Manual de Utilização da Série Grano

Rev. F 02/2006 Cód. Doc.: MU210000

Nenhuma parte deste documento pode ser copiada ou reproduzida sem o consentimento prévio e por escrito da Altus Sistemas de Informática S.A., que se reserva o direito de efetuar alterações sem prévio comunicado.

Conforme o Código de Defesa do Consumidor vigente no Brasil, informamos a seguir, aos clientes que utilizam nossos produtos, aspectos relacionados com a segurança de pessoas e instalações.

Os equipamentos de automação industrial fabricados pela Altus são robustos e confiáveis devido ao rígido controle de qualidade a que são submetidos. No entanto, equipamentos eletrônicos de controle industrial (controladores programáveis, comandos numéricos, etc.) podem causar danos às máquinas ou processos por eles controlados em caso de defeito em suas partes e peças ou de erros de programação ou instalação, podendo inclusive colocar em risco vidas humanas.

O usuário deve analisar as possíveis conseqüências destes defeitos e providenciar instalações adicionais externas de segurança que, em caso de necessidade, sirvam para preservar a segurança do sistema, principalmente nos casos da instalação inicial e de testes.

É imprescindível a leitura completa dos manuais e/ou características técnicas do produto antes da instalação ou utilização do mesmo.

A Altus garante os seus equipamentos conforme descrito nas Condições Gerais de Fornecimento, anexada às propostas comerciais.

A Altus garante que seus equipamentos funcionam de acordo com as descrições contidas explicitamente em seus manuais e/ou características técnicas, não garantindo a satisfação de algum tipo particular de aplicação dos equipamentos.

A Altus desconsiderará qualquer outra garantia, direta ou implícita, principalmente quando se tratar de fornecimento de terceiros.

Pedidos de informações adicionais sobre o fornecimento e/ou características dos equipamentos e serviços Altus devem ser feitos por escrito. A Altus não se responsabiliza por informações fornecidas sobre seus equipamentos sem registro formal.

DIREITOS AUTORAIS

Série Grano, Série Ponto, MasterTool, Quark, ALNET e WebPlc são marcas registradas da Altus Sistemas de Informática S.A.

IBM é marca registrada da International Business Machines Corporation.

Sumário

I. INTRODUÇÃO	1
Características da Série Grano	2
UCPs da Série	
Documentos Relacionados a este Manual	
Inspeção Visual	2
Suporte Técnico	
Mensagens de Advertência Utilizadas neste Manual	3
2. DESCRIÇÃO TÉCNICA	4
Características Gerais Comuns	5
Entradas Digitais	6
Saídas a Relé	6
Saídas a Transistor	7
Saídas Digitais Rápidas	7
Entradas de Contagem Rápida	8
Entradas Analógicas de Tensão	9
Entradas Analógicas Corrente	9
Entradas Termopar	
Saídas Analógicas	
Módulo Relógio	
Arquitetura Interna	
Processador	
Memória RAM e FLASH	
Interface de Comunicação COM 1	
Indicação Visual	
Conversão AD e DA	
Circuitos de Entrada e Saída	
Fonte de Alimentação	
Controle do Barramento de Expansão	
Barramento de Expansão	
Relógio	
Introdução à Arquitetura Hardflex	
Sistemas de Proteção	
Cão-de-guarda	
Proteção contra Falta de Energia	
Canal Serial	
Conexão com Softwares de Supervisão ou IHMs	
Conexão como Remota MODBUS	
Conexão com Rede Ethernet Industrial	
Desempenho das UCPs	
Comunicação serial	
Ladder de interrupção (E-*.018 e E-*.020)	
Processamento da área de troca no modo Clone (somente GR351 e GR371)	
Aplicação do Usuário	
Processamento de Interrupções	
Interrupção de Tempo (E-*.018)	
Interrupção Externa (E-*.020)	
Interrupção Serial	

	Dimensões Físicas	. 29
	Dados para Compra	. 29
	Itens Integrantes	. 29
	Código dos Produtos	. 30
	Produtos Relacionados	. 30
	Características de Software	. 32
	Lista de Instruções	. 33
	Lista de Módulos Função	. 34
	Novo diretório de módulos	. 35
	Retentividade	. 36
	Operandos Ponto Flutuante	. 36
	Características da Arquitetura HardFlex® GR900	. 38
	Produtos da série Grano com HardFlex	. 38
	Características do Contador	. 38
	Descrição Funcional do Contador	. 40
	Componentes do Contador	. 41
	Modos de Contagem	. 42
	Características das Saídas Rápidas	. 45
	Descrição Funcional das Saídas Rápidas	. 45
	Componentes das Funções de Saídas Rápidas	. 46
	Modo Clone	. 47
	Área de Troca	. 48
	UCP Mestre	. 49
	UCP Escrava	. 50
	Estado Físico das Saídas	. 50
3.	CONFIGURAÇÃO	. 52
	Uso das Teclas	. 53
	Modo Visualização de E/S	. 54
	Modo LEDs de Funções	. 54
	Operando de controle do teclado	. 56
	Entrar em Modo LEDs de Função	. 57
	Sair do Modo LEDs de Função	. 57
	Modo Visualização de Diagnósticos	. 57
	Entrar em Modo Visualização de Diagnósticos	. 57
	Sair do Modo Visualização de Diagnósticos	. 57
	Operandos de E/S e de Diagnósticos	. 58
	Canal Serial Principal - COM1	. 58
	ALNET I Escravo	. 59
	MODBUS RTU Escravo	. 59
	Relações do MODBUS Escravo	. 60
	Fluxo de Operação do MODBUS Escravo	. 61
	Tempo de Resposta do MODBUS Escravo	. 62
	Conversão de Código Série Piccolo – Série Grano	. 62
	Relógio Calendário de Tempo Real	. 63
	Configuração do relógio	. 63
	Instalação de Funções HardFlex	. 65
	Configuração do Modo Clone	. 65
	Configurando o Mestre do Modo Clone	. 66
	Configurando o Escravo do Modo Clone	. 67
4.	PROGRAMAÇÃO	. 68
	Programação do programa aplicativo	. 68
	Programação da arquitetura HardFlex	. 68
	ن ک ک	

	Exemplos de Aplicação do Modo Clone	128
8.	EXEMPLOS DE APLICAÇÃO	128
	Programaçao	121
	Connguração	121
	Conexao Serial	117
	Instalação Eletrica	115
	Tutorial Serie Grano	116
		11.
7.	TUTORIAL	116
	Módulo Relógio	115
	Manutenção Preventiva	114
	Canais Analogicos	114
	Outras Situações de Erro	114
	Erros na Operação	112
	Tabela de Diagnósticos em Operandos	106
	Diagnósticos do Sistema via Operandos	105
	Diagnósticos via Painel	102
	Diagnósticos	102
6.	MANUTENÇÃO	102
	Dissipação de Calor em um Painel Elétrico	98
	Projeto Térmico do Armário	98
	Conexões da Arquitetura Hardflex GR900	95
	Entrada Analógica de Corrente	94
	Entrada Analógica de Tensão	94
	Instalação dos Termopares	93
	Saídas Transistorizadas	93
	Conexões dos Bornes	89
	Circuitos de Proteção	88
	Aterramento	87
	Alimentações	87
	Conexões	87
	Bornes com Mola	86
	Instalação Elétrica	86
	Conexão de expansões	85
	Cartão de Identificação	84
	Instalação do Módulo Relógio	83
	Retirada do Microcontrolador	83
	Instalação do Microcontrolador	82
	Reserva de Espaço para a Montagem	81
	Montagem dos Trilhos	81
	Instalação Mecânica	81
	Identificação do Módulo	80
5.	INSTALAÇÃO	80
	T uturiot Duçus	
	Parametrização	77
	Programação dos Canais Analógicos	77
	Entradas e Saídas	75 77
	Programação das Saídas Ránidas – F-SAIDR 009	75
	Friendas a Saídas da Contador	00 73
	Programação do Contador Pánido — E CONTR 004	69

CFG001	
CFG002	
CFG003	
CFG004	
CFG005	
CFG006	
CFG007	
CFG008	
CFG009	
CFG010	
9. GLOSSÁRIO	

1. Introdução

Os microcontroladores programáveis da Série Grano apresentam-se como excelente solução para aplicações de médio e pequeno porte, especialmente em máquinas e processos que envolvam controle analógico e de posição, entre outras. Apresentando grande flexibilidade na configuração de entradas e saídas, essa série de microcontroladores também permite a expansão dos pontos de E/S.

Figura 1-1. Microcontrolador da Série Grano

Características da Série Grano

UCPs da Série

As UCPs da série Grano são apresentadas em várias configurações de hardware, visando o uso mais adequado às diversas aplicações.

Código	Denominação
GR310	Microcontrolador 6ED e 4SD (Transistor)
GR316	Microcontrolador 10ED, 4SD (Transistor) e 2SD (Relé)
GR330	Microcontrolador 14ED, 8SD (Transistor) e 2SD (Relé)
GR350	Microcontrolador 14ED, 8SD (Transistor), 2SD (Relé), 2 Saídas Rápidas, Contador e Relógio (opcional)
GR351	Microcontrolador 14ED, 8SD (Transistor), 2SD (Relé), 2 Saídas Rápidas, Contador, Relógio (opcional) c/ Expansão
GR370	Microcontrolador 14ED, 8SD (Transistor), 2SD (Relé), 2 Saídas Rápidas, Contador, 4EA, 2SA, Termopar e Relógio (opcional)
GR371	Microcontrolador 14ED, 8SD (Transistor), 2SD (Relé), 2 Saídas Rápidas, Contador, 4EA, 2SA, Termopar e Relógio (opcional) c/ Expansão

Tabela 1-1 Modelos da Série Grano

Documentos Relacionados a este Manual

Para obter informações adicionais sobre a Série Grano, podem ser consultados outros documentos (manuais e características técnicas) além deste. Estes documentos encontram-se disponíveis na sua última revisão em <u>www.altus.com.br</u>.

Cada produto possui um documento denominado Característica Técnica (CT), onde encontram-se as características do produto em questão. Adicionalmente o produto pode possuir Manuais de Utilização (o código dos manuais são citados na CT).

Recomenda-se a consulta aos seguintes documentos como fonte de informação adicional:

- Características Técnicas de cada produto da Série
- Manual de Utilização do WebGate Plus PO9901 MU209691
- MasterTool Programming Manual de Utilização MU299025
- MasterTool Programming Manual de Programação MP399101.

Inspeção Visual

Antes de proceder à instalação, é recomendável fazer uma inspeção visual cuidadosa dos equipamentos, verificando se não há danos causados pelo transporte. Verifique se todos os componentes de seu pedido estão em perfeito estado. Em caso de defeitos, informe a companhia transportadora e o representante ou distribuidor Altus mais próximo.

CUIDADO:

Antes de retirar os módulos da embalagem, é importante descarregar eventuais potenciais estáticos acumulados no corpo. Para isso, toque (com as mãos nuas) em qualquer superfície metálica aterrada, antes de manipular os módulos. Tal procedimento garante que os níveis de eletricidade estática suportados pelo módulo não serão ultrapassados.

É importante registrar o número de série de cada equipamento recebido, bem como as revisões de software, caso existentes. Essas informações serão necessárias caso se necessite contatar o Suporte Técnico da Altus.

Suporte Técnico

Para entrar em contato com o Suporte Técnico da Altus em São Leopoldo, RS, ligue para +55-51-589-9500. Para conhecer os centros de Suporte Técnico da Altus existentes em outras localidades, consulte nosso site (<u>www.altus.com.br</u>) ou envie um email para <u>altus@altus.com.br</u>.

Se o equipamento já estiver instalado, tenha em mãos as seguintes informações ao solicitar assistência:

- os modelos dos equipamentos utilizados e a configuração do sistema instalado.
- o número de série do microcontrolador.
- a revisão do equipamento e a versão do software executivo, constantes na etiqueta afixada na inferior do produto.
- informações sobre o modo de operação do microcontrolador, obtidas através do programador MasterTool.
- o conteúdo do programa aplicativo (módulos), obtido através do programador MasterTool.
- a versão do programador utilizado.

Mensagens de Advertência Utilizadas neste Manual

Neste manual, as mensagens de advertência apresentarão os seguintes formatos e significados:

PERIGO:

Relatam causas potenciais, que se não observadas, *levam* a danos à integridade física e saúde, patrimônio, meio ambiente e perda da produção.

CUIDADO:

Relatam detalhes de configuração, aplicação e instalação que *devem* ser seguidos para evitar condições que possam levar a falha do sistema e suas consequências relacionadas.

ATENÇÃO:

Indicam detalhes importantes de configuração, aplicação ou instalação para obtenção da máxima performance operacional do sistema.

2. Descrição Técnica

Os microcontroladores da série Grano distinguem-se pelas seguintes características:

	GR310	GR316	GR330	GR350	GR351	GR370	GR371
Número de pontos de entrada digital	6	10	14	14	14	14	14
Número de pontos de saída transistor	4	4	8	8	8	8	8
Número de pontos de saída relé contato seco	0	2	2	2	2	2	2
Número de pontos de saída rápida	0	0	0	2	2	2	2
Contadores rápidos	0	0	0	1 de 24 bits			
Entrada de interrupção	1	1	1	1	1	1	1
Total de entradas analógicas	0	0	0	0	0	4	4
Entradas analógicas configuráveis como termopar	0	0	0	0	0	2	2
Saídas analógicas	0	0	0	0	0	2	2
Expansão para relógio de tempo real GR380	Não	Não	Não	Sim	Sim	Sim	Sim
Número máximo de módulos de expansão	0	0	0	0	1	0	1
Número máximo de pontos de E/S digitais com expansões	10	16	24	24	56	24	56
Protocolo MODBUS RTU escravo	Sim	Sim	Sim	Sim	Sim	Sim	Sim
Memória para programa aplicativo tipo Flash (Bytes)	8 K	8 K	16 K	32 K	32 K	32 K	32 K
Memória para programa aplicativo tipo RAM (Bytes)	8 K	8 K	16 K	32 K	32 K	32 K	32 K
Memórias retentivas (Bytes)	32	32	64	64	64	64	64
Memória total para operandos (Bytes)	2 K	2 K	8 K	16 K	16 K	16 K	16 K
Operando ponto flutuante	Não	Não	Não	Sim	Sim	Sim	Sim
Teclado	Sim	Sim	Sim	Sim	Sim	Sim	Sim
Interfaces Seriais	1x RS232	1x RS232	1x RS232	1x RS232	1x RS232	1x RS232	1x RS232
Arquitetura HARDFLEX®	Não	Não	Não	Sim	Sim	Sim	Sim
Software MasterTool Versão 3.51 ou posterior Programming MT4100 ou MT4000			Versão 3.60	ou posterior			

Tabela 2-1. Descrição dos Modelos

Notas:

• **Contadores:** o produto é fornecido com 1 (um) contador de 24 bits e 4 modos de contagem. No entanto, outras configurações podem sem implementadas pelas funções da arquitetura Hardflex ®, que são disponibilizadas sob consulta.

- Entradas do Contador: o contador compartilha suas entradas com as entradas digitais I1 a I6, sendo uma opção de configuração a alocação do ponto de entrada para a função de contador ou entrada digital.
- Saídas Rápidas: os modelos que comportam esta característica são fornecidos com a versão HARDFLEX GR900 embutida que implementa duas saídas em freqüência de 0 (zero) até 20 KHz. Estas saídas podem também ser configuradas com outras características pela instalação de outras configurações HARDFLEX. Em todos os casos, opcionalmente, essas saídas também podem ser utilizadas como saídas digitais comuns de baixa corrente.
- Entrada de Interrupção: esta entrada compartilha o borne com a entrada digital I0. Ao incluir o módulo E-020 no programa aplicativo, esta entrada será alocada para interrupção por borda positiva. Caso o módulo E-.020 não esteja incluído, esta entrada assumirá a função de entrada digital normal.
- Interface Serial RS232: estão disponíveis os sinais TX, RX, RTS e CTS
- **Relógio Tempo Real:** esta característica é habilitada a partir da instalação do módulo relógio GR380.
- **Módulos de Expansão:** os microcontroladores GR351 e GR371 permitem a expansão com outro microcontrolador destes modelos. Os dois possuem programa aplicativo (Ladder) distinto e efetuam a troca de operandos tipo %M, previamente definidos, via interface serial de alta velocidade. A arquitetura que define esta configuração é denominada CLONE. Verifique no capitulo de Configuração detalhes sobre o funcionamento.
- MasterTool: os módulos da série Grano podem ser programados em qualquer MasterTool, inclusive no MasterTool PL, com chave de software superior a 3.51.
- Arquitetura HARDFLEX: os produtos que a suportam são fornecido com a versão GR900 embutida. Outras versões, com soluções para diferentes aplicações são disponibilizadas para aquisição.

	GR310, GR316, GR330, GR350, GR351, GR370, GR371
LEDs de indicação de estado e diagnóstico	EX, PG, ER, DG, AI,TR
, .	Um LED por ponto de entrada e saída digital
Programação on-line	Sim
Tempo médio de processamento para 1024 instruções contato	1,6 ms
Canal serial RS232 (COM 1)	TX, RX, RTS e CTS
Número máximo de pontos de E/S analógicos	Limitado pelo número de canais analógicos disponíveis na UCP e módulos de expansão
Proteção Alimentação	Inversão de polaridade da alimentação
Circuito de cão-de-guarda	Sim
Configuração dos bornes	1 conector RJ45 para COM 1
	1 borne com mola para conexão da fiação de campo
Tensão de alimentação externa	19 a 30 Vdc incluindo ripple
Isolação da tensão de alimentação	Sem isolação
Consumo máximo	150 mA @ 24 Vdc
Potência dissipada com todas cargas ligadas	3,6 W
Normas atendidas	IEC 61131
Peso	200 g
Temperatura de operação	0 a 60 °C
Dimensões	99 x 116,6 x 61,8

Características Gerais Comuns

Tabela 2-2. Características Gerais Comuns

Entradas Digitais

	GR310, GR316, GR330, GR350, GR351, GR370, GR371
Тіро	entradas digitais 24 Vdc não isoladas tipo sink
Tensão de entrada 24 Vdc nominal	
	15 a 30 Vdc para estado 1
	0 a 5 Vdc para estado 0
Corrente de entrada	4,2 mA @ 24 Vdc
Impedância nominal de entrada	5,7 kΩ
Bornes de ligação	I0 a I7 (%E0), J0 a J5 (%E1) e I- (0 Vdc)
Tipo de entrada	Tipo 1, para chaves e sensores com 2 fios
Tempo de transição	2 ms (típico) @ 24 Vdc
Isolação com parte lógica	Sem isolação
Indicação de estado	Um LED por ponto de entrada

Tabela 2-3. Entradas Digitais

Notas:

As entradas digitais de I1 até I6 dos produtos GR350, GR351, GR370 e GR371 são entradas digitais rápidas, possuindo um filtro diferenciado que permite o chaveamento das mesmas até uma freqüência de 20kHz.

Saídas a Relé

	GR316, GR330, GR350, GR371		
Тіро	2 saídas digitais com relé, contato seco, normalmente aberto		
	3 A @ 5 a 30 Vdc		
Canacidada da comutação	0,5 A @ 48 Vdc		
	0,150 A @ 125 Vdc		
resistiva	1,5 A @ 125 Vac		
	1,5 A @ 240 Vac		
Resistência Máxima de Contato	100 mΩ .		
Isolação com a parte lógica	1500 Vac por 1 minuto, 250 Vac continuo		
Carga mínima para chaveamento	10 mA @ 12 V		
Bornes de ligação	R0 – R0 contato seco		
	R1 – R1 contato seco		
Vida útil esperada	10 x 10 ⁶ ciclos com carga nominal		
Tompos média de comutação	7,5 ms para fechar		
Tempos medio de comutação	8,5 ms para abrir		
Freqüência máxima de chaveamento da carga	0,5 Hz com carga nominal		
Indicação de estado	Um LED por ponto de saída		

Tabela 2-4. Saídas a Relé

Notas:

As saída a relé correspondem aos bits menos significativos do segundo octeto de saída.

A capacidade de comutação é especificada com os dispositivos de proteção descritos no Capítulo de Instalação.

Saídas a Transistor

	GR310, GR316, GR330, GR350, GR351, GR370, GR371
Тіро	saídas digitais transistorizadas, 24 Vdc, não isoladas, tipo source
	1 A com todos os pontos acionados
Corrente por ponto	2 A com apenas um ponto acionado por grupo de 4 pontos
Bornes de Ligação	T0 a T7 – primeiro octeto de saída
Impedância máxima de saída	200 mΩ
Tempo máximo de comutação	300 us
Freqüência máxima de chaveamento da carga	500 Hz
Isolação com parte lógica	Sem isolação
Proteções	Proteção térmica dos transistores de saída
Indicação de diagnóstico	Sobrecarga
Indicação de estado	Um LED por ponto de saída

Tabela 2-5. Saídas	a	Transistor
--------------------	---	------------

As 8 saídas a transistor são organizadas em dois grupos de 4 saídas, T0 a T3 e T4 a T7. A limitação de corrente especificada na tabela acima é dada por grupo. Por exemplo, se no grupo T0 - T3 existir apenas uma saída acionada, essa saída poderá fornecer até 2 A. Já se mais de uma saída estiver acionada, este limite passa a ser 1A por saída.

Saídas Digitais Rápidas

	GR350, GR351, GR370, GR371	
Тіро	2 saídas não isoladas tipo source	
Tensão de saída mínima	20 Vdc @ alimentação de 24 Vdc	
Modo da saída	Modo VFO (Variable Frequency Output)	
Corrente máxima de saída	16 mA source	
Borne de saída	F0 e F1 – correspondem as saídas HARDFLEX	
Freqüência de chaveamento	o 0 a 20 kHz	
Proteção	Curto Circuito contra 0 Vdc	
Isolação com parte lógica	Sem isolação	
Indicação de diagnóstico	Curto-circuito	

Tabela 2-6. Saídas Digitais Rápidas

Notas:

O tempo de subida do sinal das saídas rápidas é de 250ns e o tempo de descida é de aproximadamente 750ns para uma tensão de alimentação de 24V.

Recomenda-se a utilização de uma impedância de carga típica de 1,5 k Ω .

Como a frequência de chaveamento é de 20kHz, a largura mínima de um pulso gerada por essa saída é de 25us.

Estas saídas podem ser usadas por exemplo para:

- Controles de posição de motores de passo
- Interligação a blocos conversores F/V (freqüência/tensão) aumentando a capacidade de saídas analógicas

Além destas funções incluídas no produto, as saídas rápidas podem ser configuradas com funções especiais que modificam o comportamento do hardware a elas associado. Desta maneira é possível fornecer funções complexas de alta velocidade, sob forma de módulos função (disponível mediante consulta à Altus).

	GR350, GR351, GR370, GR371	
Тіро	contador rápido up/down de 24 bits	
Tensão de entrada	15 a 30 Vdc para estado 1 @ 24 Vdc	
	0 a 5 Vdc para estado 0 @ 24 Vdc	
Modos de contagem	4 modos de contagem	
Bornes de ligação	I1 a I6 – corresponde as entrada rápidas HARDFLEX – opcionalmente podem ser utilizadas como entradas normais sem filtro.	
Impedância nominal de entrada	5,7 kΩ	
Isolação com parte lógica	Sem isolação	
Freqüência de contagem	0 a 20 kHz	

Entradas de Contagem Rápida

Tabela 2-7. Entradas de Contagem Rápida

Notas:

Além do contador incluído no produto, as entradas rápidas podem ser configuradas com funções especiais que modificam o comportamento do hardware a elas associado. Desta maneira é possível fornecer funções complexas de alta velocidade, sob forma de módulos função. A funcionalidade destas entradas podem incluir:

- Contagens rápidas especiais
- Medida de tempo entre entradas
- Conversão de freqüência para valor digital, aumentando a capacidade de medida analógica via blocos conversores V/F (Tensão/Freqüência)
- Estão disponíveis 6 entradas digitais rápidas, sendo até 4 utilizadas na configuração standard (HardFlex GR900), como contador 24 bits e as outras 2 ficando reservada para outras funções customizadas. As entradas rápidas compartilham os bornes com as entradas digitais comuns, sendo alocadas conforme necessidade da aplicação. Quando não configuradas, podem ser utilizadas como entradas digitais normais.

ATENÇÃO:

Consulte o documento de Características Técnicas do HardFlex GR9xx para maiores informações quanto as especificações de contadores rápidos e saídas rápidas.

Entradas Analógicas de Tensão

	GR370, GR371		
Тіро	entradas analógicas não isoladas		
Precisão	\pm 0,2 % do fundo de escala @ 25 $^{\circ}\text{C}$ \pm 0,01% / $^{\circ}\text{C}$ do fundo de escala		
Resolução do conversor	12 bits linearidade ga	rantida	
Impedância de entrada	1,3 M Ω (nas entradas	de tensão) bornes A2	e A3
	13 k Ω (nas entradas de tensão com opção para termopar) bornes A0 e A1.		
Filtragem	2 ms, 150 ms, 1.2 s, 10 s		
Tensão máxima sem dano	+12 V		
Isolação com parte lógica	Sem isolação		
Bornes de ligação	A0 e A- , A1 e A-, A2 e A- , A3 e A-		
Crosstalk DC até 100 Hz	-72 dB min		
Escala	Faixa	Contagem	Resolução
	0 a 10 Vdc 0 a 30.000 2,6 mV		
Folga da Escala de Medição	até 5% superior ao limite máximo da faixa de medição		
Tempo de atualização	10 ms		
Diagnóstico	over range		

Tabela 2-8. Entradas Analógicas

Notas:

Duas entradas de medição de tensão podem ser utilizadas para medição de temperatura com termopares.

A filtragem é parametrizada por software nos valores disponíveis. É implementada por software e simula a constante de tempo de um filtro analógico RC.

Entradas Analógicas Corrente

A medição de corrente é implementada pela instalação de um resistor de 500 Ohms / 2 Watt em paralelo com a entrada de tensão. Este é montado externamente em paralelo com o sinal de entrada de tensão entre o borne de entrada (Ax) do sinal de tensão x , e o borne (A-) comum a todas entradas analógicas. Nesta topologia o mesmo funcionará como conversor de corrente para tensão. A entrada de sinal analógico utilizada deve ser configurada para medição de tensão. Vide o capítulo de instalação para mais informações.

