de memória. Dessa forma, basta utilizá-lo como uma variável global. O nome do operando encontra-se melhor descritos na lista de operandos especiais no capítulo "Diagnóstico" - "Lista de Operandos Reservados".

Erro de Sistema

Os controladores DU350 e DU351 possuem um sistema de identificação de erros que informa ao usuário o acontecimento de um erro crítico no sistema. Ao identificar o erro, o controlador exibe uma tela informando qual foi o erro, as saídas físicas vão para um estado seguro e o controlador permanece travado até ser reinicializado (desenergizado e energizado novamente).

Caso a aplicação esteja gerando o erro, para o usuário reprogramar o controlador é necessário pressionar a tecla ESC ao reiniciar o CP, conforme o capítulo "Configuração" - "IHM - Interface Homem - Máquina" - "Teclado" - "Teclas de Atalho", impossibilitando a execução da aplicação e

permitindo a comunicação com o software MasterTool IEC, assim, é possível realizar a gravação de um novo aplicativo. Caso esse procedimento não resolva, recomenda-se que o usuário entre em contato com o suporte.

Os erro de sistemas são identificados pelas telas com a informação ERROR + "numero do erro".

Estado Seguro

Enquanto os controladores DU350 e DU351 estiverem em estado seguro, as saídas digitais (comuns e rápidas) serão forçadas para o nível lógico 0 (FALSE) e as saídas analógicas serão forçadas para 0 V ou 0 A, dependendo do modo em que a saída estiver operando. Caso as saídas analógicas não estejam habilitadas serão forçadas para 0 V no caso de estado seguro.

A entrada em Estado Seguro acontece nos seguintes casos:

- 1. Brownout;
- 2. Watchdog;
- 3. Indicação de Erro;
- 4. Durante a programação do controlador;
- 5. Durante Stop (através do software MasterTool IEC).

4. Instalação

Instalação Elétrica

PERIGO:

Ao realizar qualquer instalação em um painel elétrico, certifique-se de que a alimentação geral do armário esteja DESLIGADA.

Figura 4-1. Exemplo de ligação DU350/DU351

Notas do diagrama

1 –Exemplo de utilização típica das entradas digitais tipo "sink", C0, C1, e C2 são os comuns (0 V) para os respectivos grupo de entrada I00 a I08, I10 a I18 e I20 a I21.

- 2 Alimentação 24 V com os pinos 24 V, 0 V e terra de proteção.
- 3 Exemplo de utilização de uma saída analógica configurada para saída em modo tensão.
- 4 Exemplo de utilização de uma saída analógica configurada para saída em modo corrente.

5 – Exemplo de utilização típica das saídas digitais a transistor (DU350) e saídas rápidas (DU350 e DU351). Para a utilização das saídas digitais a relé (DU351), não é necessário a ligação dos pinos C5 e C7, necessitando apenas a ligação do comum C6 e C8.

6 – Exemplo de utilização de duas entradas analógicas configuradas para entrada em modo corrente.

7 – Exemplo de utilização de duas entradas analógicas configuradas para entrada em modo tensão. A ligação de um sinal de 0 a 10 V em um pino de entrada de corrente pode causar danos ao produto.

Conexões

A correta fixação dos cabos dos controladores DU350 e DU351 e dos módulos do sistema, garantem a segurança do equipamento e seu correto funcionamento. Para isso, devem ser verificados os seguintes pontos:

- os cabos devem ter bitola e tensão de isolação coerentes com a aplicação;
- os cabos junto aos bornes de ligação do painel de montagem devem estar com conexão segura e firme;
- os bornes de alimentação e aterramento das partes do sistema devem estar firmes e bem conectados, assegurando boa passagem de corrente;
- a conexão do terra dos equipamentos ao terra do painel de montagem deve estar firme e com a bitola de cabo correta, para garantir bom aterramento e imunidade a ruído. Recomenda-se utilizar fio de 1,5 mm²;
- recomenda-se efetuar a identificação de todos os cabos com anilhas plásticas ou similar, para facilitar as operações de montagem e manutenção.

ATENÇÃO:

Para a fixação dos cabos nos bornes do produto deve ser utilizado um chave de fenda adequada em função da dimensão do parafuso de fixação. Os bornes de entradas analógicas e digitais devem ser parafusados com uma chave de fenda com uma largura máxima de 2,5 mm em sua extremidade.

Aterramento

O borne deve ser interligado diretamente a barra de aterramento do armário com a utilização de um cabo com seção mínima de 1,5 mm².

Interfaces Analógicas

Cabo com malha: Recomenda-se a utilização de cabos blindados nas entradas e saídas analógicas. Somente em uma das extremidades do cabo a malha deve estar ligada ao terra, preferencialmente aterrando no lado do armário. Caso seja utilizado a extremidade ligada ao DU350/DU351 para aterramento da malha, deve ser utilizado uma borneira de terra o mais próximo possível das entradas e saídas analógicas.

Comum entrada analógica: As entradas analógicas 0 (AV0 ou AI0) e 1 (AV1 ou AI1) compartilham um mesmo borne de comum, C9. Da mesma forma, as entradas analógicas 2 (AV0 ou AI0) e 3 (AV0 ou AI0) compartilham um mesmo borne de comum, C10. Para utilizar duas entradas que compartilham um mesmo borne de comum, deve ser ligado os dois comuns dos sinais de entrada analógica em uma borneira e conectar o respectivo comum do DU350/DU351 na mesma borneira:

Figura 4-2. Ligação das Entradas Analógicas

Notas do diagrama

1 – Cada canal de entrada analógica possui dois bornes de entrada AVx e AIx. Em caso de utilização do canal como entrada de tensão, deve ser utilizado apenas o borne AVx correspondente. Em caso de utilização do canal como entrada de corrente, deve ser utilizado apenas o borne AIx correspondente.

2 - O canal 0 e o canal 1 compartilham o mesmo borne de comum, a união dos mesmo deve ser feita com uma borneira adequada o mais próximo possível do equipamento.

Interface com Encoders em Quadratura

Para a utilização do tratamento de sinais de encoder, deve ser verificado se o respectivo encoder cumpre os requisitos funcionais das entradas rápidas e temporização das entradas rápidas em modo quadratura, observando as características do bloco de entradas rápidas a ser utilizado. Os sinais A e B do encoder devem ser ligadas nos bornes I00 e I01 (Bloco 0) ou I10 e I11 (Bloco 1). Opcionalmente pode ser utilizado o sinal de zeramento ligado ao borne I02 (Bloco 0) ou I12 (Bloco 1). O 0V do encoder dever ser ligado ao C0 (Bloco 0) ou C1 (Bloco 1):

Figura 4-3. Exemplo de ligação com encoder

A entrada configurável pode ser utilizada como zeramento, conectando-a a saída de posição de referência do encoder.

Proteção saídas digitais.

Para o acionamento de cargas indutivas deve ser utilizado um diodo de proteção o mais próximo possível da carga, suprimindo eventuais picos de tensão oriundos de uma variação brusca na corrente da carga indutiva:

Figura 4-4. Circuito de proteção das saídas digitais

Instalação Mecânica

Para possibilitar uma correta fixação do produto, o painel deve ser cortado com as dimensões definidas na figura abaixo. Dimensões em mm.

As presilhas laterais de fixação devem ser recolhidas para a instalação do Controlador em painel.

Figura 4-6. Presilhas Laterais

O Controlador deve ser instalado no painel, encaixando-se primeiramente a parte superior.

Figura 4-7. Instalação no Painel

Após devidamente encaixado, as presilhas devem ser abertas (girando-as conforme a figura a seguir) e os parafusos de fixação devem ser apertados utilizando uma ferramenta adequada.

Figura 4-8. Fixação Mecânica

Após estas etapas, o controlador está montado no painel e pode-se iniciar a ligação da fiação de campo. Os bornes localizados na parte traseira do equipamento estão identificados pelas interfaces aos quais pertencem. Os bornes são do tipo parafuso e destacáveis, a fim de facilitar a ligação. A fiação de campo deve ser conectada ao equipamento sem energização, a fim de evitar choques elétricos. Após verificação das ligações, o equipamento pode ser energizado.

Os módulos DU350 e DU351 possuem uma película protetora sobre o overlay frontal para a protegêlo de danos durante o transporte e manipulação na fase de instalação. Após instalado o módulo esta película pode ser removida permitindo melhor visualização do teclado e do visor.

Instalação do Programador

Para realizar a instalação do software de desenvolvimento MasterTool IEC, é necessário inicialmente efetuar o "download" do arquivo de instalação no site www.altus.com.br. Após realizar o "download" do arquivo, feche todos os programas que estejam em execução no seu computador e em seguida de um duplo clique no arquivo de instalação. O instalador abrirá a seguinte tela de instalação:

Tarma® Installer	
Please wait while the integrity of the archive is v	verified

Figura 4-9. Extraindo Arquivos

Aguarde enquanto o instalador extrai os arquivos necessários para realizar a instalação.

Em seguida, aparecerão as seguintes telas:

Espanhol (internacional) Inglês (Estados Unidos)	español English	
Português (Brasil)	Português	

Figura 4-10. Seleção do Idioma

Na primeira tela é realizada a opção do idioma em que o MasterTool IEC será instalado. Selecione a opção desejada e clique em OK.

Aparecerá em seguida uma tela indicando o inicio da instalação. Clique em Avançar para continuar.

Figura 4-11. Tela bem-vindo

Surgirá a tela que refere-se ao contrato de licença. Leia a licença atentamente e selecione após isso a opção "concordo com esses termos e condições", caso concorde com eles.

🗮 MasterTool IEC 1.00	X
Contrato de Licença Por favor, leia o Contrato de Licença com atenção antes de continuar.	
1. Observações Preliminares	~
Condições gerais da licença do software MasterTool IEC para utilização em automações (Termos do Contrato de Uso do Software). O MasterTool IEC é um facilitador para o desenvolvimento, diagnóstico e comissionamento de controladores programáveis.	
Por favor, leia atentamente os seguintes Termos do Contrato de Uso antes de utilizar o MasterTool IEC.	
O MasterTool IEC colocado a sua disposição é protegido por direitos autorais. As seguintes condições são acordadas entre você como usuário do software e a empresa Altus S.A., sendo juridicamente obrigatório. A instalação do pacote constitui o reconhecimento por parte do cliente das condições do presente acordo. Se você não concordar com as seguintes condições, por favor, devolva o software MasterTool IEC imediatamente e não o utilize. Todas as taxas dos direitos de utilização que tenham sido pagos serão reembolsados.	
STOLIG J. C.L.C.	~
Tarma® Installer	
Concordo com estes termos e condições < Voltar Avançar > Cancela	ar

Figura 4-12. Tela de Licença

Após concordar com os termos clique em avançar para continuar. Uma tela solicitando as informações de registro será apresentada, após preencher os campos corretamente clique em avançar para continuar.