Entradas Termopar

	GR370, GR371			
Тіро	entradas	entradas tipo termopar.		
Precisão	± 0,4 % d de escala +/- 5 °C d	\pm 0,4 % do fundo de escala @ 25 °C \pm 0,015% / °C do fundo de escala +/- 5 °C de compensação da temperatura ambiente		
Resolução	12 bits lin	earidade garantida		
Unidade de medida	°C ou °F	(configurável)		
Impedância de entrada	13 kΩ			
Tensão máxima contínua sem danos	+12 Vdc	+12 Vdc		
Filtragem	400 ms, 1	I s ou 10 s configur	ável por software	
Bornes de ligação	A0 e A- , A1 e A-			
Compensação de junta fria	Sensor de temperatura			
	Faixa de compensação: temperatura ambiente a 80 °C			
	Precisão de \pm 5 °C			
Crosstalk	-72 dB min			
Tempo de atualização	100 ms			
Isolação com parte lógica	Sem isolação			
Temperatura inicial de leitura	Ti = temp	eratura ambiente		
Faixa de medição ⁰C	Modelo	Temperatura	Contagem	Resolução
Curva ITS-90	J	Ti a 750 °C	0 a 7500	0,1 °C
	К	Ti a 1250 °C	0 a 12500	0,1 °C
Faixa de medição ^o F	Modelo	Temperatura	Contagem	Resolução
Curva ITS-90	J	Ti a 1382 ºF	320 a 13820	0,1 °F
	K Ti a 2282 °F 320 a 22820 0,1 °F			
Folga de escala	Até 5% superior à faixa de medição			
Diagnósticos	Termopar aberto			
	over range			
	Temperatura ambiente acima de 65 ºC			

Tabela 2-9. Entradas Termopar

Notas:

O termopar deve ser do tipo isolado, sem contato com a carcaça da máquina onde está alojado. Recomenda-se o uso de bainhas ou miçangas cerâmicas quando necessário.

O valor mínimo da faixa de temperatura é a temperatura ambiente, portanto superior a zero °C.

O Borne A- deve ser utilizado exclusivamente com entrada analógica na polaridade negativa do sinal.

Os Bornes A0, A1, A2 e A3 devem ser conectados ao potencial positivo do sinal de tensão.

Temperatura: o termopar deverá ser conectado apenas nas entradas A0 - A- e A1 - A-. Os bornes A-devem ser ligados a polaridade negativa.

O limite inferior de contagem é determinado pela temperatura ambiente absoluta de zero °C.

Saídas Analógicas

	GR370, GR371		
Тіро	saídas analógicas não isoladas		
Procisão	± 0,2 % do fundo de escala @ 25 °C		
Frecisao	$\pm0,01\%$ / ^{o}C do fundo	o de escala	
Bornes de Ligação	P0 e P- , P1 e P-		
Escala	Faixa	Contagem	Resolução
	0 a 10 Vdc	0 a 30.000	2,6 mV
Corrente de saída	5 mA típico com resistência de carga de 2 k Ω		
Resolução do conversor	12 bits monotonicidade garantida		
Tempo de atualização	12 ms		
Folga de escala	Mínima de 4%		
Isolação com parte lógica	Sem isolação		
Proteção	Curto Circuito com 0 Volts.		

Tabela 2-10. Saídas Analógicas

Módulo Relógio

O módulo relógio GR380 pode ser acoplado ao modelos que suportam esta características, sendo um item opcional e fornecido separadamente.

	GR380
Тіро	Relógio para contagem de segundo, minuto, hora, mês, dia do mês, dia da semana e ano
Resolução	Um segundo
Ano bissexto	Compensação automática até o ano 2100
Erro máximo	Um minuto por mês, com módulo submetido a ambiente dentro da faixa de temperatura de operação.
Backup do relógio	Bateria de lítio
Durabilidade da bateria	4 anos ou mais @ 25 °C
Temperatura de operação	0 a 60 °C
Troca-quente	Sim

Tabela 2-11. Módulo Relógio

Notas:

Ao inserir o módulo relógio no microcontrolador, o usuário deve realizar o ajuste do relógio caso o mesmo não tenha sido previamente ajustado.

Arquitetura Interna

Esta seção apresenta os elementos da arquitetura interna dos microcontroladores da Série Grano e as 3 figuras a seguir introduzem arquitetura da família, no formato de diagrama em blocos. Logo após as figuras, cada um dos elementos é descrito de forma simplificada.

Figura 2-1. Arquitetura do GR310, GR316 e GR330

Figura 2-2. Arquitetura do GR350 e GR351

Figura 2-3. Arquitetura do GR370 e GR371

Processador

O processador é o responsável pela execução do programa aplicativo, baseado nos valores dos operandos de entrada e gerando os valores dos operandos de saída. Também processa os comandos recebidos pelos canais de comunicação serial e executa diversas outras tarefas auxiliares ao processamento do programa aplicativo.

As tarefas do processador são realizadas por um programa gravado permanentemente em memória FLASH – denominado programa executivo –, que corresponde ao sistema operacional do CP. Além de gerenciar a UCP, o programa executivo contém uma biblioteca de instruções utilizadas pelo programa aplicativo. Essas instruções são relacionadas no Manual de Programação do MasterTool.

Memória RAM e FLASH

A memória RAM permite a escrita e a leitura de dados, armazenando o programa aplicativo e os valores dos operandos da UCP.

A memória FLASH serve para manter o programa executivo, aplicativo e outras informações quando o equipamento está desenergizado. Essa memória permite a regravação de dados mas não precisa de energia para a sua manutenção.

Interface de Comunicação COM 1

Os microcontroladores da Série Grano possuem um canal de comunicação, padrão RS-232 (COM1). Todos os CPs possuem o protocolo ALNET I v. 2.0 escravo para realizar a comunicação entre o CP e

os equipamentos mestres (programadores, supervisórios, etc.), acrescentando ainda ao mesmo canal serial suporte ao protocolo MODBUS RTU escravo para alguns modelos de Grano.

Indicação Visual

Os microcontroladores Grano possuem LEDs para indicação do estado das entradas e saídas, do modo de operação do microcontrolador e também para diagnósticos.

Conversão AD e DA

Esse conjunto é responsável por traduzir grandezas analógicas em grandezas digitais e vice-versa, que possam ser entendidas e manipuladas pelo processador. É desta forma que são lidas as entradas de tensão e termopar, e atualizadas as saídas de tensão.

Circuitos de Entrada e Saída

Esses circuitos fazem a adaptação dos sinais, tanto digitais quanto analógicos, dos níveis de tensão externa ao CP para os níveis necessário à manipulação interna. É também nesse estágio que se encontram proteções que visam garantir a integridade e operacionalidade do CP em caso de distúrbios externos, como transientes de tensão, curto-circuito ou corrente elevada.

Fonte de Alimentação

Os microcontroladores da Série Grano possuem fonte de alimentação do tipo não isolada. É embutida e compatível com a tensão de 24 Vdc (de 19 a 30 Vdc, incluindo ripple). É a parte do circuito responsável por garantir uma alimentação de qualidade, para o correto funcionamento de todos os circuitos interno. Esta fonte de alimentação não provém tensão e corrente para os pontos de saída, com exceção dos sinais de saída analógico.

Controle do Barramento de Expansão

O controle do barramento de expansão é responsável pela comunicação com módulos de expansão e do módulo relógio. É implementado em hardware, permitindo a comunicação em alta velocidade com protocolo proprietário. O endereçamento dos módulos externos é efetuado automaticamente, dispensando chaves de endereçamento.

Barramento de Expansão

É através do barramento de expansão que os módulos de expansão e o módulo relógio são conectados, permitindo que o controle do barramento de expansão tenha acesso a tais módulos.

Relógio

O relógio é um dos módulos que pedem ser conectados ao barramento de expansão, permitindo ao processador a medição de tempos e acesso a um calendário.

Introdução à Arquitetura Hardflex

A arquitetura HardFlex se caracteriza por proporcionar extrema flexibilidade e capacidade de reprogramação de funções de hardware em alguns dos controladores programáveis da nova Série Grano. Essa arquitetura permite que sejam modificadas ou desenvolvidas funções específicas para suprir certas necessidades dos usuários, facilitam a comunicação entre o CP com HardFlex e outros componentes de automação nos mais variados padrões de comunicação existentes no mercado. Há máquinas, sensores e transdutores, que apesar de desempenharem a mesma função têm padrões diferentes de comunicação, variando em função de cada fabricante.

Figura 2-4. Arquitetura HardFlex

Nesse sentido, a Arquitetura HardFlex pode contribuir para facilitar a comunicação dos sistemas de automação, onde uma função que decodifica ou codifica determinado padrão é instalada no módulo CP. Um exemplo prático dessa facilidade seria o caso de um usuário que adquiriu um determinado transdutor para controle de posição, supondo que esse transdutor fosse o que melhor se adapta ao motor usado no seu processo de fabricação, mas o transdutor gera um sinal de saída com pulsos obedecendo a um padrão não muito comum no mercado, ou seja, o CP que tem capacidade de decodificar esse padrão poderá ser raro, ter custo elevado, ou mesmo, poderá ser necessário projetar circuitos intermediários capazes de condicionar esse sinal de maneira que CPs mais simples possam controlar o motor. Utilizando CPs Grano de pequeno porte com E/S integradas é possível fazer a reprogramação do hardware de maneira que esse padrão seja decodificado e processado pela CPU, existindo também a possibilidade de serem desenvolvidas funções especiais de saídas rápidas PWM (Pulse Wide Modulation), PTO (Pulse Train Output), entre outras, que acionem este tipo específico de motor, fechando-se o laço de controle.

Veja mais detalhes no capítulo Características da Arquitetura HardFlex.

Sistemas de Proteção

Os microcontroladores da Série Grano contam com os sistemas de proteção, descritos a seguir.

Cão-de-guarda

O circuito de cão-de-guarda (ou watchdog) monitora continuamente a execução das funções do CP. Este sistema de proteção visa detectar falhas no produto e falhas na programação de diagramas de reles e blocos lógicos. Situações como bobinas de salto negativas, chamadas de módulos Procedimento e Função recursivas, ou outras situações que ocupem um tempo excessivo (muito maior que o tempo máximo de varredura, configurado via MasterTool) dentro do programa aplicativo, fazem com que o cão-de-guarda atue sobre o microcontrolador.

O circuito de cão-de-guarda, quando acionado, desativa o processador, desenergiza os pontos de saída e acende todos os LEDs de modo de operação (EX, PG, DG, ER, AL e CM) no painel frontal do CP, garantindo um procedimento de falha seguro. Este processo, em caso de detecção de falha, leva de 1 a 2 segundos para atuar.

Proteção contra Falta de Energia

Os CPs possuem um circuito sensor que verifica continuamente o nível da tensão de alimentação. Em caso de falha na alimentação, um sinal é enviado à UCP, cuja operação é interrompida para a execução de uma rotina que finaliza o funcionamento da UCP de modo seguro, desativando as saídas e salvando os dados retentivos. O circuito de falta de energia garante a alimentação das UCPs por tempo suficiente para que esta rotina seja executada.

Quando a tensão de alimentação cai abaixo da tensão de alimentação mínima, a rotina é executada, e então é aguardado pelo software até que a fonte volte a sua tensão nominal. Caso a fonte fique com a tensão de alimentação baixa, o software fica travado, aguardando a caída ou restauração da fonte. Caso a fonte caia abaixo de 5V, o microprocessador é resetado, voltando a funcionar apenas se a fonte voltar à tensão nominal. Caso a fonte volte a sua tensão nominal, sem cair abaixo de 5V, o software automaticamente é resetado, porém esta situação é indicada em uma flag de diagnóstico, sinalizando que houve uma queda na fonte de alimentação.

Esse procedimento é importante para garantir que uma unidade remota não fique travada ao ocorrerem quedas parciais de energia.

Canal Serial

Os controladores GR3xx possuem alta capacidade de comunicação, permitindo a interligação a vários dispositivos com protocolo ALNET I V2.0 e MODBUS. As velocidades de comunicação possíveis para o canal serial são mostradas na tabela abaixo:

	Velocidades (bps)
ALNET I	9600, 4800, 2400, 1200, 600, 300
MODBUS	19200, 9600, 4800, 2400, 1200, 600, 300

Tabela 2-12. Baud-rates permitidos no canal serial

No canal serial, é possível interligar equipamentos através de modens ou rádio modens, que utilizam os sinais RTS e CTS. Para isso, é preciso habilitar o uso desses sinais no momento de configurar a porta serial no programador MasterTool.

Esses sinais são utilizados para controlar a comunicação entre um equipamento de transmissão de dados (ETD), como um CP ou microcomputador, e um equipamento de comunicação de dados (ECD), como um modem ou rádio modem.

Cada um desses sinais possui uma função específica:

- RTS: Request To Send. É uma saída no ETD e uma entrada no ECD. O ETD liga a saída, solicitando autorização ao ECD para transmitir. Em um ECD do tipo rádio modem, o RTS normalmente ativa o PTT (push-to-talk) do rádio, iniciando a geração da portadora. Antes de ligar o RTS, o ETD deve aguardar que o CTS esteja inativo.
- CTS: Clear To Send. É uma entrada no ETD e uma saída no ECD. O ECD liga esta saída em resposta ao RTS do ETD, para sinalizar ao ETD que este já pode transmitir. Normalmente, o CTS é ligado pelo ECD algum tempo depois (delay fixo ou configurável) de o RTS ser ativado pelo ETD. Este delay deve ser suficiente para que a portadora, ativada pelo RTS, seja detectada no lado do ECD receptor.

Adicionalmente, os microcontroladores da Série Grano podem ser interligados a redes Ethernet, por meio do PO9901- WebGate Plus, comunicando-se com toda a linha de controladores programáveis Altus, interfaces e supervisórios.

Alguns exemplos de conexão são mostrados a seguir:

Conexão com Softwares de Supervisão ou IHMs

Figura 2-5. Conexão com IHMs

Conexão como Remota MODBUS

Figura 2-6. Rede MODBUS

Para ligação como demonstrado acima em rede RS-485, recomenda-se o uso do AL-1413, para converter a interface RS-232 do microcontrolador Grano para o padrão RS-485.

CUIDADO:

Numa rede RS-485, as duas extremidades da rede devem ter terminações acionadas. O conversor AL-1413 possui a terminação integrada, podendo ser diretamente acionada através de chaves. Consultar a CT deste produto para maiores detalhes.

Conexão com Rede Ethernet Industrial

Os microcontroladores GR3xx podem ser interligados a rede Ethernet, desempenhando as funções de controle ou remota de aquisição de dados. O controlador pode desta maneira ser acessado por softwares de supervisão ou diretamente por browsers, permitindo a supervisão e comando remotos. É possível também a comunicação entre controladores para intertravamento via rede.

Figura 2-7. Rede Ethernet

Desempenho das UCPs

O desempenho das UCPs da série Grano depende dos seguintes itens:

- Comunicação serial
- Ladder de interrupção (E-*.018 e E-*.020)
- Processamento da área de troca no modo Clone (somente GR351 e GR371)

A seguir será analisado cada um destes itens.

Comunicação serial

Uma aplicação que utilize comunicação serial (ALNET I escravo ou MODBUS escravo) terá um aumento do tempo de ciclo.

Para calcular o tempo de ciclo com o uso da comunicação será utilizado uma tabela com as velocidade de comunicação:

Velocidades (bps)	Tempo entre bytes (aprox.)	
19200	0,5 ms	
9600	1 ms	
4800	2 ms	
2400	4 ms	
1200	8 ms	
600	16 ms	
300	300 ms	

Tabela 2-13. Tempos entre bytes de comunicação

Para determinar o aumento da comunicação é necessário usar a seguinte fórmula:

```
TC = TCss + ((TCss / TempoBytes) * 0,065)
```

Aonde:

TC: tempo de ciclo do CP utilizando comunicação serial

TCss: tempo de ciclo do CP

TempoBytes: é o tempo extraída da Tabela 2-13 que depende da velocidade de comunicação serial

0,065: este valor médio que o sistema operacional usa para processa cada byte de comunicação.

O tempo **TC** que representa o tempo de ciclo máximo obtido através do Mastertool Programming no Estado de Informações.

Ladder de interrupção (E-*.018 e E-*.020)

Os módulos de interrupção E-*.018 e E-*.020 tem seu tempo de execução variável, como é um módulo feito pelo usuário, dependendo exclusivamente das instruções colocadas no módulo.

O módulo E-*.018 é executado ciclicamente, num período definido pelo usuário no módulo de configuração C-*.000 (50 ms, 25 ms, 10 ms, 5 ms ou 2,5 ms).

O módulo E-*.020 é executado quando ocorre apartir de uma borda de subida na entrada digital IO.

Processamento da área de troca no modo Clone (somente GR351 e GR371)

As fórmulas abaixo podem ser usadas para determinar os tempos de ciclo do escravo e do mestre em função do tamanho da área de troca de dados:

 $\mathbf{Tm} = \mathbf{Tcm} + 2 \ge \mathbf{K}$

 $Te = (Tce \ge Tm) / (Tm - K)$

onde:

Tcm: tempo ciclo do mestre sem escravo declarado no barramento

- Tce: tempo ciclo do escravo sem mestre presente (com as saídas habilitadas, ou seja, com um CP normal conectado a esquerda)
- **Tm**: tempo de ciclo do mestre com um escravo declarado

Te: tempo de ciclo do escravo com mestre presente

 $\mathbf{K} = 1,5$: constante p/ 16 bytes de área de dados

K = 11,7: constante p/ 128 bytes de área de dados

Aplicando a fórmula e substituindo o valor de K baseado no tamanho da área de troca.

Aplicação do Usuário

O tempo da aplicação pode ser calculado utilizando as tabela de tempos das principais instruções como referência, na qual informa qual o tempo médio de cada instrução dependendo tipo de operando.

Instrução	Operandos	Tempo (us)
	%A	326,0
	%D	896,0
	%E	326,0
	%F	896,0
	%M	464,0
	%M*A	330,0
	%M*D	904,0
	%M*E	330,0
CAB	%M*F	904,0
CAB	%M*M	470,0
	%M*S	330,0
	%M*TD	904,0
	%M*TF	904,0
	%M*TM	904,0
	%S	326,0
	%TD	904,0
	%TF	904,0
	%ТМ	470,0
	%A -> %A	296,0
	%D -> %D	900,0
	%D -> %TD	282,0
	%E -> %E	296,0
	%F -> %F	904,0
	%F -> %TF	906,0
	%M -> %M	492,0
MOB	%M -> %TM	496,0
	%S -> %S	296,0
	%TD -> %D	274,0
	%TD -> %TD	274,0
	%TF -> %F	906,0
	%TF -> %TF	910,0
	%TM -> %M	496,0
	%TM -> %TM	505,0

Blocos de 100 operandos c/ 100 operandos por varredura

Instrução	Operandos	Tempo (us)
	%AXXXX -> %DXXXXbX	37.0
	%AXXXX -> $%$ MXXXXbX	37.0
		47.0
	70 AAAAAAA ~ 70 AAAAAAAA	47,0
	%AXXXX.X ->%DXXXX.X	47,0
	%AXXXX.X ->%FXXXX.X	48,0
	%AXXXX.X ->%MXXXX.X	47,0
	%DXXXX.X ->%AXXXX.X	47,0
	%DXXXX.X ->%DXXXX.X	48,0
	%DXXXXX->%FXXXXX	49.0
		47.0
		27.0
		37,0
	%DXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	40,0
	%DXXXXbX -> %MXXXXbX	39,0
	%DXXXXnX -> %AXXXXnX	46,0
	%DXXXXnX -> %DXXXXnX	47,0
	%DXXXXnX -> %FXXXXnX	47.0
	%DXXXXnX -> $%$ MXXXXnX	47.0
	%DXXX w X -> $%$ DXXX w X	38.0
		30,0
		39,0
	%DXXXXWX -> %IVIXXXX	37,0
	%FXXXX.X ->%AXXXX.X	48,0
	%FXXXX.X ->%DXXXX.X	48,0
	%FXXXX.X ->%FXXXX.X	49,0
	%FXXXX.X ->%MXXXX.X	48.0
	%EXXXbX -> %AXXXX	37.0
		40.0
		40,0
		40,0
	%FXXXXnX -> %AXXXXnX	47,0
	%FXXXXnX -> %DXXXXnX	47,0
	%FXXXXnX -> %FXXXXnX	49,0
MOP	%FXXXXnX -> %MXXXXnX	47,0
	%FXXXXwX -> %DXXXXwX	39.4
	%EXXXwX -> %EXXXwX	40.0
		28.0
		30,0
	%KD ->%DXXXXWX	32,0
	%KD ->%FXXXXwX	33,0
	%KM ->%AXXXX.X	38,0
	%KM ->%AXXXXnX	37,0
	%KM ->%DXXXX.X	38,0
	%KM ->%DXXXXbX	33.0
		37.0
		22.4
		JZ,4
		38,U
	%KM ->%FXXXXnX	38,0
	%KM ->%FXXXXwX	33,0
	%KM ->%MXXXX.X	38,0
	%KM ->%MXXXXbX	33,0
	%KM ->%MXXXXnX	37.0
	%MXXXX -> %DXXXXw/X	37.0
		37 /
		47.0
		47,0
	%MXXXX.X ->%DXXXX.X	47,0
	%MXXXX.X ->%FXXXX.X	48,0
	%MXXXX.X ->%MXXXX.X	47,0
	%MXXXXbX -> %AXXXX	37.0
	%MXXXXbX -> %DXXXXbX	39.0
	%MXXXXhX -> %MXXXXhX	30.0
		46.0
		40,0
	%MXXXXnX -> %DXXXXnX	47,0
	%MXXXXnX -> %FXXXXnX	47,0
	%MXXXXnX -> $%$ MXXXXnX	46.0

Instrução	Operandos	Tempo (us)
	%A -> %A	34,8
	%A -> %D	38,8
	%A -> %M	36,0
	%A -> %M*A	38,4
	%A -> %M*D	344,0
	%A -> %M*M	41,2
	%D -> %A	38,8
	%D -> %D	41,6
	%D -> %M	40,4
	%D -> %M*A	42,0
	%D -> %M*D	45,6
	%D -> %M*M	44,8
	%F -> %F	41,6
	%F -> %M	68,0
	%F -> %M*F	274,0
	%F -> %M*M	72,4
	%M -> %A	37,0
	%M -> %D	40,4
	%M -> %F	45,6
	%M -> %M	38,0
	%M -> %M*A	40,4
	%M -> %M*D	44.4
	%M -> %M*F	81.0
	%M -> %M*M	42.8
MOV	%M*A -> %A	39.2
	%M*A -> %D	42.4
	%M*A -> %M	40.4
	%M*A -> %M*A	42.4
	%M*A -> %M*D	46.8
	%M*A -> %M*M	44.8
	%M*D -> %A	43.2
	%M*D -> %D	45.6
	%M*D -> %M	44.8
	%M*D -> %M*A	46.8
	%M*D -> %M*D	49.6
	%M*D -> %M*M	49.4
	%M*F -> %F	46.0
	%M*F -> %M	60.0
	%M*F -> %M*F	50.8
	%M*F -> %M*M	55.2
c.	<u>/οινι ι -> /οινι ινι</u> %Μ*Μ -> %Δ	41.2
	%M*M -> %D	45.0
	%M*M -> %F	49.6
	<u>06M*M -> %M</u>	43,0
		42,0
	2/01V1 IV1 -> 2/01V1 A 0/ M*M > 0/ M*D	44,0
		43,0 54 A
		04,4 47.0
		41.7

Instrução	Operandos	Tempo (us)
	%D -> %M*TD	46,0
	%D -> %TD	58,8
	%F -> %M*TF	47,6
	%F -> %TF	59,0
	%KD -> %M*TD	41,0
	%KD -> %TD	52,4
	%KF -> %M*TF	41,2
	%KF -> %TF	52,8
	%KM -> %M*TM	35,6
	%KM -> %TM	50,0
	%M -> %M*TM	41,0
	%M -> %TM	53,6
	%M*D -> %M*TD	51,0
	%M*D -> %TD	62,8
мот	%M*F -> %M*TF	52,8
IVIOT	%M*F -> %TF	64,0
	%M*M -> %M*TM	44,4
	%M*M -> %TM	57,2
	%M*TD -> %D	61,6
	%M*TD -> %M*D	62,8
	%M*TF -> %F	63,2
	%M*TF -> %M*F	64,0
	%M*TM -> %M	55,2
	%M*TM -> %M*M	56,4
	%TD -> %D	57,6
	%TD -> %M*D	58,4
	%TF -> %F	57,6
	%TF -> %M*F	60,0
	%TM -> %M	51,6
	%TM -> %M*M	52.4

Tabela 2-14. Tempos das Instruções de Movimentação

Instrução	Operandos	Tempo (us)
	%A	27,0
	%D	29,0
	%E	28,0
	%F	29,0
	%KD	24,0
	%KF	24,0
	%KM	23,0
CAR	%M	28,0
	%M*A	30,0
	%M*D	34,0
	%M*E	31,0
	%M*F	34,0
	%M*M	32,6
	%M*S	31,0
	%S	28,0

Instrução	Operandos	Tempo (us)
	%E > %A	32.0
-	%E > %D	31.4
-		70.0
-	%E > %F	79,0
	%E > %M	33,0
	%E > %M*A	35,0
	%E > %M*D	40,6
	%E > %M*F	83,0
	%E > %M*M	38,0
	%M > %A	32.0
	%M > %D	37.0
	0/M > 0/E	79.0
		70,0
-		33,0
	%M > %M^A	35,4
MAIOR	%M > %M*D	40,6
	%M > %M*F	82,0
	%M > %M*M	38,0
	%F > %A	40,6
	%E > %E	38.2
	%E > %M	43.0
-	%F \ %M*A	40,0
-		44,0
	%F > %IVI F	42,2
	%F > %M*M	47,0
	%D > %A	32,0
	%D > %D	37,0
	%D > %M	34,0
	%D > %M*A	35.4
	%D > %M*D	40.6
-	%D > %M*M	37.8
		37,0
-	<u>%E < %A</u>	30,6
	%E < %D	35,8
	%E < %F	77,8
	%E < %M	32,2
	%E < %M*A	34,6
	%E < %M*D	40,6
	%E < %M*F	82.2
	%E < %M*M	36.6
	<u>%</u> M < %Δ	31.0
		31,0
		30,0
	<u>%IVI < %F</u>	//,0
	%M < %M	32,6
	%M < %M*A	34,6
MENOD	%M < %M*D	40,2
WENOR	%M < %M*F	81,4
	%M < %M*M	36.6
	%F < %A	72.6
-	%F > %F	28.0
-		30,2
_		12,0
	%F < %M*A	76,2
	%F < %M*F	42,2
	%F < %M*M	78,2
	%D < %A	31,4
	%D < %D	36.2
	%D < %M	33.0
	%D < %M*A	35.0
-		30,0
		40,0
	%D < %M*M	37.4

Instrução	Operandos	Tempo (us)
DIV	%F/%F=%F	265,0
DIV	%F/%M=%F	304,0
DIV	%M/%M=%F	332,0
DIV	%M/%M=%M	60,0
MUL	%Fx%F=%F	123,0
MUL	%Fx%F=%M	132,0
MUL	%Fx%M=%F	164,0
MUL	%Fx%M=%M	176,0
MUL	%Mx%M=%F	208,0
MUL	%Mx%M=%M	56,0
SOM	%D+%D=%D	47,0
SOM	%F+%F=%F	140,0
SOM	%F+%F=%M	152,0
SOM	%F+%M=%F	172,0
SOM	%F+%M=%M	184,0
SOM	%M+%M=%F	196,0
SOM	%M+%M=%M	48,0
SUB	%D-%D=%D	57,0
SUB	%F-%F=%F	150,0
SUB	%F-%F=%M	152,0
SUB	%F-%M=%F	180,0
SUB	%F-%M=%M	184,0
SUB	%M-%M=%F	204,0
SUB	%M-%M=%M	56,0

Tabela 2-16. Tempos das Instruções Aritméticas

Caso a instrução esteja desabilitada, cada uma gasta 15 us.

Para os contatos toma-se como referência o temos de 1600 us para 1024 instruções de contato.

A aplicação do usuários (programa) interfere diretamente na atualização do dado na CPU, quanto maior a aplicação maior será o tempo entre duas atualizações de E/S, assim para que melhore os tempos de atualização caso seja necessário utilizar uma das seguintes opções:

- aplicação seja menor que o Tempo de Resposta dos Módulos no Barramento Local
- utilizar a F-AES.087 em um Módulo de Interrupção de Tempo (E-*.018)
- utilizar a F-AES.087 em pontos dentro do programa para atualizar os dados

ATENÇÃO:

O uso da F-AES.087 modifica os valores dos operandos de E/S antes que o processamento do programa aplicativo seja concluído, caso o usuário responsável pela programação não considerar esta característica na aplicação, isto pode gerar comportamentos indesejados nos resultados do programa.

ATENÇÃO:

Não é recomendado o uso do comando de forçamento de pontos de E/S quando a aplicação contiver a função F-AES.087, resultando em alterações dos valores dos pontos.

Processamento de Interrupções

Interrupções são processos executados fora do ciclo normal do microcontrolador, a Série Grano possui as seguintes interrupções:

- Interrupção de Tempo (E-*.018)
- Interrupção Externa (E-*.020)
- Interrupção de Serial

Estes processos permitem a UCP um tempo de resposta mais rápido e maior precisão em operações internas.

Interrupção de Tempo (E-*.018)

A interrupção de tempo E018 permite ao usuário que uma parte de sua aplicação seja executada com intervalos de tempo constantes (50ms, 25ms, 10ms, 5ms, 3.125ms e 2.5ms).

Para auxiliar em aplicações que necessitem tempo de resposta rápido, utiliza-se dentro da E018 a função F-AES.087, que permite que os pontos de E/S sejam atualizados independente do laço de execução principal (E-*.001).

PERIGO:

Caso a aplicação utilize o módulo de Interrupção de Tempo (E-*.018), este módulo NÃO será executado durante a operação de Compactação de RAM.

Interrupção Externa (E-*.020)

A interrupção externa E020 é acionada a partir de uma borda de subida na entrada digital I0. Ao incluir o módulo E-020 no programa aplicativo, esta entrada será alocada para interrupção, sendo chamado a cada borda gerada na entrada I.

Para auxiliar em aplicações que necessitem tempo de resposta rápido, utiliza-se dentro da E020 a função F-AES.087, que permite que os pontos de E/S sejam atualizados independente do laço de execução principal (E-*.001).

PERIGO:

Caso a aplicação utilize o módulo de Interrupção de Tempo (E-*.020), este módulo NÃO será executado durante a operação de Compactação de RAM.

Interrupção Serial

Esta interrupção não é manipulada pelo usuário e sim pela UCP. Ela garante que ao ocorrer uma comunicação através de uma porta serial os bytes recebidos/transmitidos são processados de forma correta a ponto de não ocorrer falhas na comunicação.

Após receber uma comunicação esta fica armazenado até que o laço de execução (E-*.001) seja terminado.

ATENÇÃO:

A UCP processa 01 (uma) comunicação por laço de execução para cada canal serial que esteja usando ALNET I ou MODBUS. Para protocolos operados por módulos F, o processamento depende de quando é executada a sua chamada.

Dimensões Físicas

Dimensões do produto instalado no trilho TS35 em milímetros.

Figura 2-8. Dimensões Físicas

Dados para Compra

Itens Integrantes

A embalagem do produto contém os seguintes itens:

- Controlador Programável
- Guia de Instalação •
Código dos Produtos

Código	Denominação
GR310	Microcontrol 6ED, 4SD (Transistor)
GR316	Microcontrol 10ED, 4SD (Transistor) e 2 SD (Relé)
GR330	Microcontrol 14ED, 8 SD (Transistor) e 2 SD (Relé)
GR350	Microcontrol 14ED, 8 SD (Transistor), 2 SD (Relé), 2 Saídas Rápidas, Contador e Relógio (Opcional)
GR351	Microcontrol 14ED, 8 SD (Transistor), 2 SD (Relé), 2 Saídas Rápidas, Contador e Relógio (Opcional) c/ Expansão
GR370	Microcontrol 14ED, 8 SD (Transistor), 2 SD (Relé), 2 Saídas Rápidas, Contador, 4 EA, 2SA Termopar e Relógio (Opcional)
GR371	Microcontrol 14ED, 8 SD (Transistor) , 2 SD (Relé), 2 Saídas Rápidas, Contador, 4 EA, 2SA Termopar e Relógio (Opcional) c/ Expansão

Os seguintes códigos devem ser usados para compra do produto:

Tabela 2-17. Descrição dos microcontroladores da Série Grano.

Produtos Relacionados

Os seguintes produtos devem ser adquiridos separadamente quando necessário:

Código	Denominação
AL-1714	Cabo RJ45-RJ45
AL-1715	Cabo RJ45-CFDB9
AL-1718	Cabo RJ45-CMDB9
AL-1719	Cabo RJ45-CMDB9
AL-1721	Cabo RJ45-CMDB25
AL 1726	Cabo RJ45-CFDB9
AL-1733	Cabo RJ45 – CFDB9 RS232
AL 1413	Conversor RS232 para RS485
AL 1518	Fonte 24 Vdc/ 5 A Chaveada
GR380	Módulo Relógio
GR381	Cabo para Expansão
GR900	HARDFLEX, 1 contador rápido 2 saídas em freqüência.
GR901	HARDFLEX, 1 contador rápido 1 saída PTO
GR902	HARDFLEX, 1 contador rápido 1 saída PWM
PO9901	WebGate Plus
PO8522	Trava para montagem em trilho TS35
PO8523	Chave para borne tipo mola
Cx12	Terminal de Operação
Cx70	Terminal de Operação
Cx90	Terminal de Operação
QK1500	Trilho TS32/35 para montagem da UCP e módulos de E/S
MT4100	Software Programador MasterTool

Tabela 2-18. Produtos relacionados.

Notas:

AL-1714: Este cabo possui um conector serial RJ45 macho em cada uma das pontas. Pode ser utilizado para fazer uma interface serial (MODBUS ou ALNET I como rede ponto a ponto) entre UCPs da Série Ponto, Piccolo e Grano.

AL-1715: Este cabo possui um conector serial RJ45 e outro DB9 RS232 fêmea padrão IBM/PC. Pode ser utilizado na interface serial COM 1 para:

- Interligação a IHMs com conectores compatíveis com o padrão IBM/PC para supervisão local do processo
- Interligação a um microcomputador padrão IBM/PC com software de supervisão.
- Interligação a um microcomputador padrão IBM/PC para programação da UCP, via software MasterTool

AL-1718: Este cabo possui um conector serial RJ45 e outro DB9 RS232 macho com pinagem padrão Altus. Pode ser utilizado na interface serial COM 1 para:

• Interligação com o módulo AL-1413, adaptador RS232 para RS485,

AL-1719: Este cabo possui um conector serial RJ45 e outro DB9 RS232 macho com pinagem padrão Altus. Pode ser utilizado na interface serial COM 1 para:

• Interligação a uma IHM do tipo Cx12. Cx70 ou Cx90.

AL-1721: Este cabo possui um conector serial RJ45 e outro DB25 padrão RS232 macho. Pode ser utilizado na interface serial COM 1 para:

• Interligação com um modem

AL-1726: Este cabo possui um conector serial RJ45 e outro DB9 RS232 fêmea padrão IBM/PC. Pode ser utilizado na interface serial COM 1 para:

• Interligação com o WebGate, PO9900

AL-1733: este cabo é utilizado para interligação de uma IHM da Série Cimrex com o microcontrolador da Série Grano.

GR380: é o módulo relógio com bateria incorporada que pode ser acoplado ao GR350, GR351, GR370 e GR371

GR381: Este cabo possui dois conectores fêmea. É utilizado na conexão de módulos de expansões com o microcontrolador.

GR900: é a característica HARDFLEX fornecida embutida nos microcontroladores GR350, GR351, GR370 e GR371 que permitem aplicações onde é necessário um contador rápido de 24 bits up-down até 20 KHz, e duas saídas em freqüência até 20 kHz.

GR901: é a configuração HARDFLEX que disponibiliza um contador rápido 24 bits up-down até 20 kHz e um saída rápida de trem de pulsos, com a opção de geração de rampas de aceleração e desaceleração para aplicações em motion control.

GR902: é a configuração HARDFLEX que disponibiliza um contador rápido de 24 bits up-down até 20 kHz e uma saída rápida tipo PWM, com opção de geração de rampas de aceleração e desaceleração para aplicações em motion control.

PO8523: é chave isolada para conexão dos cabos em bases com bornes tipo mola

PO9901: permite que CPs possam ser conectados a uma rede Ethernet TCP/IP

Cx12 / Cx70 / Cx90: são interfaces IHM da Série Cimrex que permitem a conexão aos CPs Altus por um canal serial usando protocolo ALNET I

Características de Software

	GR310, GR316, GR330, GR350, GR351, GR370, GR371	
Linguagem de programação	Diagrama de relés e blocos lógicos, estruturada em módulos com funções e sub-rotinas	
Programação on-line	Via Interface Serial COM 1 através do protocolo ALNET I.	
Total de operandos tipo Entradas (E) e tipo Saída (S)	256 (2048 pontos digitais)	
Número de operandos tipo Auxiliares (8 bits)	512	
Memória total para operandos	1 Kbytes no GR310	
numéricos (words 16bits) , formato complemento de 2.	1 Kbytes no GR316	
	4 Kbytes no GR330	
	8 Kbytes no GR350 e GR351	
	8 Kbytes no GR370 e GR371	
Operandos disponíveis	M memória 16 bits	
(em alguns modelos o operando ponto flutuante não é disponível , ver tabela comparativa)	D BCD 32 bits	
	F ponto flutuante	
·····p	TM tabela de memórias	
	TD tabela de BCD	
	TF tabela de ponto flutuante	
	KM constantes 16bits	
	KD constantes BCD	
	KF constantes ponto flutuante	
Ocupação média de memória por instrução contato	7 bytes	
Instrução arquivo	Permite o armazenamento de grande volume de dados.	
Tempos programáveis para execução de módulo aplicativo temporizado (E018)	e 2,5ms, 3,125ms, 5ms, 10ms, 25ms ou 50ms	

Tabela 2-19. Características do Software

Notas:

• Todos os operandos numéricos (KM, KD, KF, M, D, F, TM, TD e TF) permitem sinal aritmético na representação de valores. O número de operandos simples e tabelas (M, D, F,TM, TD e TF) é configurável para cada aplicação, sendo limitado pela capacidade de memória de operandos disponível de cada modelo (ver tabela comparativa).

Lista de Instruções

	Instrução		
	– / – : Relé fechado		
	-		
	PSL : Relé de pulso		
	RM : Relé mestre		
Contato	FRM : Fim relé mestre		
	– ()– : Bobina simples		
	– (L)– : Bobina liga		
	– (D) – : Bobina desliga		
	– (S) – : Bobina de salto		
	MOV : Movimentação de operando simples		
	MOP : Movimentação de parte de operando		
Movimentação	MOB : Movimentação de bloco de operando		
	MOT : Movimentação de tabelas		
	CAB : Carrega bloco		
	CAR : Carrega operando		
Comparação	= : Igual		
Comparação	< : Menor		
	> : Maior		
	+ : Adição		
Aritmóticos	– : Subtração		
Antineticas	/ : Divisão		
	x : Multiplicação		
Convorsão	B/D : Conversão binário decimal		
Conversão	D/B : Conversão decimal binário		
	AND : E binário		
Porta lágica	OR : OU binário		
Forta logica	XOR : OU exclusivo binário		
	NEG : Insere negação da linha		
Contador	CON : Contador simples		
Contador	COB : Contador bidirecional		
Tomporizador	TEE : Temporizador na energização		
remporizador	TED : Temporizador na dasenergização		
	LDI : Liga/desliga pontos indexados		
Indexado	TEI : Teste de estados de pontos indexados		
	SEQ : Seqüenciador		
Subrotina	CHF : Chamada de módulo função		
Gubiotina	CHP : Chamada de módulo procedimento		

Tabela 2-20. Lista de Instruções

Lista de Módulos Função

	Descrição do Módulo de Funções		
F-PID.033	Implementa o algoritmo de controle proporcional, integral e derivativo.		
F-RAIZN.034	Extrai a raiz quadrada de um valor fornecido em um operando memória ou real. No caso de operandos memória, o resultado pode ser normalizado para uma escala previamente definida.		
F-ARQ2.035			
F-ARQ4.036			
F-ARQ8.037	Permitem o uso da memória do programa aplicativo para armazenar		
F-ARQ12.038	grandes quantidades de informações, utilizando conceitos de registros e		
F-ARQ15.039	campos		
F-ARQ16.040			
F-ARQ24.041			
F-MOBT.043	Realiza a cópia de blocos de operandos numéricos ou posições de tabelas. Podem ser copiados até 255 valores de operandos simples para tabelas e vice-versa, transferindo-se também posições de uma tabela para outra.		
F-STCP.044	Retorna Status do CP em operandos		
F-CTRL.059	Implementa os algoritmos de controle avanço/atraso (lead/lag), retardo de primeira ordem e derivador com retardo de primeira ordem.		
F-PID16.056	Implementa o algoritmo de controle proporcional, integral e derivativo. (possui diferenças em relação a F-PID.033)		
F-NORM.071	Normalização de operandos inteiros		
F-COMPF.072	Compara operandos dentro de uma faixa, apresentando a saída em forma binária, onde o bit ligado indica que o operando pertence à faixa respectiva.		
F-AES.087	Esta instrução executa uma atualização imediata na memória imagem e nos módulos das posições físicas especificadas. Sua atuação é idêntica à varredura dos pontos de E/S realizada pelo programa executivo ao fina de cada varredura, porém com o número de posições limitados.		
F-ANDT.090	Realiza a operação lógica AND (e) entre operandos simples (M ou D) e/ou tabelas (TM ou TD). Podem ser realizadas até 255 operações lógicas em uma única chamada da função.		
F-ORT.091	Realiza a operação lógica OR (ou) entre operandos simples (M ou D) e/ou tabelas (TM ou TD). Podem ser realizadas até 255 operações lógicas em uma única chamada da função.		
F-XORT.092	Realiza a operação lógica XOR (ou exclusivo) entre operandos simples (M ou D) e/ou tabelas (TM ou TD). Podem ser realizadas até 255 operações lógicas em uma única chamada da função.		
F-NEGT.093	Realiza a negação lógica entre operandos simples (M ou D) e/ou tabelas (TM ou TD). Podem ser realizadas até 255 operações lógicas em uma única chamada da função.		
F-M_F.050	Conversão de Valores 2 Inteiros para Ponto Flutuante		
F-F_M.051	Conversão de Valores Ponto Flutuante para 2 Inteiros		
F-FSOM.052	Soma de Valores Ponto Flutuante		
F-FSUB.053	Subtração de Valores Ponto Flutuante		
F-FMUL.054	Multiplicação de Valores Ponto Flutuante		
F-FDIV.055	Divisão de Valores Ponto Flutuante		

Tabela 2-21. Lista de Módulos Função

	UCPs	Produtos Relacionados	
F-PID.033*	GR370, GR371		
F-RAIZN.034	GR310, GR316, GR330,		
F-ARQ2.035	GR350, GR351, GR370,		
F-ARQ4.036	GR371		
F-ARQ8.037	GR330, GR350, GR351,		
F-ARQ12.038	GR370, GR371		
F-ARQ15.039			
F-ARQ16.040	GR350, GR351, GR370, GR371		
F-ARQ24.041			
F-MOBT.043	GR310, GR316, GR330,	Módulos E distribuídos junto com o	
F-STCP.044	GR350, GR351, GR370, GR371 MasterTool		
F-CTRL.059			
F-PID16.056*	GR370, GR371		
F-NORM.071			
F-COMPF.072			
F-AES.087	GR310. GR316. GR330.		
F-ANDT.090	GR350, GR351, GR370,		
F-ORT.091	GR371		
F-XORT.092			
F-NEGT.093			
F-M_F.050			
F-F_M.051			
F-FSOM.052	GR310, GR316, GR330, GR350, GR351, GR370	Módulos F distribuídos junto com o	
F-FSUB.053	GR371	pacote de funções AL-2700	
F-FMUL.054			
F-FDIV.055			

Tabela 2-22. Compatibilidade de Módulos Função

Notas:

As funções que não fazem parte da distribuição Mastertool, podem ser adquiridas separadamente.

As funções F-PID.033 e F-PID16.056, apesar de terem a mesma funcionalidade possuem características diferentes. Consultar as respectivas documentações para maiores detalhes.

Novo diretório de módulos

A partir da versão 1.20 do executivo do GRANO foi implementado um novo diretório de módulos. Este novo diretório dá suporte a um maior número de módulos de configuração (C-XXX), módulos de execução (E-XXX), módulos de função (F-XXX) e módulos de procedimento (P-XXX).

	Quantidade de módulos suportados	
	Versões inferiores a 1.20	Versões 1.20 ou superior
Módulos de Configuração (C-XXX)	1	32
Módulos de Execução (E-XXX)	24	24
Módulos de Procedimetnos (P-XXX)	115	200
Módulos de Função (F-XXX)	115	229

Tabela 2-23. Quantidade de módulos de programa suportado

Notas:

Para a criação de módulos de função e de procedimento maiores do que 115 é necessário o a versão 3.86 de MasterTool ou superior.

Retentividade

Os microcontroladores da Série Grano não possuem retentividade de aplicativos na memória RAM. Devido a isso, o programa aplicativo armazenado em RAM é sempre perdido com a falta de energia.

O mesmo não acontece com alguns operandos, quando o módulo C está armazenado em memória Flash. Caso no momento da queda da energia o módulo C esteja em RAM, a UCP não salvará os operandos retentivos, e, no próximo power-up, o CP entrará em erro indicando esta condição, através da mensagem "Falha nos Operandos Retentivos", que indica que nenhum operando foi salvo.

A seleção dos operandos retentivos é feita no programador MasterTool, através do módulo C. Podem ser retentivos os operandos %S, %A, %M, %D e %F. Os operandos não retentivos são zerados quando a UCP entra em modo execução.

Além dos operandos, a senha e o nível de proteção do CP são sempre salvos numa queda de energia, sendo restaurados na inicialização, caso haja ladder na memória Flash.

ATENÇÃO:

Os operandos Tabela das UCPs Grano não são retentivos, sendo inicializados com zero no power-up da UCP. Na passagem de Programação para Execução as tabelas não tem seu conteúdo alterado.

Operandos Ponto Flutuante

A família de microcontroladores Grano incorpora a seu grupo de operandos os operandos reais (%F). Estes operandos são armazenados em 32 bits no formato de ponto flutuante com precisão simples, conforme a norma IEEE 754.

A quantidade de operandos real é configurável na declaração do módulo C, sendo o limite máximo dependente do modelo de CP em uso.

Estes operandos ocupam quatro bytes de memória (32 bits), armazenando o valor conforme a Figura 2-9:

S		
	Expoente (8 bits)	Mantissa (23 bits)

Figura 2-9. Ocupação do Operando Ponto Flutuante

S – bit de sinal aritmético (0 – positivo, 1 – negativo)

O valor decimal de um operando real (%F) é obtido pela seguinte expressão:

 $Valor = (-1)^{S} \times 2^{(Expoente-127)} \times 1, Mantissa$

A faixa de valores armazenáveis é de -3,4028234663852886E+38 a 3,4028234663852886E+38 .

Os números não normalizados, ou seja, valores cujo módulo é inferior a 1,1754943508222875E-38, são tratados como zero pelos CPs. Os CPs não tratam os números infinito e NANs (*not a number*), sendo todos tratados como fundo de escala.

ATENÇÃO: Para maiores detalhes sobre a utilização dos operandos %F consulte o MasterTool Programming – Manual de Programação (MP399101).

Características da Arquitetura HardFlex® GR900

A função HardFlex GR900 é uma característica já fornecida no programa dos microcontroladores da Série Grano que possuam a arquitetura HardFlex que suportam esta característica. A função GR900 implementa um contador rápido de 24 bits com vários modos de operação até 20 kHz, e duas saídas rápida tipo freqüência até 20 kHz.

Produtos da série Grano com HardFlex

A arquitetura HardFlex GR900 acompanha os seguintes produtos da Série Grano em sua configuração original.

Código	Denominação
GR350	Microcontrol 14ED, 8 SD (Transistor), 2 SD (Relé), 2 Saídas Rápidas, Contador e Relógio (Opcional)
GR351	Microcontrol 14ED, 8 SD (Transistor), 2 SD (Relé), 2 Saídas Rápidas, Contador e Relógio (Opcional) c/ Expansão
GR370	Microcontrol 14ED, 8 SD (Transistor) , 2 SD (Relé), 2 Saídas Rápidas, Contador, 4 EA, 2SA Termopar e Relógio (Opcional)
GR371	Microcontrol 14ED, 8 SD (Transistor) , 2 SD (Relé), 2 Saídas Rápidas, Contador, 4 EA, 2SA Termopar e Relógio (Opcional) c/ Expansão

Tabela 2-24. Produtos da Série Grano com HardFlex

Além da arquitetura GR900, existem outras arquiteturas de acordo com a tabela a seguir:

Código	Denominação
GR901	Contador 24 bits e Saída PTO
GR902	Contador 24 bits e Saída PWM

Tabela 2-25. Outras arquiteturas HardFlex existentes

ATENÇÃO:

A Altus pode disponibilizar uma biblioteca de funções e sob consulta pode desenvolver novas funções aos usuários, para que contadores e saídas rápidas executem tarefas específicas, ou mesmo, operações lógicas de entrada e saída implementadas em hardware. Consulte os documento de Características Técnicas GR9XX das opções HARDFLEX disponíveis.

Características do Contador

O Contador Rápido 24 bits permite a contagem de pulsos com freqüência de até 20 kHz. Permite a leitura de transdutores de posição óticos lineares ou rotativos, podendo assim o controlador programável executar tarefas de posicionamento de alta precisão.

Tem como principais características:

- Contador "Up/Down" programável de 24 bits;
- Entrada Zeramento (Reset);
- Entrada Congelamento de Contagem (Hold);
- 2 saídas de comparação configuráveis e 1 saída zero;
- Diagnóstico, leitura e escrita de operandos via software através do módulo F-CONTR.004.

As aplicações típicas deste contador são:

• Controle de posição e movimento;

- Sincronismo de operações em máquinas, utilizando sensores de pulso;
- Contagem rápida de eventos.

	Contador Rápido 24 bits
Tipo de Função	Contador rápido de 24 bits
Freqüência máxima de contagem	20kHz
Numero máximo de entradas utilizadas	4
Numero máximo de saídas utilizadas	3
Função das entradas	I1- Contagem A
(o código representa o borne	I2- Contagem B
em que o sinal está conectado)	I3- Zeramento (Reset do contador)
	I4- Congelamento (inibição de contagem)
Função das saídas	T0- Comparador 1
(o código representa o borne	T1- Comparador 2
em que o sinal está conectado)	T2- Zero
Modos de operação das entradas	0 – Pulso na entrada Contagem A -> Incrementa contador; Pulso em Contagem B -> Decrementa o contador
	1 – Nível do sinal na entrada Contagem A dá o sentido da contagem e pulsos na entrada Contagem B incrementam ou decrementam a contagem
	2 – Uso com transdutor de posição. Pulsos em quadratura provenientes do transdutor de posição são inseridos nas entradas Contagem A e Contagem B, a decodificação dos pulsos gera quatro contagens por período
	3 – Idem ao modo 2, mas com duas contagens por período
Nível dos sinais de entrada	Conforme a característica técnica do controlador em que a função contador rápido for carregada
Funções executadas via	Leitura em tempo real do valor atual do contador
software	Escrita do valor do contador
	Escrita do valor dos comparadores
	Zeramento (Reset) e congelamento do valor do contador
	Parametrização do contador
	Monitoração do status atual do contador
Forma de atualização do operando de contagem	Atualização via módulo função (F-CONTR.004) dependente do aplicativo ou sob demanda de interrupção de tempo (E018) ou externa (E020)
Diagnóstico	Bytes de Diagnóstico monitoráveis via software MasterTool ou supervisórios
Parâmetros configuráveis	Modo de contagem
	Saídas de Comparação e passagem por zero
	Entradas e saídas utilizadas pelo contador

Tabela 2-26.	Características do	Contador
--------------	--------------------	----------

Notas:

As entradas e saídas utilizadas pelo contador são alocadas nas entradas e saídas digitais do microcontrolador Grano. As entradas do contador também podem ser lidas como entradas digitais normais além de acionarem o contador. As saídas alocadas são utilizadas exclusivamente pelo contador, não podendo assim ser acionadas como saídas digitais comuns.