Informações do Registro Por favor, digite as suas informações de registro personalizadas. Por favor, digite as informações de registro que você recebeu do Altus S.A Nome 1: Altus Iniciais 2: RL Empresa 3: Altus Se você não recebeu as informações de registro, ou para mais informações sobre o processo de registro, por favor visite o site da Web do produto. Site da Web do produto: http://www.altus.com.br	Informações do Registro Por favor, digite as suas informações de registro personalizadas. Por favor, digite as informações de registro que você recebeu do Altus S.A Nome 1: Altus Iniciais 2: RL Empresa 3: Altus Se você não recebeu as informações de registro, ou para mais informações sobre o process de registro, por favor visite o site da Web do produto. Site da Web do produto: http://www.altus.com.br		
Por favor, digite as suas informações de registro personalizadas. Por favor, digite as informações de registro que você recebeu do Altus S.A Nome 1: Altus Iniciais 2: RL Empresa 3: Altus Se você não recebeu as informações de registro, ou para mais informações sobre o processo de registro, por favor visite o site da Web do produto. Site da Web do produto: http://www.altus.com.br	Por favor, digite as suas informações de registro personalizadas. Por favor, digite as informações de registro que você recebeu do Altus S.A Nome 1: Altus Iniciais 2: RL Empresa 3: Altus Se você não recebeu as informações de registro, ou para mais informações sobre o process de registro, por favor visite o site da Web do produto. Site da Web do produto: http://www.altus.com.br	Informações do	Registro
Por favor, digite as informações de registro que você recebeu do Altus S.A Nome 1: Altus Iniciais 2: RL Empresa 3: Altus Se você não recebeu as informações de registro, ou para mais informações sobre o processo de registro, por favor visite o site da Web do produto. Site da Web do produto: http://www.altus.com.br	Por favor, digite as informações de registro que você recebeu do Altus S.A Nome 1: Altus Iniciais 2: RL Empresa 3: Altus Se você não recebeu as informações de registro, ou para mais informações sobre o process de registro, por favor visite o site da Web do produto. Site da Web do produto: http://www.altus.com.br	Por favor, digite as s	suas informações de registro personalizadas.
Nome 1: Altus Iniciais 2: RL Empresa 3: Altus Se você não recebeu as informações de registro, ou para mais informações sobre o processo de registro, por favor visite o site da Web do produto. Site da Web do produto: http://www.altus.com.br	Nome 1: Altus Iniciais 2: RL Empresa 3: Altus Se você não recebeu as informações de registro, ou para mais informações sobre o process de registro, por favor visite o site da Web do produto. Site da Web do produto: http://www.altus.com.br	Der feuer dieite er	informaçãos de vegistro que unos vegebou de Altria C. A
Nome 1: Altus Iniciais 2: RL Empresa 3: Altus Se você não recebeu as informações de registro, ou para mais informações sobre o processo de registro, por favor visite o site da Web do produto. Site da Web do produto: http://www.altus.com.br ma@ Installer	Nome 1: Altus Iniciais 2: RL Empresa 3: Altus Se você não recebeu as informações de registro, ou para mais informações sobre o process de registro, por favor viste o site da Web do produto. Site da Web do produto: http://www.altus.com.br ma@ Installer	Por ravor, digite as	informações de registro que voce recebeu do Aitus 5.A
Nome 1: Altus Iniciais 2: RL Empresa 3: Altus Se você não recebeu as informações de registro, ou para mais informações sobre o processo de registro, por favor visite o site da Web do produto. Site da Web do produto: <u>http://www.altus.com.br</u> rma® Installer	Nome 1: Attus Iniciais 2: RL Empresa 3: Altus Se você não recebeu as informações de registro, ou para mais informações sobre o proces: de registro, por favor visite o site da Web do produto. Site da Web do produto: http://www.altus.com.br rma@ Installer		Ally in
Iniciais 2: RL Empresa 3: Altus Se você não recebeu as informações de registro, ou para mais informações sobre o processo de registro, por favor visite o site da Web do produto. Site da Web do produto: http://www.altus.com.br rma® Installer	Iniciais 2: RL Empresa 3: Altus Se você não recebeu as informações de registro, ou para mais informações sobre o process de registro, por favor visite o site da Web do produto. Site da Web do produto: http://www.altus.com.br rma@ Installer	Nome 1:	Aitus
Empresa 3: Altus Se você não recebeu as informações de registro, ou para mais informações sobre o processo de registro, por favor visite o site da Web do produto. Site da Web do produto: http://www.altus.com.br rma@ Installer	Empresa 3: Altus Se você não recebeu as informações de registro, ou para mais informações sobre o proces: de registro, por favor visite o site da Web do produto. Site da Web do produto: http://www.altus.com.br rma@ Installer	Iniciais 2:	RL
Se você não recebeu as informações de registro, ou para mais informações sobre o processo de registro, por favor visite o site da Web do produto. Site da Web do produto: <u>http://www.altus.com.br</u> rma® Installer	Se você não recebeu as informações de registro, ou para mais informações sobre o proces de registro, por favor visite o site da Web do produto. Site da Web do produto: <u>http://www.altus.com.br</u> rma® Installer	Empresa 3:	Altus
Se você não recebeu as informações de registro, ou para mais informações sobre o processo de registro, por favor visite o site da Web do produto. Site da Web do produto: <u>http://www.altus.com.br</u> rma® Installer	Se você não recebeu as informações de registro, ou para mais informações sobre o proces: de registro, por favor visite o site da Web do produto. Site da Web do produto: <u>http://www.altus.com.br</u> rma® Installer		
de registro, por favor visite o site da Web do produto. Site da Web do produto: <u>http://www.altus.com.br</u> rma® Installer	de registro, por favor visite o site da Web do produto. Site da Web do produto: <u>http://www.altus.com.br</u> rma® Installer	Se você não recebe	u as informações de registro, ou para mais informações sobre o processo
Site da Web do produto: <u>http://www.altus.com.br</u> rma® Installer	Site da Web do produto: <u>http://www.altus.com.br</u> rma® Installer	de registro, por fav	or visite o site da Web do produto.
rma® Installer	rma® Installer	Site da Web de prov	dutor this dummentum open be
rma® Installer	rma® Installer	bite da web do prot	ddor <u>mp.77www.aids.com.bi</u>
		rma® Installer	

Figura 4-13. Tela de Registro

Na próxima tela são oferecidas as opções de selecionar os componentes a serem instalados e o caminho onde será feita a instalação do software, é recomendado manter caminho padrão "C:\Arquivos de programas\Altus\MasterTool IEC". Clique em Avançar para continuar.

MasterTool IEC 1.00 Opções de instalação Estas opções determinam como o aplic.	ativo será instalado.	
MasterTool IEC (32-bit) Gateway Targets DUO Inglês Português Help Español Português Português	Dispositivo em Espanhol Tamanho do recurso: Tamanho da instalação: Tamanho da remoção : Espaço em disco:	788 KB 40,667 KB 0 KB 4,657,556 KB
Instalação pasta: C:\Arquivos de programas\Arquivos cor Tarma® Installer	nuns\CAA-Targets\Altus\DUO\Spani: < Voltar Instalar	Procurar

Figura 4-14. Seleção dos componentes

Nessa etapa a instalação do MasterTool IEC foi iniciada. Aguarde enquanto os arquivos necessários são instalados em seu computador, isso pode levar alguns minutos dependendo da configuração de seu computador.

Após a instalação ser finalizada, a próxima tela será exibida, nela é possível escolher se o MasterTool IEC será inicializado automaticamente após a conclusão do instalador. Clique em Concluir para finalizar o procedimento de instalação.

Figura 4-15. Instalação completa

O MasterTool IEC está instalado e pronto para ser usado. Para executar o MasterTool IEC clique no atalho "MasterTool IEC" dentro do grupo "Altus S.A"→"MasterTool IEC", criado durante a instalação, no menu Iniciar.

5. Programação Inicial

Primeiros passos com MasterTool IEC e DU350/DU351

Iniciando MasterTool IEC

É recomendado que o projeto seja iniciado a partir do projeto modelo. Para criar um novo projeto a partir do modelo, basta clicar no menu Arquivo, e em seguida, em "Novo a partir do modelo...". Selecione o projeto Modelo_DU350_DU351.pro e clique em "Abrir".

Conceitos de Tarefas e POUs

O modelo Modelo_DU350_DU351.pro possui um conjunto de tarefas configuradas conforme a tabela abaixo:

Nome da Tarefa	POU chamada pela Tarefa	Intervalo de ativação
PRINCIPAL	PLC_PRG();	1 ms
NAVIGATION	NAVEGA();	20 ms
VISUALIZATION	MAINTARGETVISU_PAINT_CODE	500 ms
KEYBOARD_USAGE	MAINTARGETVISU_INPUT_CODE	20 ms

Tabela 5-1. Tempos das POUs do Modelo

A POU "NAVEGA" já está incluída no Modelo_DU350_DU351.pro e as POUs MAINTARGETVISU_PAINT_CODE e MAINTARGETVISU_INPUT_CODE já estão definidas. Para compilar o projeto sem erros, deve ser adicionado a POU PLC_PRG, pois a mesma é chamada pela tarefa PRINCIPAL. A POU PLC_PRG será chamada em intervalos de 1 ms (se ao completar um período de 1 ms da tarefa PRINCIPAL outra POU estiver sendo executada a POU PLC_PRG somente será executada após o término da POU em execução). Maiores informações sobre Configuração de Tarefas e POUs verifique o capítulo "Configuração" - "Chamadas de POUs" ou utilize o manual do programador MasterTool IEC.

Criando a POU PLC_PRG

Para adição da POU "PLC_PRG" siga os seguintes passos: clique na aba "POUs", clique com o botão direito do mouse na palavra "POUs" dentro da aba "POUs", selecione a opção "Acrescentar objeto...", selecione a opção "Programa" no campo "Tipo da POU", selecione a linguagem de sua preferência no campo "Linguagem da POU", digite "PLC_PRG" no campo "Nome da nova POU" e clique em "OK" para confirmar a adição da POU "PLC_PRG".