Descrição Funcional do Contador

O contador rápido possui entradas, saídas, registradores internos e lógica de processamento conforme o diagrama abaixo.

A leitura do contador, parametrização e diagnóstico são disponíveis em operandos definidos no instante da configuração do aplicativo no MasterTool, permitindo assim total controle do contador pelo software aplicativo.

A função HardFlex contador rápido é acessada pelo software aplicativo através do Módulo Função F-CONTR.004 utilizando operandos %F (real) e %A (auxiliar) ou %M (memória). O valores a serem lidos ou escritos no contador e nos comparadores são representados pelos operandos %F definidos no momento da configuração do contador. Parâmetros, comandos e status são escritos e lidos do contador via operandos auxiliares %A ou memória %M.

Figura 2-10. Diagrama de Blocos do Contador

Componentes do Contador

• Contador de 24 bits

A função possui como padrão um contador binário de 24 bits, cobrindo a faixa de números inteiros entre -8.388.608 e +8.388.607.

Quando ocorre estouro de contagem positiva ("overflow") ou negativa ("underflow") o contador assume o valor zero (0), recomeçando a contagem na mesma direção que estava contando antes do estouro de contagem.

Apesar de o contador ser do tipo binário com sinal, seus valores de contagem e comparação são convertidos em operandos reais para utilização por parte do software da UCP e do aplicativo.

• Entradas de Contagem

A contagem é realizada em função dos sinais elétricos presentes nas entradas Contagem A e B. Estes sinais são interpretados pela unidade processadora de contagem, que, conforme o modo de operação, determina o número de pulsos de contagem e a sua direção, ascendente ou descendente.

• Entrada Zeramento

O valor do contador também pode ser zerado externamente por meio da ativação (nível alto) da entrada Zeramento (R). A atuação desta entrada depende de habilitação fornecida por software durante a parametrização do contador.

• Entrada Congelamento

O processo de contagem permanecerá parado enquanto a entrada de Congelamento de contagem estiver ativa (nível alto) mesmo que haja pulsos de contagem nas entradas Contagem A ou B. A atuação desta entrada também depende de habitação durante a parametrização do contador

• Registradores de Comparação

Associado ao contador são disponíveis 2 (dois) registradores de comparação de 24 bits independentes entre si, cujos valores são escritos via software aplicativo. São geradas transições nos sinais de saída de comparação quando o valor de contagem atingir os valores dos registradores de comparação. Pode-se alocar pontos de saída digital a transistor para informar o status destes sinais de comparação.

• Saídas do Contador

O contador rápido pode ser configurado a gerar até 3 (três) sinais de saída independentes, que são:

- Comparador 1: é gerado um pulso nesta saída quando o valor do contador for igual ao valor do registrador de comparação 1;
- Comparador 2: : é gerado um pulso nesta saída quando o valor do contador for igual ao valor do registrador de comparação 2;
- Zero: é gerado um pulso nesta saída toda vez que o valor do contador for igual a zero.

Obs.: Os pulsos gerados nas saídas do contador têm duração mínima de 50 ms.

• Dados de Entrada

São os valores a serem escritos no contador e nos comparadores 1 e 2.

• Dados de Saída

O valor do contador de 24 bits.

• Parâmetros

O contador é configurado através do MasterTool.

• Diagnósticos

São as indicação de eventos ocorridos em relação ao contador.

Modos de Contagem

A unidade processadora de contagem pode operar em quatro modos distintos, atendendo a um amplo espectro de aplicações. Sua programação é realizada por meio da parametrização via software MasterTool (ver tabela do octeto de parametrização no item Programação).

• Modo 0

Nesta configuração, um pulso positivo aplicado ao canal A produz um incremento do valor do contador, enquanto que no canal B, produz um decremento do valor de contagem.

Se for desejada uma contagem unidirecional, basta utilizar somente o canal desejado, deixando o outro aterrado.

Neste modo observam-se os seguintes limites de freqüência:

Figura 2-11. Limites do Modo 0

ATENÇÃO:

O tempo "te" de espaçamento mínimo deve ser obedecido entre pulsos consecutivos aplicados a um mesmo canal e também entre pulsos aplicados nos canais A e B como mostra a Figura 2-11.

• Modo 1

Com a seleção do modo 1, o pulso de contagem deve ser aplicado à entrada B, enquanto que o sentido de contagem é aplicado à entrada A. Nível lógico 1 na entrada A implica em contagem ascendente e nível lógico 0, em contagem descendente.

Neste modo observam-se os seguintes limites de freqüência:

Figura 2-12. Limites do Modo 1

• Modos 2 e 3

Nestes modos a unidade processadora de contagem decodifica os sinais de entrada em quadratura de acordo com o padrão usualmente fornecido por transdutores óticos de posição. O sentido de contagem é obtido a partir da relação de fase entre os sinais (a contagem é incrementada se o pulso na entrada de Contagem A estiver adiantado em relação ao pulso na entrada de Contagem B e decrementada se o pulso em B estiver adiantado em relação ao pulso em A), enquanto que os pulsos de contagem estão relacionados com as transições.

No modo 2 são gerados 4 pulsos de contagem por período do sinal de entrada (x 4), enquanto que no modo 3 são gerados 2 pulsos por período (x 2).

Os limites de freqüência envolvidos nestes casos são:

Figura 2-13. Limites dos Modos 2 e 3

Os limites são especificados em função da tolerância da relação de fase existente entre os dois sinais.

Características das Saídas Rápidas

Além do Contador Rápido 24 bits a Função HardFlex GR900 também implementa duas saídas rápidas tipo VFO (Variable Frequency Output - saída de freqüência variável) independentes, podendo gerar sinais com freqüências de até 20 kHz.

As saídas rápidas têm como principais características:

- Saídas com freqüência configurável até 20kHz com resolução de 1Hz;
- Duty Cycle das saídas rápidas configurável por saída de 0 a 100%, com resolução de 1%;
- Duas saídas (F0 e F1) alocadas exclusivamente para geração de freqüência;
- Escrita de operandos via software através do módulo função F-SAIDR.009.

As aplicações típicas das saídas rápidas são:

- Acionamento de máquinas e motores;
- Sincronismo de operações em máquinas;

	Saídas Rápidas VFO		
Tipo de Função	Saídas Rápidas tipo VFO – Variable Frequency Output		
Freqüência máxima de geração de pulsos	20 kHz		
Numero máximo de saídas utilizadas	2 rápidas (bornes F0 e F1)		
Função das saídas	F0 - Saída VFO 0 (saída de frequência)		
(o código representa o borne em que o sinal está conectado)	F1 - Saída VFO 1 (saída de frequência)		
Funções executadas via	Escrita do valor da frequência a ser gerada em Hz (0 a 20000)		
software	Escrita do Duty Cycle das saídas em % (0 a 100)		
	Início/Fim de operação das saídas(start/stop via SW)		
Forma de acesso aos operandos das saídas rápidas	Atualização via módulo função (F-SAIDR.009) dependente do aplicativo ou sob demanda de interrupção de tempo (E018) ou externa (E020)		

Tabela 2-27. Características das Saídas Rápidas

Descrição Funcional das Saídas Rápidas

As saídas rápidas possuem registradores internos, lógica de processamento e saídas conforme o diagrama e são descritos a seguir.

O envio de comandos é disponível em operando definido no instante da configuração do aplicativo no MasterTool, permitindo assim total controle das saídas rápidas pelo software aplicativo.

As saídas rápidas são acessadas pelo software aplicativo através do Módulo Função F-SAIDR.009 utilizando %M (memória) ou %TM (tabela de memória) e %A (auxiliar). O valores de frequência e duty cycle das saídas são representados por operandos %M ou %TM definidos no momento da configuração da função saídas rápidas. Comandos são acessados via operando auxiliar %A.

Figura 2-14. Diagrama em Blocos das Saídas Rápidas

Componentes das Funções de Saídas Rápidas

• Gerador de Freqüência

O gerador de freqüência gera os sinais de clock com freqüência e *duty cycle* de acordo com os valores escritos nos registradores de freqüência e *duty cycle*.

• Registradores de Freqüência

Associado a cada saída de freqüência (VFO 0 e VFO 1) existe um registrador de freqüência cujo valor determina a freqüência de operação da saída em freqüência (valor do clock gerado). O valor destes registradores pode variar entre 0 e 20.000 representando freqüências de 0 a 20 kHz.

• Registradores de Duty Cycle

Associado a cada saída rápida também existe um registrador de duty cycle que informa ao gerador de frequência o *duty cycle* que será gerado para cada saída (VFO 0 e VFO 1). O valor do *duty cycle* é dado em % e pode variar entre 0 (0%) e 100 (100%). Para um duty cycle de 0 %, nenhum sinal de saída é fornecido.

• Unidade de Controle das Saídas

Tem por fim a analise dos dados provenientes do software aplicativo para determinar o modo de operação das saídas, ativação e desativação das mesmas

Saídas Rápidas

Saída VFO 0: primeira saída rápida de frequência, associada ao borne F0.

Saída VFO 1: segunda saída rápida de frequência, associada ao borne F1.

• Dados de Entrada e Dados de Saída

Valores das freqüências e duty cycle a serem gerados e indicações de resultados.

Modo Clone

O barramento da Série Grano possui algumas características inovadoras em relação aos demais barramentos de CPs da Altus. A principal delas é a utilização de uma UCP como módulo escravo, que executa um aplicativo independente do mestre do barramento, trocando dados com o mesmo através de uma área de troca mapeada em operandos %M. A configuração que utiliza duas UCPs no mesmo barramento (uma mestre e outra escrava) é chamada de Modo Clone.

Esta característica de clonagem pode ser utilizada em diversas aplicações, como controle paralelo de alta velocidade ou controle de posição de eixos, por exemplo. Cada UCP executa individualmente seu aplicativo, acessando diretamente o seus pontos de entrada e saída, além de trocar dados com a outra UCP.

O Modo Clone pode ser configurado e utilizado nos seguintes produtos da Série Grano, tanto na situação de mestre, como de escravo.

Código	Denominação
GR351	Microcontrol 14ED 12SD Contador c/ Expansão
GR371	Microcontrol 14ED 12SD 4EA 2SA Termopar Contador c/ Expansão

Tabela 2-23. Produtos da Série Grano com Modo Clone

Observando a Figura 2-15, pode-se perceber que pode ser utilizado, junto à UCP mestre, o Módulo Relógio (GR380). O Grano à esquerda é por padrão a UCP mestre, e o outro a escrava.

Figura 2-15. Exemplo de Utilização do Modo Clone

Área de Troca

A comunicação do Modo Clone entre a aplicação da UCP mestre e da UCP escrava é feita através de uma área de troca de dados. Esta área é dividida em dois blocos de operandos %M, configurados através do programador MasterTool, chamados de Dados Recebidos (IW) e Dados Enviados (QW).

Dados Recebidos (IW)

Este bloco equivale à uma entrada de dados mapeada em operandos %M, que recebe os dados enviados pela outra UCP do barramento.

ATENÇÃO:

Os operandos %M recebidos (IW) não devem ser escritos pelo programa aplicativo da UCP destino. Caso isto ocorra, os mesmos só serão restaurados após o final do aplicativo.

Dados Enviados (QW)

Este bloco equivale à uma saída de dados mapeada em operandos %M, que envia os dados para a outra UCP do barramento.

Tamanho da Área

O tamanho dos dois blocos é configurado no programador MasterTool, podendo assumir os seguintes valores:

- 16 bytes 8 operandos %M para Dados Recebidos e 8 operandos %M para Dados Enviados
- 128 bytes 64 operandos %M para Dados Recebidos e 64 operandos %M para Dados Enviados

ATENÇÃO:

É importante salientar que quanto maiores os blocos da Área de Troca, mais comunicações serão necessárias para a atualização de todos os dados, gerando aumento no tempo de ciclo das UCPs.

Comunicação

Para enviar dados para a UCP escrava, por exemplo, o aplicativo da UCP mestre deve apenas escrever o dado no bloco Dados Enviados. Após o final do ciclo da aplicação do mestre, o dado será copiado para o bloco Dados Recebidos da UCP escrava.

O Mestre do Modo Clone, ao final de cada ciclo de seu programa aplicativo, realiza o processo de escrita, dos operandos %M para o buffer do Escravo, e de leitura, do buffer do Escravo para os operandos %M. Logo, a cada varredura do Mestre é atualizada toda a quantidade de bytes configurada.

O Escravo por sua vez, ao final do seu programa aplicativo, atualiza todos os operandos %M configurados com os dados do buffer do Escravo (dados recebidos do Mestre), e também o buffer do Escravo a partir dos seus operandos %M (dados enviados para o Mestre).

ATENÇÃO:

Os aplicativos da UCP Mestre e da Escrava não são intertravados, sendo executados de forma assíncrona. Logo pode ocorrer que parte dos dados recebidos por uma UCP se referem ao ciclo de execução N e os demais ao ciclo N-1 da outra UCP. Tendo em vista esta característica, o barramento garante apenas a integridade de blocos de 4 bytes (dois operandos %M) consecutivos.

Figura 2-16. Comunicação Modo Clone

UCP Mestre

A UCP mestre gerencia o barramento, realizando testes na inicialização do Modo Clone, e centralizando o diagnóstico de todos os módulos do barramento. O estado de operação do mestre é sensível a problemas nos escravos do barramento, podendo se modificar como conseqüência de problemas nos mesmos.

Inicialização da UCP Mestre

A inicialização de todo o sistema é um item importante do Modo Clone, sendo comandado pelo mestre. Uma vez terminado o seu processo de inicialização, o mestre inicializa o barramento, comunicando com o escravo.

CUIDADO:

As duas UCPs do barramento devem se energizadas simultaneamente, de forma a garantir a correta inicialização do sistema.

Ele começa realizando comunicações de sincronismo, durante um período de 2 segundos, no qual não executa seu aplicativo. As comunicações de sincronismo servem para que o mestre tenha garantia de que o escravo já está inicializado e pronto para receber as comunicações de dados.

Caso o escravo responda antes do time-out de 2 segundos, o barramento é considerado inicializado, e o mestre passa para Execução, realizando comunicações de dados e diagnóstico com o escravo. Se for detectado time-out nas respostas do escravo, o mestre passa para modo Erro, indicando nos operandos de diagnóstico do barramento que o escravo não foi inicializado.

ATENÇÃO:

Mesmo não inicializado pela UCP mestre, o escravo continua executando seu programa aplicativo, porém suas saídas permanecem desabilitadas.

Comportamento do Mestre com Escravo em Modo Programação

Quando a UCP mestre está em execução e percebe que o escravo está em Modo Programação, ela continua varrendo o barramento, porém, os dados recebidos deste escravo não são copiados para os operandos do mestre.

ATENÇÃO:

Quando alguma das UCPs está com suas saídas desabilitadas, seja por comando do usuário, ou pelo seu Modo de Operação (Programação ou Erro), todo o barramento fica com as saídas desabilitadas.

Comportamento do Mestre com Escravo em Modo Erro

Se a UCP mestre em execução perceber que o escravo está em Modo Erro, ela também passa para Modo Erro, indicando nos operandos de diagnóstico da UCP que houve falha neste módulo escravo. Esta passagem para Modo Erro faz com que o barramento não seja mais atualizado, nem do lado do mestre, nem do lado do escravo.

UCP Escrava

A UCP escrava executa seu programa aplicativo, independente do Modo de Operação do mestre. O Modo de Operação do mestre apenas determina se a Área de Troca e os Diagnósticos do barramento estão ou não sendo atualizados e se as saídas do barramento estão habilitadas. Em operação normal, mestre e escravo em Execução, tanto a Área de Troca quanto os Diagnósticos são atualizados.

Comportamento do Escravo com Mestre em Modo Programação

Quando o mestre está em Modo Programação, ele apenas atualiza os diagnósticos do barramento, não atualizando a Área de Troca, e mantém todas as saídas do barramento desabilitadas.

O escravo continua executando seu aplicativo normalmente.

Comportamento do Escravo com Mestre em Modo Erro

Quando o mestre está em Modo Erro, ele não executa nenhuma atividade relacionada ao barramento, não sendo atualizados os Diagnósticos e a Área de Troca, e permanecendo todas as saídas do barramento desabilitadas.

O escravo continua executando seu aplicativo normalmente.

Estado Físico das Saídas

Uma característica importante do Modo Clone é o estado físico das saídas dos módulos pertencentes ao barramento. Se algum dos módulos do barramento estiver com suas saídas desabilitas, todos os demais também estarão.

Este comportamento não considera o motivo que levou à desabilitação das saídas, de forma que isso pode ocorrer por causa de um comando do usuário de habilitar/desabilitar saídas, ou pelo Modo de Operação de um ou mais módulos do barramento.

Se as saídas estiverem desabilitadas como conseqüência de um dos módulos estar em Modo Programação, ou Erro, elas só serão habilitadas quando este módulo passar para Modo Execução.

Comandos Habilita e Desabilita Saídas

O comportamento do Modo Clone ao comando enviado pelo usuário para habilitar, ou desabilitar, saídas permanece o mesmo que em uma UCP normal, permanecendo pendente este comando caso a mesma não esteja em Modo Execução. A única diferença observada é que o comando pode ser enviado para qualquer UCP do barramento, podendo inclusive, desabilitar as saídas enviando o comando para uma UCP, e habilitar enviando o comando para outra UCP.

ATENÇÃO:

Caso seja configurada uma UCP Escrava, sem a presença da UCP Mestre do barramento, as saídas da Escrava serão desabilitadas.

3. Configuração

Os microcontroladores da Série Grano são configurados e programados através do software MasterTool. A configuração realizada define o comportamento das UCPs. A programação representa a aplicação desenvolvida pelo usuário em linguagem de relés e blocos lógicos, também chamada de programa aplicativo.

Os seguintes itens serão abordados a seguir:

- Uso das Teclas
- Modo LEDs de Funções
- Modo Visualização de Diagnósticos
- Operandos de E/S e de Diagnósticos
- Canal de Comunicação
- ALNET I escravo
- MODBUS RTU escravo
- Conversão de Código para Série Grano
- Gravando funções HardFlex

ATENÇÃO:

Para obter maiores informações sobre a configuração das características acima, e sobre suas configurações, consulte o MasterTool Programming – Manual de Utilização (MU299025). Para conhecer detalhes sobre a forma de programação e sintaxe da linguagem de relés e blocos lógicos, consulte o MasterTool Programming – Manual de Programação (MP399101).

Uso das Teclas

As teclas dos microcontroladores Grano permitem ao usuário obter diagnósticos, modificar valores, selecionar funções de LEDs e alterar o protocolo do canal serial. Isto é possível utilizando as três teclas de operação existentes no painel frontal do microcontrolador, em conjunto com os LEDs.

Na Figura 3-1 estão indicados os LEDs e as teclas utilizadas.

Figura 3-1. Identificação dos LEDs e teclas

A tabela a seguir demonstra todas as funcionalidades obtidas com as teclas.

Modo	Tecla	Ação	Função	
	FUNC	Pressionada por 3 segundos	Passa para modo de LEDs de Função	
Visualização de E/S	UP	Pressionada por 5 segundos	Troca o protocolo ALNET I para MODBUS ou vice-versa (Quando em Programação ou Erro a UCP assume o protocolo ALNET I).	
	DIAG / DOWN	Pressionada por 5 segundos	Visualiza diagnósticos em LEDs	
	FUNC	Pressionada por 3 segundos	Passa para modo Visualização de E/S	
	FUNC	Um toque	Incrementa o número da função selecionada	
	UP Um toque		Incrementa em 1 unidade o operando da função selecionada.	
Mada I EDa da Euraão	UP	Pressionada por 2 segundos	Incrementa em 1 unidade, a cada 250 ms, o operando da função selecionada.	
	UP	Pressionada por 5 segundos	Incrementa em 1 unidade, a cada 25 ms, o operando da função selecionada.	
	DIAG / DOWN	Um toque	Decrementa em 1 unidade o operando da função selecionada.	
	DIAG / DOWN	Pressionada por 2 segundos	Decrementa em 1 unidade, a cada 250 ms, o operando da função selecionada.	
	DIAG / DOWN	Pressionada por 5 segundos	Decrementa em 1 unidade, a cada 25 ms, o operando da função selecionada.	
Modo Visualização de Diagnósticos em LEDs	FUNC	Sem função	Sem função	

UP	Sem função	Sem função
DOWN	Pressionada por 5 segundos	Passa para o modo Visualização de E/S

Tabela 3-1. Identificação das funções

Modo Visualização de E/S

Neste modo, os LEDs indicam o estado dos operandos de entrada e saída do microcontrolador. É o modo padrão de operação dos LEDs.

Quando na inicialização do microcontrolador, bem como nas passagens para modo programação ou erro, os LEDs não sinalizam os estados dos operandos de E/S.

Modo LEDs de Funções

O microcontrolador permite visualizar valores de operandos através dos LEDs e modificá-los usando as teclas. Esta funcionalidade é chamada de Modo LEDs de Funções, pois os LEDs indicam os valores dos operandos de acordo com a função selecionada, configurada previamente através do programador MasterTool.

Essa edição/monitoração dos operandos é realizada através de funções declaradas no módulo C. São permitidas até 24 funções configuráveis, onde para cada uma o usuário define o operando e os limites mínimo e máximo. Estes limites servem para definir o valor máximo e mínimo que o operando da função pode assumir durante a sua edição através das teclas.

Além destas 24 funções, divididas em 3 grupos de 8 funções, existem ainda outras 8 funções prédefinidas que possibilitam visualizar os valores dos canais analógicos do microcontrolador (apenas para os modelos que possuem canais analógicos integrados).

ATENÇÃO:

Nos casos de seleção da função desejada e incremento/decremento de valores de operandos, a ação de um toque só é executada quando a tecla for liberada.

Identificando e Selecionando a Função Desejada

Cada função, quando acessada, será visualizada nos LEDs do painel dos CPs da Série Grano da seguinte forma:

Figura 3-2. Visualização dos LEDs

- As funções estão divididas em 4 grupos de 8 funções, onde os LEDs R0 e R1 indicam o grupo de funções acessadas. Os grupos podem facilitar o agrupamento das funções pelo usuário, podendo, por exemplo, utilizar as funções do grupo 0 para setpoints de funções PID, e as funções do grupo 1 para controle de posições de máquinas.
- O número da função é visualizada nos LEDs Output T
- O valor do operando é visualizado nos LEDs da linha inferior Input I e Input J
- É permitida apenas a associação de operandos %M para as funções

Os 4 grupos de funções podem ser identificados da seguinte forma:

LED R0	LED R1	Grupo
Desligado	Desligado	Grupo 0 – Funções de 0 a 7
Ligado	Desligado	Grupo 1 – Funções de 0 a 7
Desligado	Ligado	Grupo 2 – Funções de 0 a 7
Ligado	Ligado	Grupo 3 – Funções de Leitura de Analógicos 0 a 7 (exclusiva aos modelos GR370 e GR371)

O numero da função depende do grupo, exemplo: o LED T1 indica a função 3 para o grupo 0, grupo 1, grupo 2 e grupo 3.

Para mudar a função selecionada é necessário um rápido toque na tecla FUNC.

Quando a função selecionada for a última (função 7) de um grupo, após pressionar a tecla FUNC será visualizada a primeira função (função 0) do grupo seguinte, se este for o último grupo passará para o grupo 0.

As teclas edição UP e DOWN, são utilizadas, respectivamente, para incrementar ou decrementar, em uma (1) unidade, o operando da função selecionada.

Caso a tecla de edição fique pressionada após dois (2) segundos, a edição ocorre a 4 unidades por segundo e depois de mais três (3) segundos ocorre a 40 unidades por segundo.

A edição está limita aos limites (mínimo e máximo) definidos na configuração da função.

ATENÇÃO:

Caso uma tecla de edição seja pressionada e o valor do operando esteja fora da faixa definida pelos limites máximo e mínimo, o operando terá seu valor ajustado ao limite mais próximo.

O LED 0 de INPUT I corresponde ao BIT menos significativo do operando selecionado, assim como o LED 7, sem associação aos INPUTs, corresponde ao BIT mais significativo.

Como as funções do grupo 3 são utilizadas para a visualização dos valores dos canais analógicos as funções deste grupo já estão previamente definidas, sendo estas distribuídas da seguinte forma:

Função 0 = A0 (Canal analógico de entrada 0)

Função 1 = A1 (Canal analógico de entrada 1)

Função 2 = A2 (Canal analógico de entrada 2)

Função 3 = A3 (Canal analógico de entrada 3)

Função 4 = P0 (Canal analógico de saída 0)

Função 5 = P1 (Canal analógico de saída 1)

Função 6 = Não utilizado

Função 7 = Não utilizado

ATENÇÃO:

As funções do grupo 3 são utilizadas exclusivamente para possibilitar a visualização dos valores do canais analógicos. Sendo assim não é possível editar os valores deste canais diretamente através destas funções.

Operando de controle do teclado

É possível definir, através do módulo de configuração do CP, via programador MasterTool (na janela de parâmetros e configuração das funções), um operando para inibir a edição de valores de operandos através do teclado. É permitida a declaração apenas de operando %M, que possui a função mostrada na tabela abaixo:

Operando de controle (%M)							e (%	M)								
1 5	1 4	1 3	1 2	1 1	1 0	0 9	0 8	0 7	0 6	0 5	0 4	0 3	0 2	0 1	0 0	Descrição
															0	Permite edição dos valores através do teclado
															1	Inibi a alteração de valores através do teclado. As teclas "UP" e "DOWN" não alteram os valores dos operandos, porém é possível visualizar seus valores.
x	х	x	x	х	x	x	х	х	x	x	x	х	х	х		Bits não utilizados.

Tabela 3-3. Operandos de Controle do Teclado

ATENÇÃO:

Os bits não utilizados no operando de controle do teclado não devem ser utilizados para escrita pelo programa aplicativo.

Entrar em Modo LEDs de Função

A principal função dos LEDs é a visualização do estado dos pontos de entrada e saída. Para que seja possível visualizar os valores dos operandos é necessário entrar no Modo LEDs de Função. Isto é feito pressionando a tecla FUNC por 3 segundos. Quando em Modo LEDs de Função, todos os LEDs da saída T piscam com frequência constante (aproximadamente 1 segundo), enquanto o LED da função selecionada pisca também com frequência constante, porém maior.

Sair do Modo LEDs de Função

Para retornar ao modo de visualização de E/S basta pressionar a tecla FUNC por 3 segundos.

Modo Visualização de Diagnósticos

Através desta funcionalidade é possível, através dos LEDs de E/S, visualizar mensagens de erro, advertência e diagnósticos da UCP e dos canais analógicos.

As mensagens estão divididas em 2 grupos: mensagens de advertência gerais da UCP, informadas de acordo com uma seqüência de prioridades, e mensagens específicas de funcionamento, informadas individualmente, uma para cada LED.

As mensagens de advertência possuem um código binário que é informado nos LEDs das saídas T, denominados "OUTPUT T". A tabela com a indicação das mensagens disponibilizadas nos LEDs pode ser consultada no ítem Diagnóstico via Painel no capítulo Manutenção.

Nos LEDs "INPUT I" podem ser visualizadas informações mais importantes, cada uma indicada por um LED. A tabela indicando os diagnósticos pode ser vista no ítem Diagnóstico via Painel no capítulo Manutenção.

Entrar em Modo Visualização de Diagnósticos

Para entrar neste modo, é necessário pressionar a tecla "DOWN/DIAG" por 5 segundos. Para indicar este modo de funcionamento, os LEDs "0" e "1" da saída R, denominados "OUTPUT R", ficam piscando.

Sair do Modo Visualização de Diagnósticos

Para voltar ao modo de visualização de E/S, basta pressionar a tecla "DOWN/DIAG" por 5 segundos.

Operandos de E/S e de Diagnósticos

Nas UCPs Grano, o programador permite que o usuário informe o início da faixa de operandos dos módulos de E/S. Os operandos de E/S são de quatro tipos:

- Entrada digital
- Saída digital
- Memória de entrada (utilizada para módulos não digitais, como o GR370, que possui entradas analógicas)
- Memória de saída (utilizada para módulos não digitais, como o GR370, que possui saídas analógicas)

O primeiro octeto de entrada digital é sempre o %E0000; os outros operandos são definidos pelo usuário conforme a opção mais adequada, de acordo com o seu programa aplicativo.

Para pontos digitais, a regra de alocação de operandos (%E e %S) é fixa, ou seja, os pontos são alocados conforme a sua posição no barramento: o **primeiro ponto de entrada digital** é %E0000.0, o segundo é %E0000.1, e assim sucessivamente, até que todos os pontos de entrada tenham sido alocados, porém sem ultrapassar o **primeiro octeto de saída digital**. Os pontos digitais de saída começam com o primeiro octeto de saída digital e seguem até o operando %S255, mas esta opção pode ser modificada pelo usuário.

Os módulos analógicos são processados automaticamente pela UCP em operandos memória (%Mxxx). A informação do **primeiro operando memória de entrada** e do **primeiro operando memória de saída** fornecem ao programador uma referência para proceder à alocação.

O usuário pode modificar os operandos de um módulo analógico. Esta característica permite aumentar ou modificar o número de pontos analógicos sem que a aplicação tenha que ser modificada.

ATENÇÃO:

Um operando %E não pode ter o mesmo número de octeto de um operando %S, ou seja, não podem coexistir os octetos %E0023 e %S0023, por exemplo. Além disso, como os dois tipos de operandos são octetos, a soma dos operandos %E e %S tem o limite estipulado de 256.

As UCPs da Série Grano fornecem diagnósticos, os quais são atualizados ciclicamente pela UCP e disponibilizados em operados %M. O **primeiro operando memória de diagnóstico** sugere ao programador onde iniciar a alocação.

A UCP e os módulos têm uma faixa de operandos que define onde a UCP irá colocar os diagnósticos obtidos dos módulos do barramento. Para entender esses diagnósticos, é necessário consultar as respectivas CTs dos módulos.

Maiores detalhes sobre as indicações de diagnósticos encontram-se no capítulo Manutenção.

Canal Serial Principal - COM1

Este canal está disponível para comunicação nos protocolos ALNET I escravo ou MODBUS RTU escravo.

A seleção do protocolo do canal COM1 pode ser feita de duas maneiras: através do módulo C, via programador MasterTool, ou através das teclas de funções, conforme descrito abaixo:

 Através do Módulo C: na janela de configuração da COM1, no MasterTool, existe a opção "Protocolo de Inicialização". Nesta opção, é selecionado o protocolo que será utilizado no canal serial durante a execução do programa aplicativo. Sempre que o microcontrolador entrar em modo execução, o protocolo selecionado nesta opção será ativado. Através das teclas de funções: pressionando a tecla UP por 5 segundos, o protocolo de comunicação é alterado. Para verificar o protocolo selecionado, basta verificar o estado do LED AL. Com o mesmo ligado, o microcontrolador está configurada para comunicar no protocolo ALNET I, e com o LED desligado, no protocolo MODBUS.

Nos modos programação e erro, o canal é automaticamente configurado para o protocolo ALNET I, para a utilização do programador e/ou supervisórios, voltando ao protocolo selecionado no módulo C ao entrar em execução.

ALNET I Escravo

O protocolo ALNET I é utilizado para comunicação com o programador MasterTool,

Sua principal função é interligar a UCP com o programador, com vistas à configuração e programação da UCP. Outras funções disponibilizadas são: forçamento de pontos de E/S, monitoração de operandos e interligação do controlador a uma rede de supervisão ALNET I, conexão do CP a IHMs e supervisórios e interligação com outros CPs que implementem o protocolo ALNET I mestre. Para obter maiores detalhes sobre este assunto, consulte o Manual de Utilização e o Manual de Programação do MasterTool.

Utilizando o protocolo ALNET I, é possível configurar, no canal serial, através do MasterTool, os seguintes parâmetros:

Configuração	Descrição	Possibilidades		
Endereço da estação	Endereço do nó na rede ALNET I	 0: comunicação ponto-a-ponto (utilizada pelo programador ou por algumas IHMs) 1 a 254: comunicação em rede mestre- escravo 		
Velocidade	Velocidade da porta de comunicação serial	300 bps a 9600 bps		
		Sem modem: o sinal de RTS nunca é acionado e o CTS não é monitorado.		
Tipo de modem	Configura o comportamento que os sinais CTS/RTS terão durante a comunicação	Half duplex: antes de iniciar a transmissão, a UCP aciona o sinal de RTS e monitora o CTS; quando este chega, a transmissão é iniciada; caso não obtenha CTS, não transmite; assim que a transmissão termina, o sinal de RTS é desligado.		

Tabela 3-4. Configuração do protocolo ALNET I

É possível colocar o CP em rede ALNET I ou mista (ALNET I e ALNET II). Para isso, é necessário respeitar as regras de construção dos endereços de rede. Para obter mais informações sobre este assunto, consulte a norma específica sobre o protocolo ALNET I (NTP031).

MODBUS RTU Escravo

Este protocolo está disponível em alguns modelos de microcontroladores Grano, nos seu canal principal, permitindo que dispositivos mestres MODBUS RTU sejam conectados ao CP.

Para configurar este protocolo, é necessário executar os seguintes passos no software MasterTool:

- atribuir o protocolo MODBUS RTU escravo ao canal principal COM1
- escolher a velocidade de comunicação
- escolher o comportamento dos sinais RTS/CTS
- configurar paridade e stopbit do canal
- definir o endereço do nó na rede
- definir as relações

Configuração	Descrição	Possibilidades
Velocidade	Velocidade da porta de comunicação serial	300 bps a 19200 bps
Endereço	Endereço do CP na rede conectada ao canal	1 a 247
		Sem RTS/CTS: estes sinais não são manipulados durante a comunicação, e o RTS permanece desacionado.
Sincia da madam	Comportamento dos	Com RTS/CTS: antes de iniciar a transmissão, o RTS é acionado e o CTS é monitorado; quando este chega, então a transmissão é executada. Ao término da transmissão, o RTS é desacionado.
Sinais de modem	a comunicação	Com RTS sem CTS: o RTS é acionado antes da transmissão e desacionado após o seu término, não havendo o monitoramento do sinal de CTS.
		Com RTS sempre ligado: o sinal de RTS permanece sempre ligado.
Relações MODBUS	Permite configurar as relações de comunicação via MODBUS	Configura as relações entre operandos Altus e as áreas de operandos MODBUS (ver o item MODBUS RTU Escravo, mais adiante).
		Sem paridade
Configuração da	Configuro o poridado da	Paridade par
paridade da	porta serial	Paridade ímpar
comunicação		Paridade sempre 0
		Paridade sempre 1
Configuração do	Configura os stopbits da	1 stopbit
da comunicação	porta serial	2 stopbits

A tabela a seguir explica em maiores detalhes cada ítem a ser configurado:

Tabela 3-5. Configurações do protocolo MODBUS

Relações do MODBUS Escravo

As relações consistem na conversão de operandos do CP para operandos MODBUS, permitindo ao usuário identificar e/ou informar quais áreas do CP poderão ser manipuladas via rede MODBUS. Elas podem ser definidas pelo usuário, conforme descrito a seguir. Para configurar as relações, entre em **Relações MODBUS** no software MasterTool (consulte o manual do software para obter instruções detalhadas).

Relações Definidas pelo Usuário

A norma do protocolo MODBUS define quatro áreas de manipulação de dados, que permitem a leitura ou escrita em bits ou palavras (16 bits).

Os operandos MODBUS estão divididos nas áreas de Coil, Input, Input Register e Holding Register, que acessam bits (Coil ou Input) ou palavras de 16 bits (Input Register ou Holding Register). Dependendo das áreas, é possível relacioná-las com certos tipos de operandos do CP, como demonstra a tabela a seguir.

Área MODBUS	Operandos do CP ALTUS	Descrição		
Coil	%E, %S, %A, %M	Bits ou pontos de saída		
Input	%E, %S, %A, %M	Bits ou pontos de entrada		
Input Register	%M, %TM, %D, %TD	Registradores de entrada		
Holding Register	%M, %TM, %D, %TD	Registradores de saída		

Tabela 3-6. Relação entre operandos MODBUS e operandos Altus

Para construir uma relação no software MasterTool, deve-se definir: a área de dados a que a mesma se refere, o operando MODBUS inicial, a quantidade de operandos da relação e o operando inicial no CP. A tabela a seguir mostra como os operandos no CP são interpretados e transmitidos pela rede MODBUS.

Área de dados	Operandos MODBUS	Quantidade	Operandos ALTUS
Input	0001 a 0032	32	%E0010.0 a %E0013.7
Input	0033 a 0672	640	%M0500.0 a %M0539.F
Coil	0001 a 4096	4096	%A0000.0 a %A0511.7
Input Register	0001 a 0076	76	%D0000 a %D0037
Input Register	1001 a 1100	100	%M0100 a %M0199
Holding Register	4097 a 4350	254	%TM10
Holding Register	0255 a 0500	246	%D0038 a %D00160
Holding Register	0501 a 2500	2000	%M0600 a %M2599

Tabela 3-7. Relações entre os operandos MODBUS e do CP

Ao construir as relações, deve-se priorizar relações contínuas, como no caso de Coil, que relaciona os operandos MODBUS de 0001 a 4096 a todos os 512 operandos %A do CP, disponibilizando todos esses operandos via rede MODBUS. Desta forma, obtém-se uma melhor performance do protocolo MODBUS RTU escravo.

As funções que o protocolo MODBUS RTU escravo processa são descritas na tabela a seguir. A última coluna informa se a função do protocolo suporta endereçamento em Broadcast (00, no caso MODBUS). Assim, nas funções assinaladas com "Sim", ao receber um comando com endereço 0 (zero), o CP executará o comando, mas não responderá ao mestre.

Função	Nome	Descrição	Área MODBUS	Limite	Broadcast
01	Leitura de Coil	Leitura de n pontos definidos como Coil	Coil	2000	Não
02	Leitura de Input	Leitura de n pontos definidos como Input	Input	2000	Não
03	Leitura de Holding Register	Leitura de n operandos definidos como Holding Register	Holding Register	125	Não
04	Leitura de Input Register	Leitura de n operandos definidos como Input Register	Input Register	125	Não
05	Escrita de 1 Coil	Escrita de 1 ponto definido como Coil	Coil	1	Sim
06	Escrita de 1 Holding Register	Escrita de 1 operando definido como Holding Register	Holding Register	1	Sim
15	Escrita de Coil	Escrita de n pontos definidos como Coil	Coil	1976	Sim
16	Escrita de Holding Register	Escrita de n operandos definidos como Holding Register	Holding Register	123	Sim
22	Aplicação de máscara em 1 Holding Register	Aplicação de máscaras em 1 Holding Register, permitindo a manipulação de parte do Holding Register (o resto permanece inalterado)	Holding Register	1	Não
23	Leitura e escrita combinada em Holding Register	O mestre envia ao escravo n Holding Register para escrita e recebe como resposta outros Holding Register (esta função pode ser utilizada para otimizar a leitura e escrita cíclicas)	Holding Register	121 (escrita) 125 (leitura)	Não

Tabela 3-8.	Funções	suportadas	pelo	protocolo	MODBUS	RTU escravo
			1			

Fluxo de Operação do MODBUS Escravo

O protocolo MODBUS escravo é executado a cada ciclo do programa aplicativo e procede da seguinte forma:

- Verifica se existe algum frame recebido via serial. Em caso afirmativo, ele testa o frame em relação ao seu endereço de nó, testa o CRC e verifica se a função é suportada por seu interpretador.
- Se a função é válida, o protocolo executa o interpretador, que processa o frame e monta a resposta. O envio da resposta depende do frame recebido não ser um comando Broadcast.
- Ao receber um frame inválido ou que não esteja de acordo com o seu endereço de nó, o protocolo descarta o frame e não transmite nada via rede.

Tempo de Resposta do MODBUS Escravo

Para calcular o tempo de resposta de um microcontrolador comunicando via MODBUS escravo, é necessário considerar os seguintes aspectos:

- Tempo de ciclo da aplicação (TCA) do microcontrolador com MODBUS escravo.
- Velocidade de transmissão (VT) em bps.
- Número de bytes da pergunta do mestre (NByP), que depende da função (é necessário consultar a norma MODBUS).
- Número de bytes da resposta do escravo (NByR), que depende da função (é necessário consultar a norma MODBUS).
- Número de bits de cada byte (NB): tipicamente, os dispositivos MODBUS possuem 11 bits de dados por byte.
- Atraso do meio físico (AMF), que depende do meio físico utilizado. Por exemplo, um barramento elétrico tem uma atraso típico de 5 ns por metro (assim, em 30 m, o atraso será de 150 ns). No caso de ondas de rádio, fibra ótica e linha telefônica, por exemplo, é necessário calcular, além do atraso do meio físico, o atraso gerado pelos dispositivos de comunicação com modens e conversores.

Para calcular o tempo de resposta (TR) do MODBUS escravo, aplique a seguinte fórmula:

TR(ms) = TCA(ms) + ((1/VT(bps)) * NB * NByP) * 1000(ms) + ((1/VT(bps)) * NB * NByR) * 1000(ms) + AMF(ms)

Conversão de Código Série Piccolo – Série Grano

Embora utilizem o mesmo conjunto de instruções, os módulos que compõem o programa aplicativo (C-*.000, E-*.001, etc) não são compatíveis entre a Série Piccolo e a Série Grano. Portanto, não é possível carregar um programa aplicativo elaborado para um microcontrolador Piccolo em um microcontrolador Grano e vice-versa.

Contudo, ao se utilizar o programador MasterTool, é possível converter um programa aplicativo desenvolvido para a Série Piccolo para ser utilizado em um microcontrolador Grano. Na janela de definição do módulo C, no programador, ao trocar o modelo para Grano, os módulos componentes do projeto, programados em linguagem de diagrama de relés, são convertidos para o formato de código do microcontrolador Grano, operação que é executada em poucos segundos. Caso o programa utilize módulos F programados em linguagem Assembly, estes não serão convertidos, devendo ser substituídos pelos equivalentes que acompanham o programador (programados para o Grano).

Para maiores detalhes, consulte o MasterTool Programming - Manual de Utilização do MasterTool.

ATENÇÃO:

Devem ser observadas as diferenças de acesso aos pontos de entrada e saída analógicos entre a Série Piccolo e a Série Grano, bem como as declarações de operandos de diagnóstico e retentividade através do módulo C.

Relógio Calendário de Tempo Real

O módulo relógio inclui um relógio-calendário de tempo real e uma bateria integrada, que mantém o horário durante o desligamento do microcontrolador, bem como numa troca-quente do relógio.

Ao inserir o relógio no microcontrolador, o usuário deve realizar o ajuste do mesmo, caso não tenha existido um ajuste prévio, evitando que um horário inválido seja lido.

Para maiores detalhes sobre a instalação do relógio, consulte o capítulo Instalação.

A configuração do relógio é realizada através do programador Mastertool. Para tal é necessário informar as faixas de operandos de leitura e acerto do horário, e também um operando auxiliar de controle. Caso o usuário não utilize relógio, deve ser configurado no módulo C a não-utilização do mesmo, de modo a liberar os operandos reservados para a leitura, ajuste e controle.

O relógio possui horário e calendário completos, permitindo o desenvolvimento de programas aplicativos que dependam de bases de tempo precisas. A informação de tempo é mantida mesmo com a falta de alimentação do sistema, pois o mesmo é alimentado por bateria.

Configuração do relógio

Através do módulo C no programador, na janela de parâmetros, o usuário deve marcar a opção "Habilitar o uso do relógio". Com essa habilitação, será liberada a seleção dos operandos para utilização do relógio. São configuradas três faixas de operandos: uma faixa para leitura do horário, uma faixa para ajuste, e um operando para controle. Abaixo temos a descrição detalhada de cada operando.

ATENÇÃO:

Caso o usuário não habilite a utilização do relógio no módulo C, a leitura do mesmo não é realizada, e seus operandos não são reservados, liberando-os assim para a aplicação do usuário.

Operandos de Leitura

São os operandos onde será armazenado o horário atual do relógio do microcontrolador. Podem ser do tipo memória (%M) ou Tabela de Memória (%TM). São necessárias sete posições para a leitura do horário. Se for especificado como memória, os valores são lidos para a memória declarada e as seis subsequentes. Se for especificado como tabela, os valores são colocados a partir da posição zero até a posição seis.

Caso os operandos não estejam declarados, a leitura dos valores de tempo não é realizada e o erro de configuração é sinalizado no operando % AXXX de controle do relógio.

É possível o uso de tabelas com mais de sete posições, sendo que a função ignora as posições excedentes. Os valores são armazenados nos operandos na seguinte seqüência:

Operando	Posição Tabela	Conteúdo	Formato
%MXXXX	0	Segundos	000XX
%MXXXX + 1	1	Minutos	000XX
%MXXXX + 2	2	Horas	000XX
%MXXXX + 3	3	Dia do mês	000XX
%MXXXX + 4	4	Mês	000XX
%MXXXX + 5	5	Ano	000XX
%MXXXX + 6	6	Dia da semana	0000X

Tabela 3-9. Valores Lidos do Relógio

Na inicialização, os valores dos operandos de leitura do relógio já estão atualizados, antes da execução do módulo E-000.

O conteúdo destes operandos pode ser lido a qualquer momento, mas são atualizados com a hora real do relógio a cada ciclo de varredura.

Para a leitura das horas, é utilizado o formato 24 horas (00 a 23). Os dias da semana são informados conforme tabela abaixo:

Valor	Dia da Semana
1	Domingo
2	Segunda-feira
3	Terça-feira
4	Quarta-feira
5	Quinta-feira
6	Sexta-feira
7	Sábado

Tabela 3-10. Valores dos Dias da Semana

Operandos de Ajuste

Os operandos de ajuste são os operandos de onde serão lidos os valores para ajuste do relógio quando for dado o comando de ajuste para o mesmo. Podem ser do tipo memória (%M) ou Tabela de Memória (%TM).

Assim como nos operandos de leitura, são necessários sete operandos, ou sete posições de tabela, para o ajuste. Se o operando for memória, os valores são copiados da memória declarada e as seis subseqüentes. Se for tabela de memória, os valores são copiados da posição zero até a posição seis.

Caso os operandos não sejam válidos, o acerto não é realizado e é sinalizado no operando %AXXX de controle do relógio. Os valores a serem copiados para o relógio devem ser colocados nos operandos na mesma seqüência dos operandos de leitura (segundos, minutos, horas, dia do mês, mês, ano e dia da semana).

Operando de Controle

O operando de controle consiste em um operando auxiliar (%A), utilizado para disparar o comando de ajuste do relógio e obter status de funcionamento do mesmo. Este operando é selecionado através do módulo C.

Na tabela seguinte é apresentando a descrição de cada bit do operando auxiliar.

Operando de Diagnóstico (%A)								Descripão
7	6	5	4	3	2	1	0	Descrição
							0	Ajuste do relógio desabilitado. O horário do relógio é apenas lido a cada varredura.
							1	Ajustar relógio (deve permanecer pelo menos uma varredura ligado). O horário do relógio é ajustado a cada varredura, enquanto este bit estiver ligado.
						х		Reservado.
					х			Reservado.
				0				Configuração do relógio está correta.
				1				Configuração do relógio inválida. É sinalizado na ocorrência dos seguintes erros de configuração: - Operandos configurados inválidos; - Valores de ajuste inconsistentes;

				 Houve comunicação de leitura ou ajuste do relógio enquanto o mesmo não está montado ou está com a bateria fraca.
			0	Ajuste do relógio não realizado.
			1	Ajuste do relógio realizado com sucesso. Permanece em nível alto por uma varredura após o ajuste do relógio.
		0		Este bit fica desligado enquanto não houver mudança do valor dos segundos do relógio ou foi realizado um ajuste na última varredura.
		1		Pulso um segundo. Este bit fica ligado por uma varredura a cada mudança do valor dos segundos do relógio, salvo quando foi ajustado na última varredura.
	0			Bateria do relógio OK.
	1			Bateria fraca do relógio. Não é mais realizada comunicação de leitura e ajuste do mesmo. Quando o relógio não está montado este bit fica sempre ligado.
0				Relógio montado.
1				Relógio não montado.

Tabela 3-11. Operando controle do relógio

Notas:

Quando há um funcionamento anormal do relógio, indicado pelo bit 3 do auxiliar de diagnóstico, o pulso de um segundo no bit 5 não é acionado, permanecendo este bit desligado.

Instalação de Funções HardFlex

Os procedimentos para instalação de Funções da Arquitetura HardFlex estão descritos detalhadamente no Manual de Utilização do software MasterTool Programming (MU299025.doc).

Configuração do Modo Clone

Como já foi descrito no capítulo Descrição Técnica, o Modo Clone possibilita a conexão de duas UCPs da Série Grano, de modo que fica possível a troca de dados entre as mesmas através de uma área de troca mapeada em operandos %M.A instalação consiste em conectar, através do conector EXP2 (ver capítulo instalação para maiores detalhes), outro modelo que também suporte expansão de barramento. O microcontrolador conectado à direita do conector EXP2 passa a ser o escravo do barramento.

Do ponto de vista do mestre, o escravo se comporta como um módulo de E/S, possuindo operandos %M de entrada e de saída. A iniciativa da varredura sempre parte do mestre, lendo os operandos de entrada e escrevendo nos operandos de saída.

Já no escravo, os dados trocados com o mestre são configurados como uma área de troca de dados, sendo configurados, assim, operandos %M para receber os dados enviados pelo mestre e operandos %M para enviar os dados quando o mestre solicitar.

Os módulos GR351 e GR371 possuem a capacidade de expansão do barramento, podendo ser interligados conforme os exemplos da tabela abaixo.
Mestre	Escravo
GR351	GR351
GR351	GR371
GR371	GR351
GR371	GR371

Tabela 3-12. Possibilidades de conexão de expansão

Para realizar a configuração do Grano, como mestre ou escravo do Modo Clone, deve ser consultado o Manual de Utilização do MasterTool Programming revisão J ou superior. Neste manual deve ser consultado o capítulo Procedimentos de Utilização, dando-se ênfase ao item Configurando o Barramento, situado dentro de Módulo de Configuração – Módulo C.

ATENÇÃO:

Se for necessário reconfigurar uma UCP Mestre como Escrava, ou vice-versa, este processo deve ser feito com a UCP em Modo Programação. Caso não seja respeitada esta orientação, as saídas do barramento podem permanecer desabilitadas, necessitando de comando para habilitá-las.

Configurando o Mestre do Modo Clone

A UCP mestre enxerga o escravo como um módulo de E/S, logo, numa UCP já configurada como mestre, basta inserirmos um módulo escravo no barramento, e configurar os seus parâmetros. Para realizar tal configuração, basta selecionar o primeiro campo disponível no barramento, e executar a opção Inserir.

ОК
Cancelar

Figura 3-3. Seleção do Tipo de Escravo

Na janela apresentada são apresentados os módulos escravos disponíveis, junto com a quantidade de bytes enviados e recebidos pelo mestre do barramento. Por exemplo, se for selecionado o dispositivo GR351/Slv128B, será configurado um módulo GR351 escravo, com 128 bytes enviados e 128 bytes recebidos pelo mestre.

ATENÇÃO: A quantidade de bytes da comunicação configurada deve ser a mesma tanto na UCP mestre como na UCP escrava.

Após inserir o módulo escravo na janela de configuração do barramento do programador, devem ser especificados os operandos de entrada, saída e diagnóstico para o escravo através da opção Parâmetros. Os operandos de entrada (IW) receberão os dados lidos do escravo, e os operandos de saída (QW) serão escritos no escravo. Os operandos configurados para diagnóstico do escravo tem sua formatação descrita no capítulo Manutenção no item Diagnóstico.

A varredura do escravo é realizada a cada ciclo de execução, sendo também possível utilizar a função F-AES.087 para realizar uma atualização forçada dos operandos do escravo. Consultar o manual de programação do Mastertool para maiores informações sobre esse módulo função.

ATENÇÃO:

A utlização da função F-AES.087 para atualização forçada dos operandos gera um aumento no tempo de ciclo do programa aplicativo, sendo este tempo concentrado na execução deste módulo função.