Cada POU deve possuir ao menos uma lógica para ser compilada corretamente, caso a POU utilize a linguagem ST, basta escrever ";" na primeira linha de comando.

Compilando

Para realizar a compilação completa do projeto, clique no menu "Projeto", e em seguida em "Compilar tudo".

CUIDADO:

Antes de realizar uma compilação ou se houver algum problema durante uma compilação, recomenda-se que seja clicado no menu "Projeto" → "Limpar" tudo para remover qualquer vestígio de compilações anteriores.

Download

Para realizar o download do projeto a interface de comunicação deve estar configurada corretamente. Para configurar a interface de comunicação siga os seguintes passos: Clique no menu "Comunicação", selecione a opção "Parâmetros de comunicação...". Uma nova conexão deve ser criada para isso pressione o botão "New". A tela da Figura 1-1 será exibida, nela deve ser definido o nome da conexão. Ao clicar em OK a conexão será criada. Os parâmetros da conexão devem ser configurados da mesma maneira que estão na Figura 5-2. A porta de comunicação do computador utilizada deve ser configurada para permitir a conexão da serial conectada ao CP. Para editar os parâmetros é necessário dar dois cliques sobre o seu valor e em seguida alterar o valor através das teclas para cima e para baixa do teclado do computador.

Communication	Parameters: New Channel	×
Name Serial		OK
Device		Cancel
Name	Info	
Serial (RS232)	3S Serial RS232 driver	
1		

Figura 5-1. Nova Conexão

Communication Parameters		×
Channels 'localhost' via Tcp/lp Serial F B S N F	Image: serial system Value Comment Port COM1 Baudrate 115200 Parity No Stop bits 1 Abtorola byteorder No Flow Control Off	OK Cancel New Remove Gateway Update

Figura 5-2. Parâmetros de Comunicação

CUIDADO:

O timeout para download deve ser de no máximo 8000 milisegundos. O valor padrão para esse item é de 2000 milisegundos. Não é recomendado alterá-lo sem um prévio estudo. Para configurar este ítem clique no menu Projeto → Opções..., selecione a opção Ambiente de Trabalho e configure o campo Timeout de comunic. para download [ms]. Após configurar a porta COM basta clicar no menu "Comunicação" e selecionar a opção "Login", assim o projeto será enviado o controlador. Para iniciar a execução, clique no menu "Comunicação" e selecione a opção "Run".

CUIDADO:

Durante o download, o CP passa todas as suas saídas físicas para um estado seguro, conforme descrito no capítulo "Configuração" - "Estado Seguro".

Analisando o Modelo

Os controladores DU350 e DU351 possuem algumas configurações básicas necessárias para o seu funcionamento correto. Estas configurações, já estão implementadas no Modelo_DU350_DU351.pro. São elas:

Configuração de Visor

Para garantir uma correta visualização do visor, o tempo de backlight e o contraste da tela da IHM do CP devem ser configurados. Essa configuração é realizada pelos operandos CONTRASTE e BACKLIGHT ou pelas telas especiais (ver "Configuração" – "Telas Especiais").

Navegação Telas

Para percorrer as telas do projeto utilizando as setas direcionais para cima e para baixo dos controladores DU350 e DU351, o Bloco Funcional NAVIGATION (instanciada como ControleTelas) deve ser incluída. Este Bloco Funcional deve ser "alimentado" por uma lista com o nome de todas as telas presentes no projeto (ou as telas que se deseja navegar por meio das teclas), pode ser utilizado uma lista com no máximo 10 telas e o nome de cada tela deve ter menos que 30 caracteres. Outra característica da utilização deste Bloco Funcional é que ao pressionar a tecla MAIN dos controladores D350 e DU351 a tela 'MAIN' é ativada (a tela 'MAIN' deve estar definida na posição 0 da lista).

No caso do modelo, somente uma tela é acrescentada a lista, pois só existe uma tela no projeto. Esta implementação é realizada nas seguinte linhas de código.

(* Adiciona a tela MAIN como tela principal *)

ListaTelas[0] := 'MAIN';

Obs: Para a adição de uma nova tela na lista adicione a seguinte linha no código:

```
ListaTelas[x] := 'NOME_DA_TELA'; (* Linha para adicionar nova tela
a lista *)
```

sendo 'x' o número da tela e 'NOME_DA_TELA' o nome da respectiva tela adicionada na lista (os nomes das telas devem ser escritos em letra maiúscula).

(* Ativa o controle automático de navegação somente pelo teclado *)

ControleTelas(ENABLE_UPDW := FALSE, VISU_LIST := ListaTelas, UP :=
FALSE , DOWN := FALSE);

Configuração de Tarefas

Os controladores DU350 e DU351 utilizam Tarefas (com intervalo, tipo de ativação e prioridade definidas) para a chamada das rotinas POUs. O modelo fornecido apresenta quatro tarefas pré configuradas que encontram-se na aba "Recursos", no subitem "Configuração de tarefas". São Elas:

PRINCIPAL – Esta tarefa chama a POU "PLC_PRG" criada pelo cliente com um intervalo de ativação de 1 ms.

NAVIGATION – Esta tarefa é utilizada para chamar a POU "NAVEGA();", responsável pela configuração das telas e pela chamada do Bloco Funcional de navegação. É recomendado utilizá-la como tipo cíclico com intervalo de 200 ms.

VISUALIZATION – Esta tarefa é necessária para a utilização do visor. É recomendado utilizá-la como tipo cíclico com intervalo de 500 ms. A função chamada é interna e possui o nome *MAINTARGETVISU_PAINT_CODE*.

KEYBOARD_USAGE – Esta tarefa é necessária para a utilização do teclado (utilizando "Funções do teclado..." no menu "Extras", opção disponível durante a edição de uma visualização). É recomendado utilizá-la como tipo cíclico com intervalo de 20 ms. A função chamada é interna e possui o nome *MAINTARGETVISU_INPUT_CODE*. No caso de utilizar "Funções do teclado..." e necessitar de respostas mais rápidas das teclas, o intervalo de ativação desta tarefa pode ser reduzido para obter o resultado desejado. Entretanto, caso o aplicativo possua uma tarefa com tempo de ciclo longo, recomenda-se chamar a POU *MAINTARGETVISU_INPUT_CODE* por uma POU acionada por interrupção de tempo.

Abaixo pode-se observar a configuração das tarefas:

Configuração de tarefas	Atributos da tarefa
Eventos de sistema PRINCIPAL PLC_PRG0; NAVIGATION NAVIGATION NAVEGA0; NAVEGA0; NAVEGA0; MAINTARGETVISU_PAINT_CODE MAINTARGETVISU_PAINT_CODE MAINTARGETVISU_INPUT_CODE MAINTARGETVISU_INPUT_CODE	Nome: PRINCIPAL Prioridade(031) 1 Tipo ©

Figura 5-3. Configuração das Tarefas

Conversão de Projetos

Os módulos DU350 e DU351 possuem algumas características que foram implementadas a partir da versão 1.10 do seu software. Por esta razão o instalador do MasterTool IEC a partir da versão 1.03 possui a configuração dos dispositivos para esta versão "DU350 e DU351 v1.10...". Também existe um projeto modelo utilizando este dispositivo "Modelo_DU350_DU351_v110".

Quando existirem projetos utilizando o dispositivo das versões inferiores a 1.10 e se desejar convertê-los para o dispositivo das versões 1.10 ou superior o dispositivo deve ser alterado nas "Configurações de dispositivo" na aba "Recursos". Conforme é mostrado na Figura 5-4 basta selecionar o dispositivo "DU350 e DU351 v1.10..." do projeto aberto para que as novas configurações sejam carregadas.

Figura 5-4. Alteração da Configuração de Dispositivo

A alteração do dispositivo não irá alterar as Configurações do CP. Isso não acontece para evitar as configurações não sejam perdidas. Caso queira alterar as configurações atualizando para as do novo dispositivo selecionada no menu Extras \rightarrow Configuração padrão.

Modo de Simulação

O MasterTool IEC possui um importante recurso de simulação que permite ao usuário testar sua aplicação sem a utilização do equipamento, conferindo maior agilidade no desenvolvimento do programa. No entanto, alguns recursos específicos que dependem do hardware do DU350/351 não são possíveis de serem simulados.

Seguem abaixo, os recursos indisponíveis no modo de simulação:

- Entradas e Saídas Rápidas
- Portas Seriais
- Teclado
- POUs Acionadas por Interrupção de Tempo
- Relógio

Além disso também estão indisponíveis as funções abaixo:

- Funções de Posicionamento
- Funções de Comunicação Genérica
- Funções de Navegação de Telas
- Funções de acesso ao Relógio

6. Manutenção

Diagnósticos

Os controladores DU350 e DU351 contêm uma série de operandos especiais que fornecem dados de diagnósticos dos diversos dispositivos presentes no controlador.

Para o acesso rápido a informações, estado e diagnósticos das entradas e saídas, as telas especiais podem ser consultadas, conforme capítulo "Configuração" - "Telas Especiais".

Diagnósticos Gerais

Os controladores DU350 e DU351 possuem alguns diagnósticos gerais que são disponibilizados através de registradores especiais. Estes operandos especiais já estão previamente mapeado em uma região específica de memória. Dessa forma, basta utilizá-lo como uma variável global.

BROWNOUT = Indica a ocorrência de um brownout (indica que o CP foi reinicializado por falha da tensão de alimentação).

FALHA_RTC = Indica a perda das informações do relógio.

FALHA_RETENTIVAS = Indica um erro de gravação das variáveis retentivas.

WATCHDOG = Indica que ocorreu um watchdog na execução anterior.

TAM_APLICATIVO = Tamanho do aplicativo do usuário (número de bytes utilizados).

SOFT_H = Versão de executivo (número antes do ponto).

SOFT_L = Versão de executivo (número depois do ponto).

MODELO = Modelo do controlador. 350 para DU350 e 351 para DU351.

Os operandos BROWNOUT, FALHA_RTC, WATCHDOG, TAM_APLICATIVO, SOFT_H e SOFT_L podem ser alterados através do aplicativo, podendo ser utilizado como sinalização de diagnóstico tratado.