Configurando o Escravo do Modo Clone

O escravo conectado ao barramento é varrido pelo mestre para troca de dados. A iniciativa de comunicação nunca parte do escravo para o mestre, sempre do mestre para o escravo.

O escravo, sendo também um microcontrolador, pode executar um programa aplicativo, independente do mestre, tendo em comum somente os operandos da Área de Troca.

Quando selecionada a opção escravo, são habilitadas duas faixas de operandos, constituídas de operandos %M para dados de entrada e operandos %M para dados de saída. Os operandos de entrada receberão os dados enviados pelo mestre, e os operandos de saída serão enviados para o mestre. . Na mesma tela deve ser selecionado a quantidade de bytes recebidos e enviados pelo escravo, que deve ser a mesma configurada no mestre do Modo Clone.

4. Programação

Programação do programa aplicativo

Os microcontroladores da Série Grano são programados através do software MasterTool, que é executado em ambiente Windows versões 95/98/ME/NT/2000. Algumas das funções realizadas com o MasterTool Programming são:

- desenvolvimento do programa aplicativo para execução no microcontrolador
- configuração dos canais seriais, protocolos e operandos
- comunicação através do protocolo ALNET I v2.0 para obtenção de diagnósticos, monitoração de operandos e envio de comandos de controle para o microcontrolador

ATENÇÃO:

Para obter informações completas sobre o MasterTool Programming, consulte os manuais específicos. Para obter a versão do programador compatível com os microcontroladores Grano, consultar capítulo Descrição Técnica, deste mesmo manual.

Programação da arquitetura HardFlex

Programação do Contador Rápido - F-CONTR.004

A função F-CONTR.004 realiza o interfaceamento do programa aplicativo com o Contador Rápido 24 bits do HardFlex modelo GR900 dos controladores da Série Grano. Esta função também é utilizada para interfaceamento com outros modelos de HardFlex que possuam contadores rápidos.

Figura 4-1. Função F-CONTR.004

Parametrização

O contador rápido é parametrizado através de um byte utilizado tabela a seguir:

Bit	Bits do byte de parametrização							Descrição
7	6	5	4	3	2	1	0	
						0	0	Modo 0 – A incrementa e B decrementa
						0	1	Modo 1 – A informa o sentido e B conta
						1	0	Modo 2 – Quadratura, 4 contagens por período
						1	1	Modo 3 – Quadratura, 2 contagens por período
					0			Desabilita saída física do comparador 1 (saída T0)
					1			Habilita saída física do comparador 1 (saída T0)

_						
				0		Desabilita saída física do comparador 2 (saída T1)
				1		Habilita saída física do comparador 2 (saída T1)
			0			Desabilita saída física do comparador Zero (saída T2)
			1			Habilita saída física do comparador Zero (saída T2)
		0				Desabilita entrada física de zeramento (entrada I3)
		1				Habilita entrada física de zeramento (entrada I3)
	0					Desabilita entrada física de congelamento (entrada I4)
	1					Habilita entrada física de congelamento (entrada 14)
0						Aciona saídas ao atingir valores de comparação sem zerar contador
1						Aciona saídas e zera contador ao atingir valor do registro de comparação 2

Tabela 4-1. Bits Parametrização

Notas:

Bits 0 e 1 – Estes bits selecionam o modo de operação do contador rápido:

00 – Pulso na entrada Contagem A -> Incrementa contador; Pulso em Contagem B -> Decrementa o contador;

01 – Nível do sinal na entrada Contagem A dá o sentido da contagem e pulsos na entrada Contagem B incrementam ou decrementam a contagem;

10 – Uso com transdutor de posição. Pulsos em quadratura provenientes do transdutor de posição são inseridos nas entradas Contagem A e Contagem B, a decodificação dos pulsos gera quatro contagens por período;

11 – Idem ao modo 2, mas com duas contagens por período.

Bit 2 – Quando em 1 habilita a saída física do comparador 1 no borne da saída T0. Toda vez que o valor do contador for igual ao valor do comparador 1 será gerado na saída T0 um pulso com duração mínima de 50ms.

Bit 3 – Quando em 1 habilita a saída física do comparador 2 no borne da saída T1. Toda vez que o valor do contador for igual ao valor do comparador 2 será gerado na saída T1 um pulso com duração mínima de 50ms.

Bit 4 – Quando em 1 habilita a saída física do comparador Zero no borne da saída T2. Toda vez que o valor do contador for igual a zero será gerado na saída T2 um pulso com duração mínima de 50ms.

Bit 5 – Quando em 1 habilita a entrada de zeramento externa do contador via borne de entrada I3. O contador é zerado (resetado) sempre que for aplicado nível alto de sinal na entrada I3.

Bit 6 – Quando em 1 habilita a entrada de congelamento de contagem externa do contador via borne de entrada I4. A contagem permanecerá congelada enquanto for aplicado nível alto de sinal na entrada I4.

Bit 7 – Quando em 1 habilita o zeramento (reset) do contador sempre que o mesmo atingir valor de contagem igual ao valor do comparador 2. Quando em 0 o contador somente será zerado após atingir valores de overflow (+8.388.607) ou underflow (-8.388.608).

Os dados contidos na Tabela 4-1 e também o operando de diagnóstico devem ser configuradas através do programador MasterTool. Para realizar estas configurações é necessário entrar na tela correspondente através do botão Barramento do módulo C. Ao entrar nesta clique sobre a linha do contador (Posição = 0, Idx = 2) e clicar no botão parâmetros.

	Descrição	Valor		OK
1	Modo Contagem	Modo 0 - A incrementa e B decrementa		<u></u>
2	Saída física do comparador l	Desabilita		Cancel
3	Saída física do comparador 2	Desabilita		
4	Saída física do comparador zero	Desabilita		<u>C</u> onfigurar.
5	Entrada de zeramento	Desabilita		
б	Entrada de congelamento	Desabilita		
7	Zeramento por comparação	Desabilita		
8	Diagnóstico	%M0089		

Figura 4-2. Tela de Configuração do Contador Rápido

As configurações mostradas na Figura 4-2 são as padrões. Para alterar cada uma das opções é necessário clicar sobre a opção que se deseja modificar e então clicar no botão configurar. Uma nova tela é aberta e nesta o parâmetro em questão pode ser alterado.

rodo o "A incrementa e o accrementa	OK
Nodo 7 - A informa sentido e o conta Nodo 2 - Quadratura, 4 contagens por período Nodo 3 - quadratura, 2 contagens por período	Cancel

Figura 4-3. Tela de Configuração do Contador Rápido

Na Figura 4-3 pode-se ver que as opções possíveis para o modo de operação do contador rápido. Após selecionar a opção desejada basta clicar em OK para confirmar as alterações. As outras opção de parâmetros podem ser configuradas analogamente as do modo de operação. Também nesta maneira é possível entrar na tela que configura o operando de diagnóstico do contador.

É importante dizer que a nova parametrização só será carregada quando o novo módulo C, com as modificações que acabaram de ser feitas, for carregado no Microcontrolador.

Modo Contagem

Operandos

As células da instrução CHF utilizada para a chamada da função são programadas do seguinte modo:

- **OPER1** - Especifica o número de parâmetros que são passados para a função em OPER3. Este operando deve ser obrigatoriamente uma constante memória com valor 6 (%KM+00006).

- OPER2 - Deve ser um operando do tipo constante memória com valor 0 (%KM+00000).
Determina o número de parâmetros possíveis de serem programados na janela de edição de OPER4.
Como esta função não necessita de nenhum parâmetro em OPER4, o valor de OPER2 é 0.

- **OPER3** - Contém os parâmetros que são passados para a função, declarados quando a instrução CHF for editada. O número de parâmetros editáveis é especificado em OPER1, sendo fixo em 6 para este módulo:

%KMXXXX – Posição do módulo no barramento Grano. Para contadores internos ao controlador(Hardflex) este valor deve ser %KM0000.

É importante que este parâmetro seja configurado corretamente, pois uma configuração errada comprometerá o funcionamento deste dispositivo e de outros nestes mesmo HardFlex.

%KMXXXX – Modelo de HardFlex ou módulo no qual está o contador ao qual se deseja executar algum comando. O modelo de HardFlex instalado encontra-se no segundo byte (byte 1) da tabela de diagnósticos do microcontrolador.

%KM0001 – GR900 %KM0002 – GR901 %KM0003 – GR902 %KM0004 – GR903

%KMXXXX – Número do contador no qual se deseja executar algum comando. No caso do GR900 existe apenas um contador, ou seja qualquer comando é dado para este e o parâmetro deve ser sempre %KM0001. Outros modelos de HardFlex poderão conter mais de um contador o que implica na necessidade deste byte para um módulo F que busca ser genérico. Ex.: Se o comando é para o segundo contador do HardFlex, o valor será %KM0002.

É importante que este parâmetro seja configurado corretamente, pois uma configuração errada comprometerá o funcionamento deste dispositivo e de outros nestes mesmo HardFlex.

%FXXXX ou %TFXXXX – Primeiro operando de leitura e escrita do contador. São quatro operandos na seguinte ordem:

Valor lido do Contador.

Valor a ser escrito no Contador.

Valor a ser escrito no Comparador 1.

Valor a ser escrito no Comparador 2.

Em caso de %TFXXXX esta ordem representa o numero do índice da tabela que deve ter 4 posições. Para %FXXXX este representa Valor lido do Contador, enquanto as outras opções estão nos 3 operandos logo após este.

%AXXXX ou %MXXXX - Operando com o valor lido no registrador de status do contador. O status é composto de um único byte. Para o caso de operando %A, o byte inteiro do operando é ocupado. Já apara operandos do tipo %M, apenas o byte mais significativo do operando é utilizado para fazer a leitura.

By	te de	Sta	tus	(%A))			Descrição
7	6	5	4	3	2	1	0	
							0	Contagem normal
							1	Overflow na contagem
						0		Contagem normal
						1		Underflow na contagem
					0			Direção de contagem DOWN
					1			Direção de contagem UP
				0				Contagem diferente do comparador 1
				1				Contagem igual ao comparador 1
			0					Contagem diferente do comparador 2
			1					Contagem igual ao comparador 2
		0						Contagem diferente de zero
		1						Contagem igual a zero
0	0							Sempre zeros

Tabela 4-2. Bits de Status Modo Contagem

Notas:

Bit 0 – É acionado sempre que o valor do contador estourar positivamente, ou seja, passar por +8.388.607. Deve ser zerado pela aplicação através do bit 2 do 2° byte de comando.

Bit 1 – É acionado sempre que o valor do contador estourar negativamente, ou seja, passar por - 8.388.608. Deve ser zerado pela aplicação através do bit 2 do 2° byte de comando.

Bit 2 – Mostra em que direção ocorreu a última contagem. Quando em 1 significa que a última contagem ocorreu na direção UP, ou seja, o contador foi incrementado. Quando em 0 significa que a última contagem ocorreu na direção DOWN, ou seja, o contador foi decrementado.

Bit 3 – É acionado sempre que o valor do contador for igual ao valor do comparador 1. Este bit será desacionado assim que houver a primeira leitura do byte de status por parte do aplicativo, desde que o valor do contador não seja mais igual ao valor do comparador 1.

Bit 4 – É acionado sempre que o valor do contador for igual ao valor do comparador 2. Este bit será desacionado assim que houver a primeira leitura do byte de status por parte do aplicativo, desde que o valor do contador não seja mais igual ao valor do comparador 2.

Bit 5 – É acionado sempre que o valor do contador for igual a zero. Este bit será desacionado assim que houver a primeira leitura do byte de status por parte do aplicativo, desde que o valor do contador não seja mais igual a zero.

%AXXXX ou %MXXXX – Comando que diz qual o procedimento será executado na chamada atual da função. Possui dois bytes e no caso de %AXXXX, o operando declarado é o mais significativo e o seguinte o menos significativo.

1°	1° Byte de Comando							Descrição
7	6	5	4	3	2	1	0	
							0	Contagem normal
							1	Escreve no contador
						0		Contagem normal
						1		Escreve no comparador 1
					0			Contagem normal
					1			Escreve no comparador 2
0	0	0	0	0				Sempre zeros

Tabela 4-3. Bits de Comando - Primeiro Byte

2°	Byte	de (Com	ando	b			Descrição
7	6	5	4	3	2	1	0	
							0	Contagem normal
							1	Inibe contagem (congela valor do contador)
						0		Contagem normal
						1		Zera registrador de contagem
					0			Contagem normal
					1			Desativa bit de status de overflow/underflow
0	0	0	0	0				Sempre zeros

Tabela 4-4. Bits de Comando - Segundo Byte

Notas:

1 – O comando de zeramento do contador (bit 1 do segundo byte de comando) tem prioridade sobre os outros comandos. Se houver comandos de congelamento, zeramento e escrita do valor do contador simultaneamente por exemplo, o contador será somente zerado, não mantendo seu valor atual nem recebendo o novo valor.

2 – Os comandos de congelamento de contagem e escrita no contador não são conflitantes, podendo ser executados simultaneamente;

3 – Os comandos de escrita nos comparadores são independentes entre si e do contador, podendo ser executados simultaneamente a outros comandos.

4 - Os comandos do 2° byte estendem-se até uma nova chamada da função solicitando contagem normal.

Entradas e Saídas do Contador

Descrição das entradas:

- Habilita - quando esta entrada está energizada a função é chamada, sendo analisados os parâmetros programados na instrução CHF. Caso os mesmos estejam incorretos, a respectiva saída de erro da função é energizada. Se estiverem corretos, os comandos contidos nos bytes auxiliares %AXXXX são executados, realizando as operações de leitura e escrita conforme especificado. Quando a entrada habilita estiver desenergizada, as instruções anteriormente enviadas ao módulo são mantidas, não executando nenhuma operação de leitura ou escrita no mesmo.

Descrição das saídas:

- Contagem ok – é ativada para indicar sucesso na tentativa de realizar a operação solicitada. Sempre que a operação for concluída com sucesso essa saída é ligada e as restantes são desligadas. Se esta saída estiver desligada significa que algo de errado ocorreu no processo, sendo que o resultado pode ser ou não indicado numa das outras duas saídas.

- Erro parâmetros - é ativada quando existe alguma inconsistência no parâmetros passados para a função.

- Erro na faixa de operandos %F - é ativada quando um de um operando %F de escrita do modo contagem ultrapassar a faixa de 24 bits com sinal, ou seja, o valor for maior que +8.388.607 ou menor que -8.388.608.

- Todas as saídas desligadas - indica erro na comunicação com os dispositivos selecionados.

Programação das Saídas Rápidas - F-SAIDR.009

A função F-SAIDR.009 realiza o interfaceamento do programa aplicativo com as saídas rápidas do HardFlex modelo GR900 dos controladores da Série Grano. Esta função também é utilizada para interfaceamento com outros modelos de HardFlex que possuam saídas rápidas.

Saída VFO

Figura 4-4. Saída VFO

Operandos

As células da instrução CHF utilizada para a chamada da função são programadas do seguinte modo:

- **OPER1** - Especifica o número de parâmetros que são passados para a função em OPER3. Este operando deve ser obrigatoriamente uma constante memória com valor 5 (%KM+00005).

- OPER2 - Deve ser um operando do tipo constante memória com valor 0 (%KM+00000).
Determina o número de parâmetros possíveis de serem programados na janela de edição de OPER4.
Como esta função não necessita de nenhum parâmetro em OPER4, o valor de OPER2 é 0.

- **OPER3** - Contém os parâmetros que são passados para a função, declarados quando a instrução CHF for editada. O número de parâmetros editáveis é especificado em OPER1, sendo fixo em 5 para este módulo:

%KMXXXX – Posição do módulo no barramento Grano. Para saídas rápidas internas ao controlador (Hardflex) este valor deve ser KM0000.

É importante que este parâmetro seja configurado corretamente, pois uma configuração errada comprometerá o funcionamento deste dispositivo e de outros nestes mesmo HardFlex.

%KMXXXX – Modelo de HardFlex ou módulo no qual está a saída rápida a qual se deseja executar algum comando. O modelo de HardFlex instalado encontra-se no segundo byte (byte 1) da tabela de diagnósticos do microcontrolador.

%KM0001 – GR900 %KM0002 – GR901 %KM0003 – GR902 %KM0004 – GR903 **%KMXXXX** – Número do bloco de saídas rápidas no qual deseja executar algum comando. Ex.: O HardFlex GR900 possui um bloco de duas saídas VFO. Estas estão no primeiro bloco de saídas rápidas deste HardFlex. Sendo assim o número do bloco é KM0001. Outros HardFlex podem ter mais blocos de saídas rápidas. É por isso que existe esse parâmetro na função que visa ser genérica para qualquer HardFlex que possua estes blocos.

É importante que este parâmetro seja configurado corretamente, pois uma configuração errada comprometerá o funcionamento deste dispositivo e de outros nestes mesmo HardFlex.

%MXXXX ou %TMXXXX – Primeiro operando de escrita da saída rápida. São quatro operandos na seguinte ordem:

%MXXXX + 0: Valor de frequência da saída rápida VFO 0.

%MXXXX + 1: Valor de duty cycle da saída rápida VFO 0.

%MXXXX + 2: Valor de frequência da saída rápida VFO 1.

%MXXXX + 3: Valor de *duty cycle* da saída rápida VFO 1.

Em caso de %TMXXXX esta ordem representa o número do índice da tabela que deve ter 4 posições. Para %MXXXX este representa Valor de frequência da saída rápida 0, enquanto as outras opções estão nos 3 operandos logo após este.

%AXXXX ou %MXXXX – Comando que diz qual o procedimento será executado nesta varredura da função. Possui dois bytes e no caso de %AXXXX, o operando declarado é o mais significativo e o seguinte o menos significativo.

1°	Byte	de (Com	ando	o(%/	A ou	%M)	Descrição
7	6	5	4	3	2	1	0	
							0	Operação normal
							1	Escreve frequência e duty cycle da saída VFO 0
						0		Operação normal
						1		Escreve frequência e duty cycle da saída VFO 1
0	0	0	0	0	0			Sempre zeros

Tabela 4-5. 1º Byte de Comando

2°	Byte	de (Com	ando	o(%/	A ou	%M)	Descrição
7	6	5	4	3	2	1	0	
							0	Desabilita saída VFO 0 (saída parada)
							1	Habilita saída VFO 0
						0		Desabilita saída VFO 1 (saída parada)
						1		Habilita saída VFO 1
0	0	0	0	0	0			Sempre zeros

Tabela 4-6. 2º Byte de Comando

Notas:

1 – Se comandos de escrita de frequência e duty cycle são feitos nas duas saídas antes de habilitar as mesmas, quando elas forem habilitadas ambas iniciarão em fase. Porém se já estiverem habilitadas e uma nova escrita for feita, mesmo sendo os comandos executados na mesma chamada da função, as saídas sairão de fase. Isto se deve ao fato de cada escrita ser realizada em momentos distintos dentro da função e no momento da escrita os novos valores entram em operação.

Entradas e Saídas

Descrição das entradas:

- Habilita - quando esta entrada está energizada a função é chamada, sendo analisados os parâmetros programados na instrução CHF. Caso os mesmos estejam incorretos, a respectiva saída de erro da função é energizada. Se estiverem corretos, os comandos contidos nos bytes auxiliares %AXXXX são executados, realizando as operações de leitura e escrita conforme especificado. Quando a entrada habilita estiver desenergizada, as instruções anteriormente enviadas ao módulo são mantidas, não executando nenhuma operação de leitura ou escrita no mesmo.

Descrição das saídas:

- Processamento ok – é ativada para indicar sucesso na tentativa de realizar a operação solicitada. Sempre que a operação for concluída com sucesso com sucesso essa saída é ligada e as restantes são desligadas. Se esta saída estiver desligada significa que algo de errado ocorreu no processo, sendo que o resultado pode ser ou não indicado numa das outra duas saídas.

- Erro parâmetros - é ativada quando existe alguma inconsistência no parâmetros passados para a função.

- Erro na faixa de Freq/Duty - é ativada quando um de um operando um valor de frequência estiver fora da faixa de 1Hz a 20kHz ou quando um valor de duty cycle estiver fora da faixa de 0 a 100%.

- Todas as saídas desligadas - indica erro na comunicação com os dispositivos selecionados.

Programação dos Canais Analógicos

Parametrização

As entradas analógicas são parametrizadas através de 7 bytes conforme as tabelas a seguir:

By	Byte 0 – Parâmetros Gerais							Descrição
7	6	5	4	3	2	1	0	
							0	Temperatura em °C
							1	Temperatura em °F
0	0	0	0	0	0	0		Não Utilizado (sempre zero)

Tabela 4-7. Byte 0 de parametrização

Bytes 1 e 2 – Entradas: Tensão ou termopar							ão	Descrição	
7	6	5	4	3	2	1	0		
0	0	0						Não Utilizado (sempre zero)	
					0	0	0	Canal desativado	
					0	0	1	Tensão 0 a 10 V	
					0	1	0	Termopar tipo J	
					1	0	0	Termopar tipo K	
Quando configurado para tensão 0 a 10V							o a 10V		
			0	0				Filtro 0 ms entrada tensão	
			0	1				Filtro 150 ms entrada tensão	
			1	0				Filtro 1200 ms entrada tensão	
			1	1				Filtro 9600 ms entrada tensão	

Qu	Quando configurado para termopar J ou K								
			0	0				Filtro 400 ms para termopar	
			0	1				Filtro 1 s para termopar	
			1	0				Filtro 10 s para termopar	

Tabela 4-8. Bytes 1 e 2 de parametrização

Bytes 3 e 4 – Entradas Tensão						ens	ão	Descrição	
7	6	5	4	3	2	1	0		
							0	Canal desativado	
							1	Tensão 0 a 10 V	
					0	0		Não Utilizado (sempre zero)	
			0	0				Filtro 0 ms entrada tensão	
			0	1				Filtro 150 ms entrada tensão	
			1	0				Filtro 1200 ms entrada tensão	
			1	1				Filtro 9600 ms entrada tensão	
0	0	0						Não Utilizado (sempre zero)	

Tabela 4-9. Byte 3 e 4 de parametrização

By	Bytes 5 e 6 – Saídas							Descrição
7	6	5	4	3	2	1	0	
							0	Canal desativado
							1	Tensão 0 a 10 V
0	0	0	0	0	0	0		Não Utilizado (sempre zero)

Tabela 4-10. Byte 5 e 6 de parametrização

Os dados contidos nas Tabela 4-7, Tabela 4-8, Tabela 4-9, Tabela 4-10 acima, assim como os operandos de escrita e leitura dos canais analógicos e seu operando de diagnóstico devem ser configuradas através do programador MasterTool. Para realizar estas configurações é necessário entrar na tela correspondente através do botão Barramento do módulo C. Ao entrar nesta clique sobre a linha do contador (Posição = 0, Idx = 0) e clicar no botão parâmetros.

	Descrição	Valor		OK
1	Unidade de Temperatura	Celcius [°C]		Lanonominioine
2	Canal analógico 0 - Entrada 0	Canal desativado		Cancel
3	Filtro do Canal analógico O	2ms (p/ termopares 400ms)		-
4	Canal analógico 1 - Entrada 1	Canal desativado		<u>C</u> onfigurar.
5	Filtro do Canal analógico 1	2ms (p/ termopares 400ms)		
6	Canal analógico 2 - Entrada 2	Canal desativado		
7	Filtro do Canal analógico 2	2ms		
8	Canal analógico 3 - Entrada 3	Canal desativado		
9	Filtro do Canal analógico 3	2ms		
10	Canal analógico 4 - Saida O	Canal desativado		
11	Canal analógico 5 - Saida 1	Canal desativado		
12	Diagnóstico	%M0214 a %M0217		
13	IW	%M0208 a %M0211		
14	low	%M0212 a %M0213		

Figura 4-5. Tela de configuração dos canais analógicos

As configurações mostradas na Figura 4-5 são as padrões. Para alterar cada uma das opções é necessário clicar sobre a opção que se deseja modificar e então clicar no botão configurar. Uma nova tela é aberta e nesta o parâmetro em questão pode ser alterado.

Canal analógico 0 - Entrada 0	×
Canal desativado Tensão D a 10V	OK
Termopar tipo J Termopar tipo K	Cancel

Figura 4-6. Tela de configuração dos canais analógicos

Na Figura 4-6 pode-se ver que as opções possíveis para a configuração da entrada analógica 0. Após selecionar a opção desejada basta clicar em OK para confirmar as alterações. As outras opção de parâmetros podem ser configuradas analogamente a esta. Também desta maneira é possível entrar na tela que configura os operandos de escrita e leitura e operando de diagnóstico dos canais analógicos.

É importante dizer que a nova parametrização só será carregada quando o novo módulo C, com as modificações que acabaram de ser feitas, for carregado no Microcontrolador.

5. Instalação

Este capítulo apresenta os procedimentos para a instalação física dos microcontroladores da Série Grano e seus acessórios. Adicionalmente, são relacionados cuidados com as outras instalações existentes no armário elétrico ocupado pelo CP. Os microcontroladores da série Grano foram projetados para instalação em trilhos DIN TS35.

Inspeção Visual

Antes de proceder a instalação, é recomendável fazer uma inspeção visual cuidadosa dos equipamentos, verificando se não há danos causados pelo transporte nos mesmos. Verifique se todos os componentes de seu pedido estão em perfeito estado e qualquer problema detectado deve ser informado à companhia transportadora e ao representante ou distribuidor ALTUS mais próximo.

CUIDADO:

Antes de desembalar o módulo, é importante a descarga de eventuais potenciais estáticos acumulados no corpo, tocando com as mãos em uma superfície metálica aterrada, antes de manipular o módulo. Isso garante que os níveis de eletricidade estática suportados pelo módulo não serão ultrapassados.

É importante registrar o número de série de cada equipamento recebido, bem como as revisões de software, caso existentes. Essas informações serão necessárias caso necessite contatar o Suporte da Altus.

Identificação do Módulo

Figura 5-1. Identificação do Módulo

Instalação Mecânica

Montagem dos Trilhos

Para fixação do produto, é especificado o uso de trilhos DIN TS35 convenientemente aterrados. Não deve-se utilizar de trilhos de alumínio, visto que este material não facilita a continuidade elétrica por contato mecânico. A adequada fixação através de parafusos é necessária para resistir a vibrações mecânicas, e prover um bom plano de terra para supressão de ruído elétrico. A mesma deve ser efetuada conforme Figura 5-2.