Os nomes dos operandos e o modo de acessá-los encontram-se melhor descritos na lista de operandos especiais na seção "Diagnóstico" - "Lista de Operandos Reservados".

Soluções de Problemas

A Tabela 6-1 mostra os sintomas de alguns problemas com suas possíveis causas de problemas e possíveis soluções. Se o problema persistir, entre em contato com o Suporte Técnico da Altus.

Sintoma	Possível Causa	Solução
Não liga	Falta de alimentação ou alimentado incorretamente.	Desenergizar e energizar o CP.
		Verificar o funcionamento da fonte de alimentação.
		Verificar se a tensão de alimentação chega ao borne do CP com a polarização correta.
		Verificar se a tensão de alimentação chega ao CP.
		Verificar se o aplicativo possui tela com o contraste adequado e tempo backlight adequados.
Não	Mal contato ou mal	Verificar todas as conexões dos cabos de comunicação.
comunica	configurado.	Verificar as configurações da porta COM no MasterTool IEC.
Não troca de tela	Aplicativo parado (modo Stop), há uma única tela configurada ou o teclado mal configurado.	Verificar se o CP está executando o aplicativo (modo Run).
		Verificar se o aplicativo possui mais de uma tela.
		Verificar se o teclado está configurado corretamente para realizar a troca de tela.

Não responde ao teclado	Teclado não configurado.	Verificar se as visualizações estão com as "Funções do teclado" configuradas corretamente.
		Verificar se o aplicativo utiliza corretamente a função isKeyPressed(), KeyPressed() ou se não existe um conflito na utilização do teclado.
		Verificar se o aplicativo possui uma tarefa que chame a função MAINTARGETVISU_INPUT_CODE periodicamente.
		Verificar se as teclas de atalho estão respondendo.
Não exibe visualização do usuário	Aplicativo com o valor de contraste inadequado ou aplicativo sem visualizações.	Verificar se o aplicativo possui um valor adequado para o contraste do visor.
		Verificar se há visualizações configuradas para o aplicativo em uso.
		Verificar se o aplicativo possui uma tarefa que chame a função MAINTARGETVISU_PAINT_CODE periodicamente.

Tabela 6-1. Tabela de Soluções de problemas

Diagnóstico Entradas Rápidas

Os controladores DU350 e DU351 possuem os seguinte operandos especiais reservados para diagnóstico das entradas rápidas, onde x é o número da entrada rápida que pode variar de 0 a 3:

CNTx_OVERFLOW	TRUE se ocorreu overflow na contagem do contador x	
CNTx_UNDERFLOW	TRUE se ocorreu underflow na contagem do contador x	
CNTx_DIR	Direção de contagem do contador x	
	(FALSE- progressivo / TRUE- regressivo)	
CNTx_MAX_CMP0	TRUE se o contador x for maior que CNTx_CMP0	
CNTx_MAX_CMP1	TRUE se o contador x for maior que CNTx_CMP1	
CNTx_EQ_CMP0	TRUE se o contador x for igual ao CNTx_CMP0	
CNTx_EQ_CMP1	TRUE se o contador x for igual ao CNTx_CMP1	
CNTx_ZERO	TRUE se o contador x for igual a ZERO	

Tabela 6-2. Diagnóstico das Entradas Rápidas

Os operandos especiais de diagnostico das entradas rápidas já estão previamente mapeados em uma região específica de memória. Desta forma, basta utilizá-los como uma variável global. Os nomes dos operandos encontram-se melhor descritos na lista de operandos especiais na seção "Diagnóstico" - "Lista de Operandos Reservados".

Diagnóstico Saídas Analógicas

Os controladores DU350 e DU351 possuem os seguinte operandos especiais reservados para diagnóstico das saída analógica:

AO0_DG	Diagnóstico de Curto-circuito(Modo Tensão) ou Carga Aberta (Modo Corrente) no canal 0 da saída analógica
AO1_DG	Diagnóstico de Curto-circuito(Modo Tensão) ou Carga Aberta (Modo Corrente) no canal 1 da saída analógica

Tabela 6-3. Diagnóstico das Saídas Analógicas

Os operandos especiais de diagnostico das saídas analógicas já estão previamente mapeados em uma região específica de memória. Dessa forma, basta utilizá-los como uma variável global. Os nomes dos operandos encontram-se melhor descritos na lista de operandos especiais na seção "Diagnóstico" - "Lista de Operandos Reservados".

Diagnóstico Entradas Analógicas

As entradas analógicas de corrente podem ser configuradas para utilização na faixa de 4 mA a 20 mA ou na faixa de 0 mA a 20 mA. Quando utilizada como entrada analógica de corrente na faixa de 4mA a 20 mA, as entradas possuem um diagnóstico de entrada de corrente em aberto (AIx_DG).

AI0_DG	Diagnóstico do canal 0 da entrada analógica aberto para configuração de Tipo corrente de 4 – 20 mA
AI1_DG	Diagnóstico do canal 1 da entrada analógica aberto para configuração de Tipo corrente de 4 – 20 mA
AI2_DG	Diagnóstico do canal 2 da entrada analógica aberto para configuração de Tipo corrente de 4 – 20 mA
AI3_DG	Diagnóstico do canal 3 da entrada analógica aberto para configuração de Tipo corrente de 4 – 20 mA

Este diagnóstico é habilitando quando a corrente de entrada do respectivo canal possui um valor menor ou igual á 3,8 mA.

Tabela 6-4. Diagnóstico Entradas Analógicas

Os operandos especiais de diagnostico das entradas analógicas já estão previamente mapeados em uma região específica de memória. Desta forma, basta utilizá-los como uma variável global. Os nomes dos operandos encontram-se melhor descritos na lista de operandos especiais na seção "Diagnóstico" - "Lista de Operandos Reservados".

Diagnóstico Saídas Rápidas

PTO

Os controladores DU350 e DU351 possuem os seguinte operandos especiais reservados para diagnóstico da PTO, onde x é o número da saída rápida que pode variar de 0 a 1:

Diagnóstico	Descrição		
Ope	Operando de diagnósticos Fx_PTO_DG		
Fx_PTO_ON	Bit 0 - Saída PTO em operação		
Fx_PTO_ACE	Bit 1 - Saída PTO em fase de aceleração		
Fx_PTO_REG	Bit 2 - Saída PTO em fase de regime permanente		
Fx_PTO_DES	Bit 3 - Saída PTO em fase de desaceleração		
Fx_PTO_PRM	Bit 4 - Saída PTO não parametrizada		
Fx_PTO_ERR	Bit 5 - Saída PTO com erro de parametrização		
Operando de diagnósticos Fx_PTO_CNT_DG			
Fx_PTO_CNT_MAX_CMP0	Bit 0 - Contador de pulsos PTO maior que o comparador 0		
Fx_PTO_CNT_MAX_CMP1	Bit 1 - Contador de pulsos PTO maior que o comparador 1		

Tabela 6-5. Diagnóstico das Saídas Rápidas

Os operandos de diagnóstico Fx_PTO_ON, Fx_PTO_ACE, Fx_PTO_REG, Fx_PTO_DES, Fx_PTO_PRM e Fx_PTO_ERR são do tipo BOOL, e juntos compõem Fx_PTO_DG, que é do tipo BYTE.

Os operandos de diagnóstico Fx_PTO_CNT_MAX_CMP0 e Fx_PTO_CNT_MAX_CMP1 são do tipo BOOL, e juntos compõem Fx_PTO_CNT_DG, que é do tipo BYTE.

Os operandos especiais de diagnostico da PTO já estão previamente mapeados em uma região específica de memória. Desta forma, basta utilizá-los como uma variável global. Os nomes dos operandos encontram-se melhor descritos na lista de operandos especiais na seção "Diagnóstico" - "Lista de Operandos Reservados".

VFO/PWM

Os controladores DU350 e DU351 possuem os seguinte operandos especiais reservados para diagnóstico da VFO/PWM, onde x é o número da saída rápida que pode variar de 0 a 1:

Diagnóstico	Descrição	
Operando de diagnósticos Fx_VFO_DG		
Fx_VFO_ON	Bit 0 - Saída em operação	
Fx_VFO_PRM	Bit 1 - Saída VFO/PWM não parametrizada	
Fx_VFO_ERR	Bit 2 - Saída VFO/PWM com erro de parametrização	

Tabela 6-6. Diagnóstico VFO/PWM

Os operandos de diagnóstico Fx_VFO_ON,_Fx_VFO_PRM e Fx_VFO_ERR são do tipo BOOL, e juntos compõem Fx_VFO_DG, que é do tipo BYTE.

Os operandos especiais de diagnostico da VFO/PWM já estão previamente mapeados em uma região específica de memória. Desta forma, basta utilizá-los como uma variável global. Os nomes dos operandos encontram-se melhor descritos na lista de operandos especiais na seção "Diagnóstico" - "Lista de Operandos Reservados".

Diagnósticos MODBUS

Cada relação MODBUS possui um operando de contador de erros e um operando informando o estado da comunicação do último ciclo.

Se a porta de comunicação for configurada como MODBUS escravo, o operando COMx_DE indicara o estado da última comunicação MODBUS realizada na porta de comunicação x. O operando COMx_CE indicara o número de erros ocorridos na porta de comunicação x.

Se a porta de comunicação for configurada como MODBUS mestre, o operando COMx_Ry indicará o estado da última comunicação MODBUS da relação y da porta de comunicação x. O operando COMx_Cy indicara o número de erros ocorridos na relação y da porta de comunicação x.

Ao atribuir o valor TRUE para o operando CLR_ALL_COM, será atribuído o valor 0 para todos os contadores de erro (COMx_CE e COMx_Cy).

A Tabela 6-7 descreve os operandos reservados relacionados a diagnósticos do protocolo MODBUS, onde x é o número da Porta COM e y é o número da relação.

CLR_ALL_COM	Zera todos os contadores de erro de comunicação MODBUS
COMx_DE	Diagnóstico em modo escravo
COMx_CE	Contador de erro em modo escravo
COMx_Cy	Contador de erro da relação y
COMx_Ry	Diagnóstico da relação y

Tabela 6-7. Diagnósticos MODBUS

A Tabela 6-8 mostra o código de erro que os operandos de estado de comunicação podem assumir:

Código	Descrição		
	Mestre		
1	Comando solicitado não aceita broadcast		
2	Falha na tentativas de comunicação		
3	Endereço MODBUS não encontrado na tabela		
4	Comando enviado não implementado		
5	Recebimento de resposta de outro endereço		
6	Erro CRC Resposta mestre		
	Escravo		
7	Comando recebido não implementado		
9	Erro CRC no Pacote Recebido		
10	Endereço para outro escravo ou broadcast		
11	Limite dos endereços do comando invalido		
12	Endereço MODBUS não encontrado na tabela		
13	Endereço do Host Invalido		
Diagnósticos de Comunicação Gerais (Mestre / Escravo)			
0	Indica que a comunicação está ok		
----	---------------------------------------		
14	Erro na recepção		
15	Erro de paridade		
16	Erro de framing (baudrate, stopbits,)		
17	Time-out do CTS		

Tabela 6-8. Códigos de erro MODBUS

Lista de Operandos Reservados

Os controladores DU350 e DU351 possuem uma lista de operandos especiais utilizados para configuração e diagnostico da UCP. Os operandos especiais já estão previamente mapeados em uma região específica de memória. Desta forma, basta utilizá-los como uma variável global.

Para acessar os operandos especiais no MasterTool IEC, de um duplo clique na pasta "Biblioteca DU35x.lib...", localizada na aba "Recursos". Em seguida, para exibir a lista de operandos especiais, de um duplo clique em "Global_Variables...". Nesta lista estão descritos todos os operandos especiais existentes nos controladores DU350 e DU351. A tabela abaixo apresenta esses operandos com seus respectivos endereços na memória e funcionalidades.

	Nome	Endereço	Тіро	Descrição		
	MODEM					
1	RTS	%MB6373	BYTE	Pino RTS da Porta COM0		
2	CTS	%MB6374	BYTE	Pino CTS da Porta COM0		
3	DCD	%MB6375	BYTE	Pino DCD da Porta Com0		
4	DTR	%MB6376	BYTE	Pino DTR da Porta Com0		
5	DSR	%MB6377	BYTE	Pino DSR da Porta Com0		
			COM1			
6	CLR_ALL_COM	%MB6378	BOOL	Zera diagnostico das COMs		
7	COM1_DE	%MB6379	BYTE	Diagnóstico em modo escravo		
8	COM1_CE	%MB6380	BYTE	Contador em modo escravo		
9	COM1_DR	%MW3191	WORD	Desativa relações		
10	COM1_C0	%MB6384	BYTE	Contador da relação 0		
11	COM1_R0	%MB6385	BYTE	Diagnóstico da relação 0		
12	COM1_C1	%MB6386	BYTE	Contador da relação 1		
13	COM1_R1	%MB6387	BYTE	Diagnóstico da relação 1		
14	COM1_C2	%MB6388	BYTE	Contador da relação 2		
15	COM1_R2	%MB6389	BYTE	Diagnóstico da relação 2		
16	COM1_C3	%MB6390	BYTE	Contador da relação 3		
17	COM1_R3	%MB6391	BYTE	Diagnóstico da relação 3		
18	COM1_C4	%MB6392	BYTE	Contador da relação 4		
19	COM1_R4	%MB6393	BYTE	Diagnóstico da relação 4		
20	COM1_C5	%MB6394	BYTE	Contador da relação 5		
21	COM1_R5	%MB6395	BYTE	Diagnóstico da relação 5		
22	COM1_C6	%MB6396	BYTE	Contador da relação 6		
23	COM1_R6	%MB6397	BYTE	Diagnóstico da relação 6		
24	COM1_C7	%MB6398	BYTE	Contador da relação 7		
25	COM1_R7	%MB6399	BYTE	Diagnóstico da relação 7		
26	COM1_C8	%MB6400	BYTE	Contador da relação 8		
27	COM1_R8	%MB6401	BYTE	Diagnóstico da relação 8		
28	COM1_C9	%MB6402	BYTE	Contador da relação 9		
29	COM1_R9	%MB6403	BYTE	Diagnóstico da relação 9		
30	COM1_C10	%MB6404	BYTE	Contador da relação 10		
31	COM1_R10	%MB6405	BYTE	Diagnóstico da relação 10		
32	COM1_C11	%MB6406	BYTE	Contador da relação 11		
33	COM1_R11	%MB6407	BYTE	Diagnóstico da relação 11		

34	COM1_C12	%MB6408	BYTE	Contador da relação 12
35	COM1_R12	%MB6409	BYTE	Diagnóstico da relação 12
36	COM1_C13	%MB6410	BYTE	Contador da relação 13
37	COM1_R13	%MB6411	BYTE	Diagnóstico da relação 13
38	COM1_C14	%MB6412	BYTE	Contador da relação 14
39	COM1_R14	%MB6413	BYTE	Diagnóstico da relação 14
40	COM1_C15	%MB6414	BYTE	Contador da relação 15
41	COM1_R15	%MB6415	BYTE	Diagnóstico da relação 15
		•	COM2	
42	COM2_DE	%MB6419	BYTE	Diagnóstico em modo escravo
43	COM2_CE	%MB6420	BYTE	Contador em modo escravo
44	COM2_DR	%MW 3211	WORD	Desativa relações
45	COM2_C0	%MB6424	BYTE	Contador da relação 0
46	COM2_R0	%MB6425	BYTE	Diagnóstico da relação 0
47	COM2_C1	%MB6426	BYTE	Contador da relação 1
48	COM2_R1	%MB6427	BYTE	Diagnóstico da relação 1
49	COM2_C2	%MB6428	BYTE	Contador da relação 2
50	COM2_R2	%MB6429	BYTE	Diagnóstico da relação 2
51	COM2_C3	%MB6430	BYTE	Contador da relação 3
52	COM2_R3	%MB6431	BYTE	Diagnóstico da relação 3
53	COM2_C4	%MB6432	BYTE	Contador da relação 4
54	COM2_R4	%MB6433	BYTE	Diagnóstico da relação 4
55	COM2_C5	%MB6434	BYTE	Contador da relação 5
56	COM2_R5	%MB6435	BYTE	Diagnóstico da relação 5
57	COM2_C6	%MB6436	BYTE	Contador da relação 6
58	COM2_R6	%MB6437	BYTE	Diagnóstico da relação 6
59	COM2_C7	%MB6438	BYTE	Contador da relação 7
60	COM2_R7	%MB6439	BYTE	Diagnóstico da relação 7
61	COM2_C8	%MB6440	BYTE	Contador da relação 8
62	COM2_R8	%MB6441	BYTE	Diagnóstico da relação 8
63	COM2_C9	%MB6442	BYTE	Contador da relação 9
64	COM2_R9	%MB6443	BYTE	Diagnóstico da relação 9
65	COM2_C10	%MB6444	BYTE	Contador da relação 10
66	COM2_R10	%MB6445	BYTE	Diagnóstico da relação 10
67	COM2_C11	%MB6446	BYTE	Contador da relação 11
68	COM2_R11	%MB6447	BYTE	Diagnóstico da relação 11
69	COM2_C12	%MB6448	BYTE	Contador da relação 12
70	COM2_R12	%MB6449	BYTE	Diagnóstico da relação 12
71	COM2_C13	%MB6450	BYTE	Contador da relação 13
72	COM2_R13	%MB6451	BYTE	Diagnóstico da relação 13
73	COM2_C14	%MB6452	BYTE	Contador da relação 14
74	COM2_R14	%MB6453	BYTE	Diagnóstico da relação 14
75	COM2_C15	%MB6454	BYTE	Contador da relação 15
76	COM2_R15	%MB6455	BYTE	Diagnóstico da relação 15
-		Co	nfigurações G	Gerais
77	STATUS_CP	%MB6460	BYTE	Brownout/Relógio/Retentivas
78	TAM_APLICATIVO	%MD1616	DWORD	Tamanho do aplicativo do usuário
79	CONTRASTE	%MB6468	BYTE	Percentagem do contraste
80	BACKLIGHT	%MB6469	BYTE	Configuração do backlight
81	SOFT_H	%MB6470	BYTE	Número antes do ponto
82	SOFT_L	%MB6471	BYTE	Número depois do ponto
83	MODEL	%MW 3231	WORD	Modelo do CP
		1	Status do C	P
84	BROWNOUT	%MX3230.0	BOOL	Indica a ocorrência de um brownout na inicialização do CP