Figura 5-2. Trilho para Montagem

Reserva de Espaço para a Montagem

Ao instalar o módulo, reserve um espaço mínimo livre para ventilação e passagem da fiação, conforme indicado abaixo.

A montagem do trilho pode ser tanto vertical quanto horizontal. Dá-se preferência para a montagem com trilho vertical pois favorece uma melhor ventilação natural interna do módulo. Porém, neste caso, é preciso dar atenção extra à especificação de temperatura máxima, pois componentes elétricos montados abaixo do microcontrolador podem elevar a temperatura acima dos limites ambientais estabelecidos. Ver capítulo referente à projeto térmico do armário para maiores detalhes.

Figura 5-3. Espaçamento Frontal e Posterior

Instalação do Microcontrolador

A partir do trilho devidamente instalado, procede-se a instalação do módulo conforme os passos a seguir, respeitando-se a ordem definida no projeto:

1. encostar o módulo na superfície do painel de montagem, conforme Figura 5-4;

2. deslizar o módulo em direção ao trilho até atingi-lo (movimento 1);

3. rotacionar o módulo sobre o trilho até ocorrer o encaixe da trava deslizante (movimento 2);

4. se forem instalados mais módulos, a partir do segundo, certificar-se que o gancho, existente no lado esquerdo dos módulos, esteja engatado ao módulo da esquerda (ver Figura 5-9). Ao final, conecte o cabo de expansão, ligando os módulos vizinhos.

Figura 5-4. Instalação do Módulo

Retirada do Microcontrolador

O procedimento para retirada de um microcontrolador consiste em, com uma chave de fenda soltar a trava que o prende ao trilho, girá-lo para fora do trilho (movimento 1) e deslizá-lo, retirando-o do trilho (movimento 2), conforme a Figura 5-5;

Figura 5-5. Retirada do Módulo

Instalação do Módulo Relógio

O módulo relógio é um item opcional que deve ser acoplado do lado esquerdo, EXP 1, dos microcontroladores que comportam esta característica.

É necessário a retirada da tampa de proteção da abertura de expansão EXP 1 para a colocação do módulo relógio. Para retirar esta tampa, abra a mesma, e desencaixe as articulações.

O módulo relógio comporta uma bateria de Lítio que mantém o funcionamento do mesmo.

A vida útil estimada do módulo relógio é de 4 anos, para uma temperatura ambiente de 25 °C. Este período se reduz para um ano, caso a temperatura ambiente de instalação chegue aos 60 °C.

A indicação de bateria descarregada é fornecida pelo LED de diagnóstico do painel (DG) e por operando.

Deve-se executar a rotina de acerto do relógio, no módulo C do Software de Programação MasterTool na instalação ou troca do módulo.

Figura 5-6. Instalação do Módulo Relógio

Cartão de Identificação

A identificação dos bornes está facilitada pelo uso de um cartão (ver Figura 5-8), que pode ser destacado do módulo. Ele foi projetado para servir de referência rápida ao usuário, possuindo em um dos lados uma descrição das funções dos bornes e do outro, campos que permitem a escrita, facilitando a identificação da fiação conectada ao módulo. A Figura 5-7 ilustra a localização do cartão.

Figura 5-7. Local do Cartão de Identificação

É recomendado para escrita no cartão o uso de caneta esferográfica ou de retro projetor de ponta fina, sendo que o cartão não é apagável.

Ao abrir o cartão, para aumentar sua vida útil, deve-se tomar cuidado para não forçar a dobra além do limite natural do cartão, que é quando ele se encontra todo aberto. Ao estar aberto, o suporte do cartão permite diversos tipos de encaixe do conjunto ao módulo Grano, visando obter a melhor forma de visualização.

	I/O CONNECTIONS		+-= 24Vdc POWER	G = GROUND
0) R1		R0 = RELAY OUTPUT	R1 = RELAY OUTPUT
)	<u>)</u> T1		T0 = TRANSISTOR OUTPUT	T1 = TRANSISTOR OUTPUT
	Тз		T2 = TRANSISTOR OUTPUT	T3 = TRANSISTOR OUTPUT
	T5		T4 = TRANSISTOR OUTPUT	5 = TRANSISTOR OUTPUT
	דן		T6 = TRANSISTOR OUTPUT	T7 = TRANSISTOR OUTPUT
)) F1		FO = FAST OUTPUT	F1 = FAST OUTPUT
	<u>)</u> n		10 = DIGITAL INPUT	11 = DIGITAL INPUT
	13		12 = DIGITAL INPUT	3 = DIGITAL INPUT
]15		I4 = DIGITAL INPUT	5 = DIGITAL INPUT
	7		6 = DIGITAL INPUT	17 = DIGITAL INPUT
	n	<u> </u>	JO = DIGITAL INPUT	J1 = DIGITAL INPUT
	J3		J2 = DIGITAL INPUT	J3 = DIGITAL INPUT
1	J5		J4 = DIGITAL INPUT	J5 = DIGITAL INPUT
6	דנ		A0 = ANALOG INPUT	A1 = ANALOG INPUT
0	A1		A2= ANALOG INPUT	A3 = ANALOG INPUT
2	A3	$\neg $	P0 = ANALOG OUTPUT	P1 = ANALOG OUTPUT
D	P1		X = NOT CONNECTED	C = INTERCONNECTED

Figura 5-8. Cartão de Identificação da Borneira

Conexão de expansões

A Figura 5-9 mostra como dever ser conectado o cabo de expansão GR381 entre os módulos. As tampas de expansão devem ser abertas e o cabo de expansão encaixado nos conectores. Em seguida, dobrar as fitas de extração e fechar as tampas.

Figura 5-9. Conexão de Expansões

Instalação Elétrica

PERIGO:

Ao realizar qualquer instalação em um painel elétrico, certifique-se de que a alimentação geral do armário esteja DESLIGADA.

Bornes com Mola

Este tipo de borne possui um sistema de fixação baseado em uma mola, de elevada confiabilidade, mesmo em ambientes sujeitos a vibração (ver Figura 5-11). Para sua montagem, deve ser utilizada a chave PO8523 (ver Figura 5-10). A vantagem de seu emprego é a facilidade e rapidez de montagem dos cabos elétricos. A capacidade de máxima corrente deste borne é de 12 A por ponto, no entanto, esta capacidade é limitada conforme a corrente máxima especificada pelo módulo empregado.

Figura 5-10. Borne com Mola

Figura 5-11. Conexão do Borne Mola

ATENÇÃO:

Não é recomendado o emprego de outra chave para bornes do tipo mola que a PO8523. Outras ferramentas podem provocar danos permanente aos contatos borne, perdendo sua funcionalidade.

Conexões

A correta fixação dos cabos do microcontrolador e dos módulos do sistema garantem a segurança do equipamento e seu correto funcionamento. Para isso, devem ser verificados os seguintes pontos:

- os cabos devem ter bitola e tensão de isolação coerentes com a aplicação.
- os cabos junto aos bornes de ligação do painel de montagem devem estar com conexão segura e firme.
- os bornes de alimentação e aterramento das partes do sistema devem estar firmes e bem conectados, assegurando boa passagem de corrente.
- a conexão do terra dos equipamentos ao terra do painel de montagem deve estar firme e com a bitola de cabo correta, para garantir bom aterramento e imunidade a ruído. Recomenda-se utilizar fio de 1,5 mm².
- recomenda-se efetuar a identificação de todos os cabos com anilhas plásticas ou similar, para facilitar as operações de montagem e manutenção.

ATENÇÃO:

Desaconselha-se usar terminais nos fios. O adequado contato elétrico é garantido diretamente com o fio decapado.

Alimentações

Na fase de energização do microcontrolador Grano, ocorrerá um consumo elevado de corrente para carga dos capacitores de entrada do microcontrolador. Este transitório é tipicamente 9,7 A por 15 us. A fonte de alimentação utilizada deve ser dimensionada para atender esta característica.

ATENÇÃO:

Onde houver alta tensão, colocar etiqueta de aviso e proteções que não permitam o fácil acesso.

Aterramento

O borne G deve ser interligado diretamente a barra de aterramento do armário com a utilização de um cabo com seção mínima de 1,5 mm². O trilho DIN-TS53 de montagem também deve ser aterrado .

Também, recomenda-se o aterramento da tensão de 0 Vdc da fonte de alimentação.

Circuitos de Proteção

Circuitos de proteção externos são obrigatórios para garantir o correto funcionamento do microcontrolador, especialmente quando aciona cargas com características indutivas.

A seguir são apresentados os circuitos de proteção tanto para acionamento em corrente contínua como para corrente alternada.

Circuito com Diodo

Esta é a forma mais eficiente para a proteção contra um surto de corrente excessivo que acontece no momento da desmagnetização de cargas indutivas. Porém, pode trazer problemas pois aumenta o tempo de desarme caso a carga seja, por exemplo, uma contactora ou solenóide.

O circuito pode ser utilizado somente para tensões contínuas, sua tensão reversa deve ser maior que a da fonte e a corrente no mínimo igual a da carga.

Circuito com Diodo e Zener

O circuito com diodo e zener é adequado quando o tempo de desarme do circuito com diodo é excessivo. Assim como o circuito com diodo, ele só deve ser utilizado em tensões contínuas. A tensão do zener deve ser superior a tensão de pico da fonte e a corrente no mínimo igual a da carga.

3102229A

31022304

Circuito com Varistor

O circuito com varistor limita a tensão do circuito indutivo de forma semelhante a um zener. É um componente robusto, dimensionado para um regime pesado de sobretensões, especialmente para acionamento de contactoras elétricas. Recomendase para tensões de rede AC de 110 e 127 Vac o emprego de supressores de 150 V 20 K. Para redes de 220 Vac modelo é 275 V 20 K.

CONTATOS

Circuito RC

O circuito de proteção RC (R em série com um C) pode ser montado em paralelo com o contato ou em paralelo com a carga. A montagem em paralelo com os contatos é recomendada para cargas alimentadas em tensão contínua. A montagem em paralelo com a carga é recomendada para cargas alimentadas com tensões contínuas ou alternadas. Os circuitos RC são mais eficazes quando utilizados em tensões acima de 100 V.

Para selecionar os valores de R e C, recomenda-se que o resistor tenha de 0,5 a 1 ohm para cada 1 V de tensão, e o capacitor tenha 0,5 a 1 μ F para cada 1 A de corrente. Por exemplo, em uma carga de 220 V/1 A pode-se utilizar um resistor de 220 ohms e um capacitor de 1 μ F (o modelo do capacitor deve estar adequado ao tipo e valor da tensão da carga).

Conexões dos Bornes

As figuras a seguir apresentam o esquema de ligações da parte digital e analógica para cada modelo da série Grano.

Figura 5-12. Esquema de Ligação do GR310

Figura 5-13. Esquema de Ligação do GR316

Figura 5-14. Esquema de Ligação do GR330

Figura 5-15. Esquema de Ligação do GR350

Figura 5-16. Esquema de Ligação do GR351

Figura 5-17. Esquema de Ligação do GR370

Figura 5-18. Esquema de Ligação do GR371

Notas:

1 - O ponto comum da fonte de alimentação do módulo (0 V) deve ser ligado no terra do painel elétrico. Esta ligação é recomendada para minimizar ruídos elétricos em um sistema de automação.

2 - A fonte de alimentação deve ser conectada nos pontos + (+24 Vdc) e - (0 V) do módulo, conforme o diagrama. A fonte deve ser dimensionada para suportar a carga representada pelo microcontrolador, alimentação dos elementos de entrada (sensores) e alimentação dos elementos de saída.

3 - Os bornes T+ alimentam as saídas digitais a transistor e devem ser conectados à fonte de +24 Vdc. É obrigatório o uso dos dispositivos de proteção juntos as cargas para assegurar a confiabilidade no acionamento.

4 - As entradas digitais operam com sensores do tipo saída PNP (chaveando o positivo) ou contatos secos. Podem ser utilizados sensores com dois ou três fios, devendo estes serem conectados a qualquer um dos bornes I0 a I7 ou J0 a J5. Para sensores de três fios o terminal negativo deve ser conectado a qualquer um dos bornes I-. Os sensores devem prover sinais coerentes com os especificados pelo microcontrolador.

5 - Os componentes a serem acionados deverão possuir todos os dispositivos necessários para assegurar a confiabilidade do acionamento via contatos de relé, isto é : diodos para cargas indutivas em regime DC, supressor de centelhamento para cargas com componente indutiva em regime de AC.

6 - A medição de termopares deve ser feita pela conexão da polaridade positiva no borne A0 ou A1 e a polaridade negativa a um dos bornes A-. A compensação da temperatura ambiente - junta fria - é feita automaticamente por sensor integrado ao módulo.

7 - Para medição de tensão o polo positivo deve ser ligado a um dos bornes A0 a A3 e o negativo a um dos bornes A-, que são comuns a todas as entradas. O microcontrolador mede apenas tensões positivas. Se tensões negativas forem aplicadas, as mesmas serão curto-circuitadas ao 0 Vdc por meio de um diodo. O valor de leitura fornecido neste caso será zero.

8 - As saídas de tensão tem o polo positivo ligado aos bornes P0 e P1, e o negativo ligado ao borne P-, que é comum às duas saídas. O borne P- deve ser utilizado unicamente como referência da saída analógica.

9 - Recomenda-se o emprego de cabos de compensação blindados para medição da temperatura. Os cabos de termopar devem ter a blindagem aterrada em apenas uma das extremidades e o mais próximo possível dos bornes do módulo.

10 - Os três bornes C estão conectados em comum, servindo como ponto para possíveis interconexões.

11 - Os cabos dos sinais analógicos de entrada do módulo devem receber o aterramento da blindagem em apenas uma das extremidades e o mais próximo possível dos bornes do módulo.

12 - As saídas analógicas devem ser conectadas por cabos blindados. O aterramento da blindagem deve ser feito em apenas uma das extremidades do cabo e o mais próximo possível dos bornes do módulo.

Saídas Transistorizadas

Os bornes possuem uma limitação de corrente de 12 A. A alimentação de +24 Vdc dos pontos de saída a transistor deve ser efetuada utilizando os dois bornes T+. Cada um dos bornes alimenta um conjunto de quatro saídas digitais transistorizadas.

Instalação dos Termopares

Os termopares devem ser do tipo isolado, sem contato com a carcaça da máquina onde está alojado. A polaridade positiva deve ser conectada aos bornes A0 ou A1, e a negativa nos bornes A-. Somente

será medido temperaturas superiores a do ambiente. A compensação da temperatura de junta fria é automática para obtenção da temperatura absoluta junto ao sensor.

Entrada Analógica de Tensão

Os Bornes A0, A1, A2 e A3 devem ser conectados ao potencial positivo do sinal de tensão e os bornes A- devem são conectados ao comum (0 V) do sinal de tensão. Estes bornes devem ser utilizado exclusivamente com os sinais de entrada analógica.

Entrada Analógica de Corrente

Para utilizar uma entrada de corrente nas escalas de 0 a 20 mA e 4 a 20 mA é empregado um resistor externo de 500 Ohms / 2 Watts em paralelo com quaisquer entrada (x) de medição de tensão – entre borne Ax e borne A-, conforme mostra a Figura 5-19. O canal de entrada utilizado para medição de corrente deve ser configurado para entrada de tensão 0 - 10 Vdc.

Figura 5-19. Esquema de Ligação para Entrada em Corrente

Notas:

1 – Para sensores de corrente do tipo dois fios, o mesmo é instalado em série com a fonte de alimentação externa. O usuário deve assegurar-se que o potencial de 0 Vdc da fonte externa seja o mesmo da fonte da alimentação do microcontrolador, visto que este não possui isolação galvânica com o circuito lógico para este sinal de entrada.

2 – Para sensores com alimentação independente, tipo quatro fios, a ligação deve permitir a entrada de corrente pelo borne Ax e o retorno pelo borne A-.

3 – O resistor R tipo *metalfim* de 500 Ohms / 2 watts deve ser conectado em paralelo a entrada de medição de tensão (Ax e A-). Este valor proporciona as mesmas características da entrada de tensão com a melhor resolução para medição de corrente (10 Volts = 500 Ohms x 20 mA). Outros valores de resistência são permitidos desde que a tensão máxima não ultrapasse o valor de 10 Vdc. A calibração pode ser efetuada via programa aplicativo, utilizando a função F-NORM. Diagnóstico de loop de corrente aberto (corrente inferior a 4 mA) deve ser implementado no programa aplicativo.

4 – É recomendado o aterramento do polo de 0 Vdc da fonte de alimentação externa, de forma a evitar o ruído elétrico comumente encontrado em ambientes industriais.

Conexões da Arquitetura Hardflex GR900

Instalação do Contador

A conexão das entradas e as saídas utilizadas pelo contador à borneira do controlador Grano deve ser feita conforme o diagrama descrito a seguir.

O diagrama ilustra a conexão a um transdutor de posição ótico linear, mas vários outros transdutores e sensores podem ser utilizados. O sinal de entrada deve ser compatível com o nível 24 Vdc. Os transdutores óticos de posição lineares necessitam em geral de adaptadores de sinal para gerar pulsos de 24 Vdc.

Notas:

1 – Somente as entradas I1, I2, I3 e I4 podem ser utilizadas como entradas do contador rápido;

2 – As entradas do contador que não forem configuradas (Congelamento ou Zeramento) são utilizadas como entradas digitais comuns;

3 – Somente as saídas a transistor T0, T1 e T2 podem ser configuradas como saídas do contador se necessário;

4 – As saídas do contador que não forem configuradas (T0 - Comparador 1, T1 - Comparador 2 ou T2 - Zero) são utilizadas como saídas digitais comuns.

5 – As entradas digitais dos produtos GR350, GR351, GR370 e GR371 tem padrão de 24 Vdc do tipo sink. Os transdutores de posição ou sensores devem ser compatíveis com este nível ou usar adaptadores de nível.

Conexão com Encoders Lineares ou Rotativos

O esquema básico de interfaceamento do módulo com encoders lineares ou rotativos é apresentado a seguir:

Figura 5-21. Conexão com Encoder Linear ou Rotativo

O encoder (linear ou rotativo) fornece sinais senoidais defasados de 90° entre si, com baixa capacidade de corrente.

O condicionador de sinais recebe os sinais do encoder, amplifica estes sinais e os transforma em sinais retangulares que são enviados para o módulo. Além disto, o condicionador de sinais fornece a alimentação para o sistema de lâmpadas/fotocélulas do encoder.

O condicionador de sinais deve situar-se o mais próximo possível do encoder e as ligações entre os elementos do sistema devem ser feitas por meio de cabos blindados aterrados em uma das extremidades.

Para obter-se informações sobre o cabo que é ligado ao módulo contador rápido, deve-se consultar as especificações sobre o cabo que é ligado ao módulo com contador rápido, deve-se consultar as especificações do condicionador de sinais ou as do próprio encoder, (caso ele possua internamente o condicionador de sinais), com relação ao comprimento máximo do cabo.

Os seguintes sinais, provenientes do condicionador de sinais, devem ser conectados ao módulo com contador rápido:

- Os dois canais de saída às entradas Contagem A e B do módulo
- O terra (GND) e a blindagem à entrada GND
- Opcionalmente, o sinal de referência ou marca zero à entrada de Zeramento (R)

Trocando-se entre si as ligações do A e B, inverte-se o sentido da contagem.

Instalação das Saídas Rápidas

A conexão dos sinais utilizados pelas funções de saídas rápidas à borneira do controlador Grano deve ser feita conforme o diagrama descrito a seguir. O diagrama mostra um exemplo de saída rápida conectada a um conversor frequência-tensão.

Figura 5-22. Diagrama de instalação das Saídas Rápidas

Notas:

1 – Somente as saídas F0 e F1 podem ser configuradas como saídas da função HardFlex GR900 saídas rápidas. F0 fornece a saída VFO 0 e, por sua vez, F1 a saída VFO 1;

2 – Recomenda-se a utilização de conversores freqüência/tensão Conexel da família DK6 (para maiores informações, visite o site www.conexel.com.br).

Projeto Térmico do Armário

Os equipamentos ALTUS são projetados para trabalhar a uma temperatura ambiente de 60°C (exceto quando especificado). Portanto, esta deve ser a temperatura interna máxima do armário. Os seguintes cuidados devem ser observados no projeto do painel:

- dimensionar armários com volume interno suficiente para uma boa circulação de ar
- prever ventilação forçada ou trocadores de ar com o meio externo, caso necessário, para que não haja elevação da temperatura além do limite. Em casos críticos, recomenda-se o uso de equipamentos de refrigeração, para manter o equipamento operando dentro dos níveis de temperatura de operação
- distribuir de forma homogênea fontes de calor dentro do armário
- considerar a dissipação nos cabos que conduzem correntes mais elevadas para evitar superaquecimento interno às calhas

ATENÇÃO:

Para obter a dissipação de calor dos microcontroladores Grano, consulte o capítulo 2 - Descrição Técnica. Os módulos não descritos neste manual devem ter suas CTs consultadas para obtenção deste dado.

A seguir, é explicado um método para calcular a temperatura interna do painel em função da sua dissipação e potência.

Dissipação de Calor em um Painel Elétrico

Cada painel elétrico dissipa, através de sua superfície, uma quantidade definida de calor para uma dada diferença de temperatura interna e externa. Para o cálculo da dissipação de calor em situações em que a diferença de temperatura entre o interior e o exterior do painel chegue até 50 °C, as seguintes grandezas devem ser consideradas:

- superfície de dissipação efetiva do painel; calculada segundo a norma DIN-VED 0660 capítulo 500, conforme indicado pelo tipo de instalação
- a constante de dissipação para a chapa de aço pintada em W/m² °C
- as condições de ventilação do painel (local de instalação)
- grau de ocupação interna do painel (impedância à circulação do ar no interior)

Dos valores citados anteriormente, apenas o valor da superfície do painel pode ser calculada exatamente.

Cálculo da superfície efetiva de dissipação A (m^2) de um painel:

O cálculo da superfície "A" é feito conforme indicado pela norma DIN-VDE, segundo o tipo de instalação do painel:

Tipo de instalação conforme a norma DIN-VDE 0660/500	Fórmula para o cálculo de A (m²)
Painel livre de todos os lados	A = 1,8 * H * (L + P) + 1,4 * L * P
Painel com a superfície traseira obstruída	A = 1,4 * L * (H + P) + 1,8 * P * H
Painel com uma superfície lateral obstruída	A = 1,4 * L * (H + L) + 1,8 * L * H
Painel com uma lateral e a superfície traseira obstruídas	A = 1,4 * H * (L + P) + 1,4 * L * P
Painel com as duas laterais obstruídas	A = 1,8 * L * H + 1,4 * L * P + P * H
Painel com as duas laterais e a superfície traseira obstruídas	A = 1,4 * L * (H + P) + P * H
Painel com as duas laterais e a superfície traseira e superior obstruídas	A = 1,4 * L * H + 0,7 * L * P + P * H

Tabela 5-1. Cálculo da Superfície Efetiva de Dissipação

L = Largura (m), H = Altura (m), P = Profundidade (m)

Na aplicação em painéis construídos com chapa de aço pintada, para o ar parado ao seu redor, a constante de dissipação de calor pode ser considerada 5,5 W/m² °C.

A potência dissipada por um painel pode então ser calculada por meio da equação Qs = k * A * (temperatura interna – temperatura externa), ou obtida a partir da Figura 5-23.

POTÊNCIA DISSIPADA PELA SUPERFÍCIE DO PAINEL

Figura 5-23. Potência Dissipada x Superfície x Dif. de Temperatura

Este valor poderá no entanto ser triplicado se for provocada circulação de ar no exterior do painel.

A circulação de ar em um painel é obstruída pela instalação dos equipamentos em seu interior, conduzindo à formação de focos de aquecimento localizados. Nesta situação, pode-se obter uma ajuda para a circulação desejada do ar por meio da instalação de ventiladores internos ao painel, aumentando o fluxo do ar em seu interior.

A circulação forçada através de ventiladores no interior do painel traz também uma melhora na convecção própria e uma tendência a se igualarem as temperaturas ao longo do painel. Sem a circulação forçada do ar tem-se um foco de calor no alto do painel, em virtude da convecção.

Exemplos:

01050200

Para um painel livre de todos os lados, com área efetiva de 3,96 m², potência instalada de 350W e temperatura ambiente externa de 30 °C, calcule a temperatura média interna.

Qs = k * A * (Ti - Te)350 = 5,5 * 3,96 * (Ti - 30) Ti = 46 °C

Para o mesmo painel, calcule a temperatura interna para uma potência instalada de 1000 W.

Qs = k * A * (Ti - Te)1000 = 5,5 * 3,96 * (Ti - 30) Ti = 76 °C,

Neste caso, a temperatura excedeu o limite de operação dos equipamentos (60 °C), e deve ser providenciada uma outra maneira para retirada do calor excedente. O limite da potência instalada para a temperatura interna de 60 graus é:

Qs = k * A * (Ti - Te)

Qs = 5,5 * 3,96 * (60 - 30)

Qs = 653 W, sendo o limite 653 W, os 347 W restantes (1000 W – 653 W) devem ser retirados, por exemplo, através de um equipamento de ar-condicionado.

ATENÇÃO:

Nos cálculos anteriores, observar que a temperatura interna, é sempre uma temperatura média, e que caso não haja circulação forçada de ar no interior do painel, a temperatura no topo do painel será maior que na base, e poderão existir focos quente localizados. A devida margem de segurança deve ser dada em cada caso.

Figura 5-24. Exemplos de Movimentação do Calor - Instalação Fechada

Uma dissipação bem maior de calor, comparando-se com a obtida anteriormente, pode ser alcançada se for permitida a troca de ar com o exterior. A ventilação é normalmente realizada introduzindo-se venezianas de ventilação nas laterais, na porta ou na tampa traseira. Isto irá evidentemente reduzir o grau de proteção (IP) do painel.

Figura 5-25. Exemplo de Movimentação do Calor – Instalação Aberta
6. Manutenção

Ao longo da operação ou funcionamento do sistema, algumas anormalidades podem ser eventualmente encontradas pelo usuário. Os itens a seguir apresentam as anormalidades mais comuns e dão instruções sobre os procedimentos a serem tomados em cada caso.