85	WATCHDOG	%MX3230.1	BOOL	Indica que ocorreu um watchdog na execução anterior
86	FALHA_RETENTIVAS	%MX3230.2	BOOL	Indica um erro de gravação das variáveis retentivas
87	FALHA_RTC	%MX3230.3	BOOL	Indica a perda das informações do relógio
		Unidirecional	ou Bidirecion	nal - Contador 0
88	CNT_B0_EXT_EVENT _CNT	%MB6472	BYTE	Contador de borda de subida no pino de controle do contador do bloco 0
89	CNT0	%MD1619	DWORD	Valor de contagem
90	CNT0_PRESET	%MD1620	DWORD	Valor de carga de preset
91	CNT0_HOLD	%MD1621	DWORD	Valor de amostragem
92	CNT0_CMP0	%MD1622	DWORD	Valor do Comparador 0
93	CNT0_CMP1	%MD1623	DWORD	Valor do Comparador 1
94	CNT0_CMD	%MB6496	BYTE	Comandos
95	CNT0_DG	%MB6497	BYTE	Diagnóstico
		Con	nandos Conta	ador 0
96	CNT0_CLR	%MX3248.0	BOOL	Zera registrador de contagem
97	CNT0_STOP	%MX3248.1	BOOL	Desabilita contagem do contador
98	CNT0 LOAD	%MX3248.2	BOOL	Carrega PRESET
99	CNT0 AMG	%MX3248.3	BOOL	Amostragem da contagem (HOLD)
100	CNT0 OVER	%MX3248.4	BOOL	Zera os bits de overflow e underflow
		Diag	Inóstico Cont	ador 0
101	CNT0 OVERFLOW	%MX3248.8	BOOL	Overflow na contagem
102		%MX3248.9	BOOL	Underflow na contagem
103	CNT0_DIR	%MX3248.10	BOOL	Direção de contagem (0- progressivo / 1- regressivo)
104	CNT0_MAX_CMP0	%MX3248.11	BOOL	Contador maior que CNT0_CMP0
105	CNT0_MAX_CMP1	%MX3248.12	BOOL	Contador maior que CNT0_CMP1
106	CNT0_EQ_CMP0	%MX3248.13	BOOL	Contador igual ao CNT0_CMP0
107	CNT0_EQ_CMP1	%MX3248.14	BOOL	Contador igual ao CNT0_CMP1
108	CNT0_ZERO	%MX3248.15	BOOL	Contador igual a ZERO
		Unidir	ecional – Co	ntador 1
109	CNT1	%MD1626	DWORD	Valor de contagem
110	CNT1_PRESET	%MD1627	DWORD	Valor de carga de preset
111	CNT1_HOLD	%MD1628	DWORD	Valor de amostragem
112	CNT1_CMP0	%MD1629	DWORD	Valor do Comparador 0
113	CNT1_CMP1	%MD1630	DWORD	Valor do Comparador 1
114	CNT1_CMD	%MB6524	BYTE	Comandos
115	CNT1_DG	%MB6525	BYTE	Diagnóstico
		Con	nandos Conta	ador 1
116	CNT1_CLR	%MX3262.0	BOOL	Zera registrador de contagem
117	CNT1_STOP	%MX3262.1	BOOL	Desabilita contagem do contador
118	CNT1_LOAD	%MX3262.2	BOOL	Carrega PRESET
119	CNT1_AMG	%MX3262.3	BOOL	Amostragem da contagem (HOLD)
120	CNT1_OVER	%MX3262.4	BOOL	Zera os bits de overflow e underflow
		Diag	nóstico Cont	ador 1
121	CNT1_OVERFLOW	%MX3262.8	BOOL	Overflow na contagem
122	CNT1_UNDERFLOW	%MX3262.9	BOOL	Underflow na contagem
123	CNT1_DIR	%MX3262.10	BOOL	Direção de contagem (0- progressivo / 1- regressivo)
124	CNT1_MAX_CMP0	%MX3262.11	BOOL	Contador maior que CNT1_CMP0
125	CNT1_MAX_CMP1	%MX3262.12	BOOL	Contador maior que CNT1_CMP1
126	CNT1_EQ_CMP0	%MX3262.13	BOOL	Contador igual ao CNT1_CMP0
127	CNT1_EQ_CMP1	%MX3262.14	BOOL	Contador igual ao CNT1_CMP1
128	CNT1_ZERO	%MX3262.15	BOOL	Contador igual a ZERO
		Unidirecional	ou Bidirecion	nal - Contador 2
129	CNT_B1_EXT_EVENT	%MB6474	BYTE	Contador de borda de subida no pino de controle do

	CNT			contador do bloco 1		
130	CNT2	%MD1633	DWORD	Valor de contagem		
131	CNT2 PRESET	%MD1634	DWORD	Valor de carga de preset		
132	CNT2 HOLD	%MD1635	DWORD	Valor de amostragem		
133	CNT2 CMP0	%MD1636	DWORD	Valor do Comparador 0		
134	CNT2_CMP1	%MD1637	DWORD	Valor do Comparador 1		
135	CNT2_CMD	%MB6552	BYTE	Comandos		
136	CNT2 DG	%MB6553	BYTE	Diagnóstico		
		Cor	nandos Conta	ador 2		
137	CNT2_CLR	%MX3276.0	BOOL	Zera registrador de contagem		
138	CNT2_STOP	%MX3276.1	BOOL	Desabilita contagem do contador		
139	CNT2_LOAD	%MX3276.2	BOOL	Carrega PRESET		
140	CNT2_AMG	%MX3276.3	BOOL	Amostragem da contagem (HOLD)		
141	CNT2_OVER	%MX3276.4	BOOL	Zera os bits de overflow e underflow		
		Diag	nóstico Cont	ador 2		
142	CNT2_OVERFLOW	%MX3276.8	BOOL	Overflow na contagem		
143	CNT2_UNDERFLOW	%MX3276.9	BOOL	Underflow na contagem		
144	CNT2_DIR	%MX3276.10	BOOL	Direção de contagem		
145	CNT2_MAX_CMP0	%MX3276.11	BOOL	Contador maior que CNT2_CMP0		
146	CNT2_MAX_CMP1	%MX3276.12	BOOL	Contador maior que CNT2_CMP1		
147	CNT2_EQ_CMP0	%MX3276.13	BOOL	Contador igual ao CNT2_CMP0		
148	CNT2_EQ_CMP1	%MX3276.14	BOOL	Contador igual ao CNT2_CMP1		
149	CNT2_ZERO	%MX3276.15	BOOL	Contador igual a ZERO		
		Unidi	recional – Co	ntador 3		
150	CNT3	%MD1640	DWORD	Valor de contagem		
151	CNT3_PRESET	%MD1641	DWORD	Valor de carga de preset		
152	CNT3_HOLD	%MD1642	DWORD	Valor de amostragem		
153	CNT3_CMP0	%MD1643	DWORD	Valor do Comparador 0		
154	CNT3_CMP1	%MD1644	DWORD	Valor do Comparador 1		
155	CNT3_CMD	%MB6580	BYTE	Comandos		
156	CNT3_DG	%MB6581	BYTE	Diagnóstico		
		Cor	nandos Conta	ador 3		
157	CNT3_CLR	%MX3290.0	BOOL	Zera registrador de contagem		
158	CNT3_STOP	%MX3290.1	BOOL	Desabilita contagem do contador		
159	CNT3_LOAD	%MX3290.2	BOOL	Carrega PRESET		
160	CNT3_AMG	%MX3290.3	BOOL	Amostragem da contagem (HOLD)		
161	CNT3_OVER	%MX3290.4	BOOL	Zera os bits de overflow e underflow		
		Diag	nóstico Cont	ador 3		
162	CNT3_OVERFLOW	%MX3290.8	BOOL	Overflow na contagem		
163	CNT3_UNDERFLOW	%MX3290.9	BOOL	Underflow na contagem		
164	CNT3_DIR	%MX3290.10	BOOL	Direção de contagem		
165	CNT3_MAX_CMP0	%MX3290.11	BOOL	Contador maior que CNT3_CMP0		
166	CNT3_MAX_CMP1	%MX3290.12	BOOL	Contador maior que CNT3_CMP1		
167	CNT3_EQ_CMP0	%MX3290.13	BOOL	Contador igual ao CNT3_CMP0		
168	CNT3_EQ_CMP1	%MX3290.14	BOOL	Contador igual ao CNT3_CMP1		
169	CNT3_ZERO	%MX3290.15	BOOL	Contador igual a ZERO		
		S	aida Rapida -			
170	FU_FREQ	%MD1647	DWORD	valor da trequencia para PTO/VFO/PWM		
1/1	FU_PLS_FOT	%MD1648	DWORD	Valor dos pulsos totais para PTO		
1/2		%MD1649	DWORD	valor dos pulsos em rampa para PTO		
1/3		%WB6600		Valor do Duty Cycle para VFO/PWM		
174		%WD1646	REAL	valor de alta resolução do Duty Cycle para VFO/PWM		
175	F0_PTO_CNT_CMP0	%MD1570	DWORD	Comparador 0 da saída rápida F0		
176	F0_PTO_CNT_CMP1	%MD1571	DWORD	Comparador 1 da saída rápida F0		
	Saída Rápida - F1					

			1		
177	F1_FREQ	%MD1652	DWORD	Valor da freqüência para PTO/VFO/PWM	
178	F1_PLS_TOT	%MD1653	DWORD	Valor dos pulsos totais para PTO	
179	F1_PLS_RMP	%MD1654	DWORD	Valor dos pulsos em rampa para PTO	
180	F1_DUTY	%MB6620	DWORD	Valor do Duty Cycle para VFO/PWM	
181	F1_DUTY_HR	%MD1651	REAL	Valor de alta resolução do Duty Cycle para VFO/PWM	
182	F1_PTO_CNT_CMP0	%MD1572	DWORD	Comparador 0 da saída rápida F1	
183	F1_PTO_CNT_CMP1	%MD1573	DWORD	Comparador 1 da saída rápida F1	
		Saídas Rápida	s - Comando	s e Diagnósticos	
184	PTO_CMD	%MB6628	BYTE	Operando montado pelos comandos para PTO das saídas F0 e F1. Os comandos são descritos abaixo.	
185	VFO_CMD	%MB6629	BYTE	Operando montado pelos comandos para VFO/PWM das saídas F0 e F1. Os comandos são descritos abaixo.	
186	F0_PTO_DG	%MB6630	BYTE	Operando montado pelos diagnósticos para PTO da saída F0. Os diagnósticos são descritos abaixo.	
187	F1_PTO_DG	%MB6631	BYTE	Operando montado pelos diagnósticos para PTO da saída F1. Os diagnósticos são descritos abaixo.	
188	VFO_DG	%MB6632	BYTE	Operando montado pelos diagnósticos para VFO/PWM das saídas F0 e F1. Os diagnósticos são descritos abaixo.	
189	PTO_CNT_CMD	%MB6276	BYTE	Comandos para os contadores da PTO nas saídas rápidas F0 e F1	
190	F0_PTO_CNT_DG	%MB6277	BYTE	Operando montado pelos diagnósticos para contadores de pulsos PTO da saída F0. Os diagnósticos são descritos abaixo.	
191	F1_PTO_CNT_DG	%MB6278	BYTE	Operando montado pelos diagnósticos para contadores de pulsos PTO da saída F1. Os diagnósticos são descritos abaixo.	
192	F0_PTO_CNT_REL	%MD1565	DWORD	Contador de pulsos PTO relativo na saída rápida F0	
193	F0_PTO_CNT_ABS	%MD1566	DWORD	Contador de pulsos PTO absoluto na saída rápida F0	
194	F1_PTO_CNT_REL	%MD1567	DWORD	Contador de pulsos PTO relativo na saída rápida F1	
195	F1_PTO_CNT_ABS	%MD1568	DWORD	Contador de pulsos PTO absoluto na saída rápida F1	
		Co	omandos PTO	9 - F0	
196	F0_PTO_START	%MX3314.0	BOOL	Dispara trem de pulsos (PTO) na saída F0	
197	F0_PTO_STOP	%MX3314.1	BOOL	Cessa a geração de pulsos (PTO) na saída F0	
198	F0_PTO_SOFTSTOP	%MX3314.4	BOOL	Inicia uma parada suave na saída F0	
199	F0_PTO_CNT_DIR	%MX3138.0	BOOL	Define a direção de contagem do contador de pulsos da saída F0	
200	F0_PTO_CNT_CLR	%MX3138.1	BOOL	Reseta o contador absoluto de pulsos da saída F0	
		Co	omandos PTO) - F1	
201	F1_PTO_START	%MX3314.2	BOOL	Dispara trem de pulsos (PTO) na saída F1	
202	F1_PTO_STOP	%MX3314.3	BOOL	Cessa a geração de pulsos (PTO) na saída F1	
203	F1_PTO_SOFTSTOP	%MX3314.5	BOOL	Inicia uma parada suave na saída F1	
204	F1_PTO_CNT_DIR	%MX3138.2	BOOL	Define a direção de contagem do contador de pulsos da saída F1	
205	F1_PTO_CNT_CLR	%MX3138.3	BOOL	Reseta o contador absoluto de pulsos da saída F1	
		Coma	andos VFO/P\	VM - F0	
206	F0_VFO	%MX3314.8	BOOL	0 -> Desabilita o VFO/PWM na saída F0 (saída parada) 1 -> Habilita o VFO/PWM na saída F0	
207	F0_VFO_DUTY_SRC	%MX3314.10	BOOL	Seleciona a origem do duty, F0_DUTY ou F0_DUTY_HR	
	Comandos VFO/PWM - F1				
208	F1_VFO	%MX3314.9	BOOL	0 -> Desabilita o VFO/PWM na saída F1 (saída parada) 1 -> Habilita o VFO/PWM na saída F1	
209	F1_VFO_DUTY_SRC	%MX3314.11	BOOL	Seleciona a origem do duty, F1_DUTY ou F1_DUTY_HR	
	Diagnóstico PTO - F0				
210	F0_PTO_ON	%MX3315.0	BOOL	Saída PTO em operação	

211	F0_PTO_ACE	%MX3315.1	BOOL	Saída PTO em fase de aceleração		
212	F0_PTO_REG	%MX3315.2	BOOL	Saída PTO em fase de regime permanente		
213	F0_PTO_DES	%MX3315.3	BOOL	Saída PTO em fase de desaceleração		
214	F0_PTO_PRM	%MX3315.4	BOOL	Saída PTO não parametrizada		
215	F0_PTO_ERR	%MX3315.5	BOOL	Saída PTO com erro de parametrização		
216	F0_PTO_CNT_MAX_C MP0	%MX3138.8	BOOL	Sinaliza que o contador de pulsos é maior que o comparador 0 na saída F0		
217	F0_PTO_CNT_MAX_C MP1	%MX3138.9	BOOL	Sinaliza que o contador de pulsos é maior que o comparador 1 na saída F0		
		Dia	gnóstico PTC	D - F1		
218	F1_PTO_ON	%MX3315.8	BOOL	Saída PTO em operação		
219	F1 PTO ACE	%MX3315.9	BOOL	Saída PTO em fase de aceleração		
220	F1 PTO REG	%MX3315.10	BOOL	Saída PTO em fase de regime permanente		
221	F1 PTO DES	%MX3315.11	BOOL	Saída PTO em fase de desaceleração		
222	F1 PTO PRM	%MX3315.12	BOOL	Saída PTO não parametrizada		
223	F1 PTO FRR	%MX3315.13	BOOL	Saída VEO com erro de parametrização		
224		%MX3139.0	BOOL	Sinaliza que o contador de pulsos é major que o		
224		///////////////////////////////////////	BOOL	comparador o na saída F1		
225	F1_PTO_CNT_MAX_C MP1	%MX3139.1	BOOL	Sinaliza que o contador de pulsos e maior que o comparador 1 na saída F1		
		Diagn	óstico VFO/P	WM - F0		
226	F0_VFO_ON	%MX3316.0	BOOL	Saída em operação		
227	F0_VFO_PRM	%MX3316.1	BOOL	Saída no modo VFO/PWM não parametrizada		
228	F0_VFO_ERR	%MX3316.2	BOOL	Saída PTO com erro de parametrização		
		Diagn	óstico VFO/P	WM - F1		
229	F1_VFO_ON	%MX3316.3	BOOL	Saída em operação		
230	F1_VFO_PRM	%MX3316.4	BOOL	Saída no modo VFO/PWM não parametrizada		
231	F1_VFO_ERR	%MX3316.5	BOOL	Saída VFO com erro de parametrização		
		Diagnós	tico Saídas A	nalógicas		
232	AO0 DG	%MB6640	BYTE	Diagnóstico do canal 0 da saída analógica		
233	AO1 DG	%MB6641	BYTE	Diagnóstico do canal 1 da saída analógica		
234	AO0_ERR	%MX3320.0	BOOL	Canal 0 em curto-circuito (Tensão) ou circuito		
235	AO1_ERR	%MX3320.8	BOOL	Canal 1 em curto-circuito (Tensão) ou circuito		
-	Diagnóstico Entradas Analógicas					
236		%MB6648		Diagnéstico do canal 0 da entrada analógica		
230		%MB6640	BITE	Diagnéstico do canal 1 de entrade enclégico		
237		%MD6650	BITE	Diagnóstico do carla 1 da entrada analógica		
230		%IVIB0030	BITE	Diagnóstico do canal 2 da entrada analógica		
239			BITE	Entrada analógica da contrante 4.20 mA abarta		
240		%IVIA3324.0	BOOL	Entrada analógica de corrente 4-20 mA aberta		
241		%IVIX3324.8	BOOL	Entrada analogica de corrente 4-20 mA abena		
242	AI2_OPN	%WX3325.0	BOOL	Entrada analogica de corrente 4-20 mA aberta		
243	AI3_OPN	%MX3325.8	BOOL	Entrada analogica de corrente 4-20 mA aberta		
		Entra	idas Digitais			
244	100	%IX0.0	ROOL	Entrada Digital 100		
245	101	%IX0.1	BOOL	Entrada Digital I01		
246	102	%IX0.2	BOOL	Entrada Digital 102		
247	103	%IX0.3	BOOL	Entrada Digital 103		
248	104	%IX0.4	BOOL	Entrada Digital I04		
249	105	%IX0.5	BOOL	Entrada Digital 105		
250	106	%IX0.6	BOOL	Entrada Digital 106		
251	107	%IX0.7	BOOL	Entrada Digital 107		
252	108	%IX0.8	BOOL	Entrada Digital 108		
		Entra	das Digitais	Bloco 1		
253	l10	%IX1.0	BOOL	Entrada Digital I10		
254	l11	%IX1.1	BOOL	Entrada Digital I11		

255	l12	%IX1.2	BOOL	Entrada Digital I12
256	l13	%IX1.3	BOOL	Entrada Digital I13
257	l14	%IX1.4	BOOL	Entrada Digital I14
258	l15	%IX1.5	BOOL	Entrada Digital I15
259	l16	%IX1.6	BOOL	Entrada Digital I16
260	117	%IX1.7	BOOL	Entrada Digital I17
261	118	%IX1.8	BOOL	Entrada Digital I18
		Entra	das Digitais	Bloco 2
262	120	%IX2.0	BOOL	Entrada Digital I20
263	l21	%IX2.1	BOOL	Entrada Digital I21
		En	tradas Analóg	gicas
264	AIO	%IW4	WORD	Valor do Canal 0
265	AI1	%IW5	WORD	Valor do Canal 1
266	AI2	%IW6	WORD	Valor do Canal 2
267	AI3	%IW7	WORD	Valor do Canal 3
		Saío	las Digitais B	loco 0
268	Q00	%QX0.0	BOOL	Saída Digital Q00
269	Q01	%QX0.1	BOOL	Saída Digital Q01
270	Q02	%QX0.2	BOOL	Saída Digital Q02
271	Q03	%QX0.3	BOOL	Saída Digital Q03
272	Q04	%QX0.4	BOOL	Saída Digital Q04
273	Q05	%QX0.5	BOOL	Saída Digital Q05
274	Q06	%QX0.6	BOOL	Saída Digital Q06
275	Q07	%QX0.7	BOOL	Saída Digital Q07
		Saío	las Digitais B	loco 1
276	Q10	%QX1.0	BOOL	Saída Digital Q10
277	Q11	%QX1.1	BOOL	Saída Digital Q11
278	Q12	%QX1.2	BOOL	Saída Digital Q12
279	Q13	%QX1.3	BOOL	Saída Digital Q13
280	Q14	%QX1.4	BOOL	Saída Digital Q14
281	Q15	%QX1.5	BOOL	Saída Digital Q15
282	Q16	%QX1.6	BOOL	Saída Digital Q16
283	Q17	%QX1.7	BOOL	Saída Digital Q17
		S	aídas Analógi	icas
284	AO0	%QW3	WORD	Valor do Canal 0
285	AO1	%QW4	WORD	Valor do Canal 1

Tabela 6-9. Operandos Reservados

Os grupos de operandos reservados Entradas Digitais Bloco 0, Entradas Digitais Bloco 1, Entradas Digitais Bloco 2, Entradas Analógicas, Saídas Digitais Bloco 0, Saídas Digitais Bloco 1 e Saídas Analógicas são declarados na árvore de configuração.

7. Aplicações Especiais com Serial RS-232

Este capítulo descreve como a interface serial RS-232 (COM1) pode ser utilizados em aplicações especiais que exijam a utilização de sinais de controle (RTS, CTS, DTR e DSR), além dos sinais de dados normais (TXD e RXD).

Handshake de Hardware RTS/CTS em Modems Rádio

Um rádio geralmente tem sua portadora comutada (ligada) apenas quando está transmitindo, e desligada quando não está transmitindo. Isso ocorre pelos seguintes motivos:

- para economizar energia enquanto o rádio não estiver transmitindo
- para evitar o superaquecimento do transmissor
- para que outro rádio possa utilizar a mesma freqüência enquanto este não estiver transmitindo

Em transceptores de rádio manuais (walkie-talkies), por exemplo, normalmente existe um botão de PTT (push to talk) que o operador deve pressionar antes de falar e soltar depois de ter falado. No caso de transmissão de dados via modems rádio, a saída RTS do controlador deve ser utilizada para acionar o PTT do rádio e ligar a portadora. Depois de ligar o PTT, em tese, o controlador poderia começar a transmitir os dados através de sua saída TXD. No entanto, na prática, existe um atraso de estabilização da portadora. Como resultado, ao acionar o RTS (PTT do rádio), a portadora é ligada, mas somente depois de algum tempo a portadora se estabiliza e é reconhecida pelo(s) rádio(s) receptor(es). Este tempo varia de acordo com o modelo de cada modem rádio. Por fim, para que o controlador sincronize o momento em que pode iniciar a transmissão de dados (TXD), o modem rádio lhe devolve uma saída (CTS), que é ligada na entrada CTS do controlador.

Portanto, o protocolo de transmissão de dados entre o controlador e o modem rádio, chamado de handshake RTS/CTS, se estabelece da seguinte maneira:

- 1. Quando o controlador deseja transmitir, ele liga sua saída RTS, que está ligada na entrada RTS do modem rádio. Deve-se observar que, no controlador, RTS é uma saída, e no modem rádio, RTS é uma entrada.
- 2. Quando o modem rádio percebe que sua entrada RTS foi ligada, ele liga a portadora (PTT) e, depois de um tempo característico deste modelo de rádio, liga a saída de CTS.
- 3. Quando o controlador percebe que sua entrada CTS foi ligada, ele inicia a transmissão de dados via saída TXD, ligada na entrada TXD do modem rádio. Deve-se observar que, no modem rádio, CTS é uma saída, e no controlador CTS é uma entrada, assim como o TXD, que é uma saída no controlador e uma entrada no modem rádio.
- 4. Caso o controlador não receba o retorno de CTS do modem rádio até 1 segundo depois de ter ligado sua saída de RTS solicitando a transmissão, o processo de transmissão é abortado, e um erro é sinalizado (time-out de CTS).
- 5. Caso o CP tenha recebido o retorno de CTS antes de 1 segundo, é iniciada a transmissão de dados via TXD. A saída de RTS é desligada assim que a transmissão de dados encerra. O modem rádio, ao perceber o desligamento de sua entrada RTS, desliga sua portadora (PTT) e sua saída CTS.

A figura a seguir mostra o timming dos sinais RTS, CTS e TXD durante uma transmissão de dados. Além disso, o item DCD (detecção da portadora) ilustra o que acontece no sinal DCD de um rádio que está recebendo esta transmissão de dados. E o item RXD ilustra o que acontece no sinal RXD de um rádio que está recebendo esta transmissão de dados.

Figura 7-1. Timming dos sinais RTS, CTS e TXD

A figura seguinte ilustra como deve ser feita a conexão entre o CP e o modem rádio.

Figura 7-2. Conexão do CP com um modem rádio

ATENÇÃO:

Alguns modems rádio mais modernos e inteligentes dispensam a utilização do handshake RTS/CTS, uma vez que o cabo de interconexão com o CP torna o uso dos sinais RTS e CTS desnecessário. Esses modems rádio gerenciam automaticamente a ativação e desativação da portadora (PTT), analisando o sinal de dados (TXD). Este gerenciamento é feito através de microprocessador ou de outro circuito inteligente instalado no modem rádio.

Handshake de Hardware RTS/CTS em Conversores RS-485

Conversores RS-485 são instalados em barramentos onde dois ou mais equipamentos com interface RS-485 podem coexistir compartilhando um mesmo meio físico para transmissão e recepção. Sendo assim, somente um dos conversores pode estar transmitindo dados em um determinado instante, a fim de evitar a colisão de dados.

De maneira similar ao caso dos modems rádio, o sinal de RTS deve ser utilizado para habilitar o transmissor do conversor RS-485. Enquanto o conversor RS-485 não está transmitindo, deve manter seu transmissor desabilitado ou em "alta impedância".

A principal diferença entre modems rádio e conversores RS-485 geralmente é o tempo de estabilização da portadora: nos modems, o tempo é considerável, da ordem de alguns milésimos de

segundo; já no caso de conversores RS-485, assim que o sinal RTS é ativado já se pode iniciar a transmissão de dados via TXD. Isso dispensa o teste de CTS, necessário no caso de modems rádio.

No entanto, para não criar outro tipo de handshake, utiliza-se exatamente o mesmo handshake de RTS/CTS descrito para modems rádio. A maior parte dos conversores RS-485 ativa sua saída CTS imediatamente após receber sua entrada RTS, ou até interconecta seus pinos de RTS e CTS. Se o conversor não possuir o pino de CTS, pode-se providenciar uma interconexão no cabo.

Existem dois métodos recomendados de interconexão entre o controlador e um conversor RS-485. A figura a seguir mostra esses dois métodos.

Figura 7-3. Conexão do CP com um conversor RS-485

A figura abaixo mostra o timming dos sinais RTS, CTS e TXD durante uma transmissão de dados.

Figura 7-4. Timming dos sinais RTS, CTS e TXD

ATENÇÃO:

Alguns conversores RS-232 para RS-485 mais modernos e inteligentes dispensam a utilização do handshake RTS/CTS, uma vez que a interconexão com o CP torna o uso dos sinais RTS e CTS desnecessário. Esses conversores gerenciam automaticamente a ativação e desativação do driver de transmissão, analisando o sinal de dados (TXD). Este gerenciamento é feito através de microprocessador ou de outro circuito inteligente instalado no conversor RS-232 para RS-485.

8. Glossário

AES	Função para atualização instantânea das entradas e saídas digitais ou analógicas.
ARRAY	Utilizado para declarar uma estrutura de dados que mantém uma série de elementos do mesmo tamanho e tipo.
Backlight	Iluminação de fundo do visor.
Barramento	Conjunto de sinais elétricos agrupados logicamente com a função de transferir informação e controle entre diferentes elementos de um subsistema.
Bit	Unidade básica de informação, podendo estar no estado 0 ou 1.
Bloco Funcional	Um bloco funcional é uma POU que fornece um ou mais valores durante o seu uso. Ao contrário da função, um bloco funcional não fornece nenhum valor de retorno.
Brownout	Circuito eletrônico destinado a verificar a integridade do funcionamento da fonte de alimentação, utilizado para o disparo de uma lógica de segurança em caso de falhas na alimentação.
Byte	Unidade de informação composta por oito bits.
Ciclo	Uma execução completa do programa aplicativo de um controlador programável.
CLP	Controlador lógico programável. Equipamento que realiza controle sob o comando de um programa aplicativo. É composto de uma UCP, uma fonte de alimentação e uma estrutura de E/S.
СР	Ver CLP.
Crosstalk	É a interferência entre dois sinais teoricamente isolados.
Diagnóstico	Procedimento utilizado para detectar e isolar falhas. E também o conjunto de dados usados para tal determinação, que serve para a análise e correção de problemas.
Download	Carga de programa ou configuração no CP.
Duty Cycle	Percentual do tempo que um sinal periódico de onda quadrada fica em nível lógico 1 em relação ao período do mesmo.
DWord	Double Word. Unidade de informação composta por duas Words.
Encoder	Transdutores de movimento capazes de converter movimentos lineares ou angulares em informações elétricas.
Estado Seguro	Condição em que o CP muda as suas saídas, digitais e analógicas para um estado conhecido.
Handshake	É o processo pelo qual duas máquinas afirmam uma a outra que a reconheceu e está pronta para iniciar a comunicação.
Hardware	Equipamentos físicos usados em processamento de dados onde normalmente são executados programas (software).
IEC	Sigla para International Electrotechnical Commission, ou Comissão Eletrotécnica Internacional, é um órgão internacional de normalização que prepara e publica normas internacionais no âmbito elétrico, eletrônico e de tecnológicas relacionadas.
IEC 61131-3	Terceira parte da norma genérica para operação e utilização de CPs, IEC 61131.
IHM	Sigla para Interface Homem Máquina.
Interface	Dispositivo que adapta elétrica e/ou logicamente a transferência de sinais entre dois equipamentos.
Interrupção	Evento com atendimento prioritário que temporariamente suspende a execução de um programa e desvia para uma rotina de atendimento específica.
Kbytes	Unidade representativa de quantidade de memória. Representa 1024 bytes.
Linguagem de programação	Um conjunto de regras e convenções utilizado para a elaboração de um programa.
MasterTool IEC	Identifica o programa da Altus adequado a norma IEC 61131-3 que permite o desenvolvimento de aplicativos para CPs, executável em microcomputador com ambiente WINDOWS [®] .
Menu	Conjunto de opções disponíveis e exibidas por um programa no vídeo e que podem ser selecionadas pelo usuário a fim de ativar ou executar uma determinada tarefa.
MODBUS	Protocolo de comunicação de dados para redes industriais, criado para redes com arquitetura de mestre- escravo.
Módulo (referindo-se a hardware)	Elemento básico de um sistema completo que possui funções bem definidas. Normalmente é ligado ao sistema por conectores, podendo ser facilmente substituído.
Módulo (referindo-se a software)	Parte de um programa aplicativo capaz de realizar uma função específica. Pode ser executado independentemente ou em conjunto com outros módulos, trocando informações através da passagem de parâmetros.
NAVIGATION	Bloco funcional para a navegação nas telas do usuário via as teclas direcionais "para cima" e "para baixo".
Operandos	Conjunto de oito bits numerados de 0 a 7.
POU	Program Organization Unit, ou Unidade de Organização de Programa, é uma subdivisão do programa aplicativo que pode ser escrito em qualquer uma das linguagens disponíveis.

Programa aplicativo	É o programa carregado em um CP, que determina o funcionamento de uma máquina ou processo.
Programa executivo	Sistema operacional de um controlador programável. Controla as funções básicas do controlador e a execução de programas aplicativos.
РТО	Pulse Train Output, ou Saída de Trem de Pulsos.
PWM	Pulse Width Modulation, ou Modulação por Largura de Pulso.
RS-232	É um padrão para troca serial de dados entre dois pontos (ponto a ponto).
RS-485	É um padrão para troca serial de dados entre dois ou mais pontos (multiponto).
RTC	Real Time Clock, ou Relógio de Tempo Real.
Software	Programas de computador, procedimentos e regras relacionadas à operação de um sistema de processamento de dados.
Tarefa	Uma tarefa é uma unidade de tempo no processamento de um programa IEC. Ela é definida por um nome, uma prioridade e por um tipo determinado de condição que irá disparar o início da mesma.
Time-out	Tempo máximo preestabelecido para que uma comunicação seja completada.
UCP	Sigla para unidade central de processamento. Controla o fluxo de informações, interpreta e executa as instruções do programa e monitora os dispositivos do sistema.
Upload	Leitura do programa ou configuração do CP.
VFO	Variable Frequency Output, ou Saída de Freqüência Variável.
Watchdog	O Watchdog, também conhecido como circuito de cão-de-guarda, é o circuito eletrônico destinado a verificar a integridade do funcionamento de um equipamento.
Word	Unidade de informação composta por dois Bytes.