Diagnósticos

A manutenção de módulos é facilitada pela disponibilidade dos dados de diagnósticos, característica de toda a Série Grano.

Diagnósticos são mensagens que o microcontrolador disponibiliza ao usuário relatando anormalidades. Existem duas formas de identificar situações de diagnóstico:

- via painel (visual): através dos LEDs de indicação de modo de operação e através dos LEDs de E/S (solicitado pela operação com as teclas).
- via operandos: através da monitoração de operandos de diagnósticos do CP. O microcontrolador Grano fornece o diagnóstico em operandos %M divididos em duas faixas de operandos, configuradas separadamente via MasterTool: operandos de diagnóstico do sistema (referentes à operação do microcontrolador), e operandos de diagnóstico de E/S (diagnóstico dos octetos de E/S integrados ao microcontrolador).

Diagnósticos via Painel

Os microcontroladores da Série Grano possuem LEDs no seu painel frontal para indicar diferentes modos de operação, atividade da comunicação serial e protocolo em uso (EX, PG, ER, AI e CM), bem como para auxiliar no diagnóstico de eventuais erros (DG).

A tabela a seguir mostra os estados possíveis dos LEDs e a correspondente representação que será utilizada:

Estado	Representação				
Ligado	•				
Piscando alternadamente	Х				
Piscando 1 vez	1X				
Piscando 2 vezes	2X				
Piscando 3 vezes	3X				
Piscando 4 vezes	4X				
Desligado	0				
Qualquer estado	-				

Tabela 6-1. Representação dos LEDs.

ATENÇÃO: Existem dois grupos de LEDs utilizados para indicações de diagnósticos via painel: os LEDs de modo de operação (EX, PG, DG, ER, AI e CM), e os LEDs de E/S (OUTPUT T, R, INPUT I e INPUT J).

Diagnósticos via LEDs de modo de operação

Os modos de operação do microcontrolador são representados pela seguinte combinação:

Modo de operação	EX	PG	DG	ER	AI	СМ
Execução	•	0	-	0	-	-
Programação	0	•	-	0	•	-
Ciclado	•	•	-	0	-	-
Erro	-	-	-	٠	•	-
Inicializando	•	•	•	•	•	0
Erro de cão-de-guarda	•	•	•	•	•	٠

Tabela 6-2. Indicações dos LEDs modo de operação

ATENÇÃO:

O modo erro de cão-de-guarda não constitui um modo de operação propriamente dito, mas é uma situação possível na análise de diagnósticos.

O modo de inicialização ocorre por alguns segundos ao energizar o equipamento

Particularmente, o LED DG tem a função de informar visualmente diagnósticos que estejam ocorrendo no momento. Caso o LED DG esteja ligado não existe diagnóstico. A tabela a seguir demonstra todas a possibilidades deste LED:

EX	PG	DG	ER	AI	Modo	Causas
					Execução	- Carregando módulo via serial
•	0	Х	0	-		- Transferência de módulos entre RAM e Flash
						- Compactando RAM
						- Módulo relógio ausente ou com bateria fraca *
•	0	1X	0	-		 Temperatura ambiente acima de 65°C (limite para operação do microcontrolador) *
						 Entradas ou saídas analógicas descalibradas *
•	0	2X	0	-		Saídas desabilitadas
•	0	3X	0	-		Ponto forçado
•	0	4X	0	-		Módulo com diagnóstico
•	0	•	0	-		Sem diagnóstico
0	٠	Х	0	٠	Programação	Carregando módulo/transferência
0	•	4X	0	•		Módulo com diagnóstico
0	•	•	0	•		Sem diagnóstico
•	٠	Х	0	-	Ciclado	Carregando módulo/transferência
•	•	2X	0	-		Saídas desabilitadas
•	•	3X	0	-		Ponto forçado
•	•	4X	0	-		Módulo com diagnóstico
•	٠	•	0	-		Sem diagnóstico
0	1X	0	•	•	Erro	Erro sem módulo C000 e/ou E001
1X	0	0	•	•		Tempo de ciclo excedido
0	0	1X	•	•		Erro nos módulos do barramento *
0	0	2X	•	•		Operandos retentivos não restaurados

Tabela 6-3. Diagnósticos do LED DG

Notas:

A indicação de alguns diagnósticos dependem do modelo do microcontrolador. Os diagnósticos de temperatura existem apenas nos modelos que possuem entradas termopar; os diagnósticos dos canais analógicos existem apenas nos modelos com entradas e/ou saídas analógicas; os diagnósticos sobre módulos do barramento existem apenas nos modelos que possuem expansão.

Além do LED DG, o microcontrolador ainda tem os LEDs de comunicação (AI e CM). Os estados que podem ser mostrados pelo LED CM são apresentados na próxima tabela.

Atividade dos canais seriais	СМ
Sem atividade no canal	0
CP transmitindo ou recebendo mensagem	Х
CP em erro de cão-de-guarda	•

Tabela 6-4. LED de transmissão e recepção do canal serial

O LED AI serve para indicar qual protocolo está sendo executado no canal de comuncação. Os modos que podem ser mostrados pelo LED AI são apresentados na próxima tabela.

Protocolo Selecionado	AL
ALNET I escravo	•
MODBUS RTU escravo	0

Tabela 6-5. LED de seleção do protocolo do canal serial

Diagnósticos via LEDs de E/S

Conforme mencionado no capítulo 3 - Configuração, é possível selecionar, através das teclas, o modo Visualização de Diagnósticos, onde os LEDs de E/S passam então a indicar diagnósticos do microcontrolador.

Estes diagnósticos são divididos em dois grupo, onde um grupo é indicado nos LEDs "OUTPUT T", e o outro grupo nos LEDs "INPUT I" e "INPUT J".

As mensagens de diagnóstico indicadas nos LEDs "OUTPUT T" podem ser vistas abaixo:

OUTPUT T								Erro
0	1	2	3	4	5	6	7	
0	٠	0	0	0	0	0	0	Erro no apagamento da memória Flash
•	٠	0	0	0	0	0	0	Erro na gravação da memória Flash
0	٠	•	٠	٠	0	0	0	CP sem módulo de configuração C000
•	•	•	٠	٠	0	0	0	CP sem módulo de execução E001
0	0	0	0	0	•	0	0	Tempo de ciclo máximo excedido
٠	0	0	0	0	•	0	0	Erro de reentrada em E018
٠	٠	0	0	0	٠	0	0	Erro no retorno de módulo aplicativo
0	٠	٠	٠	0	٠	0	0	Erro no checksum do módulo
0	٠	•	0	٠	•	0	0	Módulo Inválido
0	0	0	0	٠	0	٠	0	Instrução inválida
0	0	0	٠	0	0	٠	٠	Chamada de módulo inexistente
•	0	0	٠	0	0	٠	٠	Estouro da pilha de chamada de módulos P e F
•	•	0	•	0	0	٠	•	Falha de módulo no barramento
0	•	0	0	٠	0	٠	٠	Módulo Relógio Ausente ou Bateria Fraca

Tabela 6-6. Mensagens de Advertência pelos LEDs

ATENÇÃO:

Neste grupo de LEDs, apenas uma mensagem por vez é indicada, obedecendo ordem de prioridade. Esta informação não é mostrada quando o microcontrolador estiver no estado de programação.

Através do outro grupo de LEDs, "INPUT I" e "INPUT J", também é possível identificar diagnósticos do microcontrolador. Nestes LEDs, porém, as mensagens podem ser indicadas simultaneamente, visto que cada LED indica uma mensagem específica.

A tabela abaixo indica os erros indicados através dos LEDs "INPUT I".

			INP	UTI				Erro
0	1	2	3	4	5	6	7	
٠	х	х	х	х	х	х	х	Sobrecarga nas saídas a transistor
х	٠	х	х	х	х	х	x x Edição via teclado protegida	
x	x	•	x	x	x	x	 Houve reset do microcontrolado x detecção de tensão de alimenta abaixo da nominal 	
x	x	x	•	x	x	x	x x Módulo relógio ausente ou com bateria fraca	
x	x	x	x	•	x	x	x	Temperatura ambiente acima de 65ºC (fora da faixa de operação do microcontrolador)
x	x	x	x	x	•	x	x	Protocolo MODBUS desabilitado por opção do usuário ou configuração inválida das relações

Tabela 6-7. Mensagens Específicas pelos LEDs INPUT I

A tabela abaixo indica os erros indicados através dos LEDs "INPUT J".

			INP	UT J				Erro
0	1	2	3	4	5	6	7	
•	х	х	х	х	х	x	x	Canais analógicos não parametrizados ou com parametrização errada
х	•	х	х	х	х	х	x x Entradas analógicas não-calibradas	
х	х	•	х	х	х	х	x x Saídas analógicas não-calibradas	
х	х	х	•	х	х	х	x x Há algum canal com termopar abe	
x	х	х	х	•	x	x	x	Há algum canal com overrange da escala de medição

Tabela 6-8. Mensagens Específicas pelos LEDs INPUT J

Diagnósticos do Sistema via Operandos

Além da visualização dos diagnósticos por meio de LEDs, o usuário pode obter informações sobre o sistema ou sobre os módulos através de operandos e de um sistema supervisório, IHM ou programa aplicativo. Diagnósticos do sistema informam status e erros gerais; diagnósticos de módulos informam os status dos módulos individualmente. Para obter maiores detalhes sobre a configuração dos operandos de diagnósticos, consulte o MasterTool Programming – Manual de Utilização (MU299025).

Com esta disponibilidade de obter diagnósticos do microcontrolador através de operandos do programa aplicativo, o usuário pode inserir no seu programa o devido tratamento para as situações indicadas.

Os diagnósticos fornecidos pelo sistema e pelos módulos via operandos são apresentados a seguir. Mais adiante, cada um dos operandos e seus respectivos bytes serão apresentados.

Modelo do microcontrolador

Com este diagnóstico, é possível identificar qual o modelo do microcontrolador utilizado.

Modelo de HardFlex

Informa o modelo de HardFlex que está carregado no sistema no momento, para o modelos que suportam esta característica.

Versão Executivo

Informa a versão do software executivo. Esta informação é dividida em dois bytes, por exemplo: para o software executivo versão 1.37, o byte alto informará o valor 01H, e o byte baixo informará o valor 37H.

Versão HardFlex

Informa a versão do HardFlex carregado. Assim como a versão do executivo, é apresentado no formato hexadecimal.

Modo de Operação

Informa o modo em que o microcontrolador se encontra (Inicialização, Execução, Ciclado, Programação ou Erro) e que operações está executando.

Diagnósticos Gerais

Permite identificar a ocorrência de situações diversas:

- Problemas nas saídas digitais
- Edição operandos via teclado desabilitada
- Houve reset devido a tensão abaixo da nominal na inicializção
- Temperatura fora da faixa de operação
- Relógio montado ou nível de tensão da bateria baixo

Contadores de Erro do Canal Serial

A cada erro ocorrido na comunicação serial, este contador é incrementado. Os tipos de erros computados neste contador são overrun, paridade e framming, ou seja, erros específicos de comunicação. Se este contador estiver sendo incrementado muitas vezes por ciclo, isso poderá indicar problemas na qualidade da linha de comunicação na serial.

Tempo Ciclo do CP

Informa o tempo de ciclo do CP (tempo do programa aplicativo), que pode ser médio, máximo, mínimo ou instantâneo.

Estado dos Módulos

Apresenta o estado dos módulos do barramento.

Contadores de Comunicação do Barramento

Estes contadores acumulam o número de comunicações(dividido por 1000) do barramento de E/S do Grano e a contidade de comunicações com erro. A porcentagem de frames com erro(porcentagem de retentativa) pode ser obtido fazendo a razão destes contadores.

Estado dos Protocolos

Identifica os protocolos habilitados no canal serial do microcontrolador.

Tipo de Instrução Inválida

Algumas instruções para UCPs Altus não são utilizadas nas UCPs PO3x42. Se um programa aplicativo que contenha instruções inválidas for carregado numa PO3x42, será apresentada a mensagem de advertência: Instrução Inválida no Programa.

Para facilitar a localização da instrução inválida, é apresentado em um byte de diagnóstico o código da instrução.

Tabela de Diagnósticos em Operandos

Os bytes de diagnósticos são disponibilizados ao usuário através de operandos %M, como falado anteriormente. Porém, cada %M possuem dois bytes, fazendo com que dois bytes de diagnósticos sejam apresentados por operando %M. Para identificação da "posição" do byte dentro do operando %M, lembramos que o byte par de diagnóstico representa os bits 8 a 15 do operando %M, enquanto o byte ímpar representa os bits 0 a 7. Na tabela abaixo vemos um exemplo, supondo que o primeiro operando de diagnóstico é o operando %M0000:

	Bits do operando %M																
Operando	1 5	1 1 1 1 1 1 0 0 5 4 3 2 1 0 9 8 7							0 7	0 6	0 5	0 4	0 3	0 2	0 1	0 0	
%M0000		Byte 00									Byte 01						
%M0001		Byte 02							Byte 03								
%M0002		Byte 04								Byte 05							
%M0003				Byte	e 06				Byte 07								

Tabela 6-9. Posição dos bytes de diagnósticos nos operandos %M

A tabela a seguir indica os estados possíveis de cada bit dos operandos de diagnóstico e a representação que será utilizada nas tabelas a seguir:

Estado	Representação
Bit em estado "1"	1
Bit em estado "0"	0
Qualquer estado	х

Tabela 6-10. Representação dos bits em operandos %M

A tabela a seguir apresenta todos os bytes dos operandos de diagnósticos:

Byte 0 - Modelo do microcontrolador								Descripão			
7	6	5	4	3	2	1	0	Descrição			
1	0	1	1	0	0	0	0	GR310 – (B0h)			
1	0	1	1	0	0	0	1	GR316 – (B1h)			
1	0	1	1	0	0	1	0	GR330 – (B2h)			
1	0	1	1	0	0	1	1	GR350 – (B3h)			
1	0	1	1	0	1	0	0	GR351 – (B4h)			
1	0	1	1	0	1	1	0	GR370 – (B6h)			
1	0	1	1	0	1	1	1	GR371 – (B7h)			
Byte 1 – Modelo de HardFlex Carregado							do	Descrição (Ver nota 1)			
х	х	х	х	х	х	х	х	Modelo de HardFlex			
Byte 2 - Versão do Executivo H								Descrição			
х	х	х	х	х	х	х	х	Byte alto da versão do executivo			
Byte 3 - Versão do Executivo L								Descrição			
х	х	х	х	х	х	х	х	Byte baixo da versão do executivo			
Byte 4 - Versão do HardFlex H								Descrição (Ver nota 2)			
х	х	х	х	х	х	х	х	Byte alto da versão do HardFlex carregado			
Byte	e 5 - V	ersão	do H	ardFle	ex L			Descrição (Ver nota 2)			
х	х	х	х	х	х	х	х	Byte baixo da versão do HardFlex carregado			
Byte	e 6 - N	lodo d	de Op	eraçã	0			Descrição			
0	0	1	0					Modo Ciclado			
0	1	0	0					Modo Programação			
1	0	0	0					Modo Execução			
				х	х	х	х	Reservado			
Byte	e 7 – N	lodo	de Op	eraçã	io			Descrição			
0								Operação Normal			
1								Fazendo operação com módulo (Compactando RAM ou enviando módulo)			
	0							Relés não forçados			
	1							Relés forçados			
		0						Saídas habilitadas			
		1						Saídas desabilitadas			

			х	х	х	х	Х	Reservado			
Byte	e 8 - I	Diagnó	stico	Hard	ware C	Geral		Descrição			
						0		Saídas digitais sem problemas			
						1		Sobrecarga nas saídas a transistor			
					0			Edição de operandos via teclado permitida			
					1			Protegida a edição de operandos via teclado			
				0				Microcontrolador inicializou com fonte de alimentação sem problemas			
				1				Houve reset do microcontrolador por detecção de tensão de alimentação abaixo da nominal			
			0					Temperatura ambiente inferior ao limite máximo de operação (menor que 65º C) (Ver nota 3)			
			1					Microcontrolador operando com temperatura ambiente acima da máxima permitida (maior que 65º C) (Ver nota 3)			
		0						Relógio montado e nível de tensão da bateria sem problemas (Ver nota 4)			
		1						Relógio não montado ou com bateria fraca (Ver nota 4)			
х	х						х	Reservado			
Byte	e 9 - (Contac	lor de	Erros	S CON	11		Descrição (Ver nota 5)			
х	х	х	x	х	х	х	х	Erros da serial COM1			
Byte	e 10 -	Temp	o de E	Execu	ção M	lédio I	4	Descrição			
х	х	х	х	х	х	х	х	Tempo de execução médio H			
Byte	ə 11 -	Temp	o de E	Execu	ção M	lédio I	-	Descrição			
х	х	х	х	х	х	х	х	Tempo de execução médio L			
Byte	e 12 -	Temp	o de E	Execu	ção M	láximo	н	Descrição			
х	х	х	x	х	х	x	х	Tempo de execução máximo H			
Byte	e 13 -	Temp	o de E	Execu	ção M	láximo) L	Descrição			
x	x	x	x	x	x	x	х	Tempo de execução máximo L			
Byte	e 14 -	Temp	o de E	Execu	cão M	línimo	н	Descrição			
x	x	x	x	x	x	x	х	Tempo de execução mínimo H			
Bvte	e 15 -	Temp	o de E	Execu	cão M	línimo	L	Descrição			
x	x	x	X	x	x	x	x	Tempo de execução mínimo L			
Byte	e 16 -	Temp	o de E	Execu	ção	1					
Inst	antâr	neo H	_	1	-	1		Descrição			
х	х	х	Х	х	х	х	х	Tempo de execução instantâneo H			
Byte Inst	e 17 - antâr	Temp neo L	o de E	Execu	ção	1		Descrição			
х	х	х	Х	х	х	х	х	Tempo de execução instantâneo L			
Byte Bari	e 18 - rame	- 27 – I nto	Estad	o dos	Módu	llos de)	Descrição (Ver nota 6)			
0	0	0	0	0	0	0	0	Módulo inicializado e comunicando			
0	1	0	0	0	0	0	0	Falha na inicialização do módulo			
1	0	0	0	0	0	0	0	Falha na comunicação com o módulo			
Byte Barı	e 28 - rame	- Conta nto H (ador ((/1000	Comui)	nicaçõ	ŏes –		Descrição (Ver nota 7)			
х	Х	х	Х	х	х	х	х	Comunicações já realizadas no barramento, dividido por 1000			
Byte Barı	e 29 - rame	- Conta nto L (ador (/1000)	Comui)	nicaçõ	ŏes –		Descrição (Ver nota 7)			
х	х	x	Х	х	х	х	х	Comunicações já realizadas no barramento, dividido por 1000			
Byte Erro	Byte 30 – Contador Comunicações com Erros no Barramento H						m	Descrição (Ver nota 7)			
х	х	х	Х	х	х	х	х	Contador de comunicações com erro no barramento			
Byte Erro	∋ 31 - os no	Conta Barra	ador (mento	Comui o L	nicaçõ	ões co	m	Descrição (Ver nota 7)			
х	х	Х	Х	х	х	х	х	Contador de comunicações com erro no barramento			
Byte	e 32 -	- Estad	do dos	s Prot	ocolo	s Seri	ais	Descrição			

					-	-		
						0		Protocolo MODBUS Escravo Habilitado
						1		Protocolo MODBUS Escravo Desabilitado por opção do usuário ou configuração inválida das relações
х	Х	Х	Х	х	х		х	Reservado
Byte	ə 33 —	Tipo	de ins	struçã	o invá	lida		Descrição
0	0	0	1	0	0	1	1	CES – (19)
0	0	0	1	0	1	0	0	MÊS – (20)
0	0	0	1	0	1	0	1	AES - (21)
0	0	1	0	0	1	1	1	A/D – (39)
0	0	1	0	1	0	0	0	D/A – (40)
0	0	1	0	1	0	0	1	ECR – (41)
0	0	1	0	1	0	1	0	LTR – (42)
0	0	1	0	1	0	1	1	LAI – (43)
0	0	1	0	1	1	0	0	ECH – (44)
0	0	1	0	1	1	0	1	LTH – (45)
0	0	1	0	1	1	1	0	LAH – (46)
Byte	e 34 a	37 – F	Reserv	vado				Descrição
х	х	x	х	х	х	х	х	Reservado

Tabela 6-11. Diagnósticos do sistema em operandos

Notas:

1 - Os modelos de Grano que não possuem HardFlex (GR310, GR316, G330) contem o valor FFh no byte 1.

2 – A versão do HardFlex, byte 4, para os modelos de Grano que não possuem HardFlex (GR310, GR316, G330) é sempre 100.

3 - O bit 4 do byte 8 é diagnóstico válido apenas para os modelos GR370 e GR371. Para os demias modelos o bit mantém o valor 0.

4 – O bit 4 do byte 8 é diagnóstico não é válido para os modelos GR310, GR316 e GR330, mantendo o valor 0.

5 – Para o contador do byte 9 o valor máximo é de 255, e retorna a zero em caso de estouro.

6 – Nos bytes 18 a 27 são apresentados os diagnósticos dos módulos, conforme seu endereço no barramento. O byte 18 é reservado para diagnóstico do mestre do barramento, e os consecutivos para cada módulo escravo do barramento. Os diagnósticos são válidos para os módulos presentes. Se não possuir mais módulos o valor do diagnóstico permanece com o valor 0.

7 – Para os contadores dos bytes 28 a 31 o valor máximo é de 65535, e retorna a zero em caso de estouro. Pode ser escrito zero no operando para recomeçar a contagem.

ATENÇÃO:

Nos módulos do sistema, anormalidades de funcionamento também podem ser identificadas através de palavras de diagnóstico. Neste caso, é necessário o uso de ferramentas como MasterTool, supervisórios, IHMs (Série Cimrex, por exemplo) junto ao canal serial do módulo. Para obter mais informações sobre estes diagnósticos, consulte a CT ou o manual específico.

Operando de diagnóstico dos pontos de E/S integrados ao microcontrolador

Além dos diagnósticos gerais do microcontrolador, demonstrados anteriormente, é também disponibilizado ao usuário um operando %M com diagnósticos dos pontos de entrada e saída integrados ao microcontrolador. Este operando é definido através do módulo C, e possui o formato abaixo:

					C	Dpe	rar	ndo	%	M						
1 5	1 4	1 3	1 2	1 1	1 0	9	8	7	6	5	4	3	2	1	0	Descrição
			х	х	х	х	х	х	х	х	х	х	х	х	х	Reservado
		0														Sobrecarga nas saídas a transistor.
		1														Saídas a transistor em funcionamento normal.
х	х															Reservado

Tabela 6-12. Operando de Diagnóstico dos pontos de E/S Internas

Operando de diagnóstico do Contador Rápido

Os CPs da Série Grano que possuem Arquitetura HardFlex disponibilizam ao usuário um operando %M com diagnósticos dos pontos de saída a transistor integrados ao microcontrolador e diagnósticos do contador rápido 24 bits pertencentes à função HardFlex GR900. Este operando é definido através do módulo C, e possui o formato abaixo:

					C	Dpe	rar	ndo	%	N						
1	1	1	1	1	1	_	_	_	_	_	_	_	_	_	_	Descrição
5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0	
															0	Contagem normal
															1	Overflow na contagem
														0		Contagem normal
														1		Underflow na contagem
													0			Direção de contagem DOWN
													1			Direção de contagem UP
												0				Contagem diferente do comparador 1
												1				Contagem igual ao comparador 1
											0					Contagem diferente do comparador 2
											1					Contagem igual ao comparador 2
										0						Contagem diferente de zero
										1						Contagem igual a zero
			х	х	х	х	х	х	х							Reservado
		0														Sobrecarga nas saídas a transistor.
		1														Saídas a transistor em funcionamento normal.
х	x															Reservado

Tabela 6-13. Operando de Diagnóstico do Contador Rápido

Operando de diagnóstico das Saídas Rápidas VFO

Os CPs da Série Grano que possuem Arquitetura HardFlex disponibilizam ao usuário um operando %M com diagnósticos dos pontos de saída a transistor integrados ao microcontrolador e diagnósticos das saídas rápidas VFO pertencentes à função HardFlex GR900. Este operando é definido através do módulo C, e possui o formato abaixo:

					C	Эре	erar	ndo	%	М						
1 5	1 4	1 3	1 2	1 1	1 0	9	8	7	6	5	4	3	2	1	0	Descrição
															0	Saída VFO 0 parada
															1	Saída VFO 0 em funcionamento
														0		Saída VFO 1 parada
														1		Saída VFO 1 em funcionamento
													0			Saída VFO 0 em funcionamento normal
													1			Saída VFO 0 em curto circuito
												0				Saída VFO 1 em funcionamento normal
												1				Saída VFO 1 em curto circuito
			х	х	х	х	х	х	х	х	х					Reservado
		0														Sobrecarga nas saídas a transistor.

ſ			1							Saídas a transistor em funcionamento normal.
	х	х								Reservado

Tabela 6-14. Operando de Diagnóstico das Saídas Rápidas VFO

Operandos de Diagnóstico dos Canais Analógicos

Os modelos de microcontroladores da Série Grano que possuem canais analógicos disponibilizam ao usuário sete bytes de diagnóstico sobre seu funcionamento. Estes bytes são disponibilizados em operandos %M, configurados através do MasterTool, na janela de configuração do barramento, onde os operandos de diagnóstico analógicos são identificados com o valor 00 na coluna "Idx". O significado destes diagnósticos podem ser vistos na tabela abaixo:

		В	yte 0 ·	- Stat	us			Descrição	
7	6	5	4	3	2	1	0	Descrição	
							0	Leitura dos dados analógicos no barramento interno sem problemas.	
							1	Erros na leitura dos dados analógicos via barramento interno.	
х	х	х	х	х	х	х			
	Byte	1 – Ca	anais	Analó	gicos	Geral		Descrição	
							0	Módulo parametrizado.	
							1	Módulo não parametrizado.	
						0		Parametrização corretamente recebida.	
						1		Parametrização inválida.	
					0			Entradas calibradas.	
					1			Entradas não calibradas.	
				0				Saídas calibradas.	
				1				Saídas não calibradas.	
			0					Temperatura de operação correta.	
			1					Módulo operando fora da temperatura permitida.	
х	х	х						Reservado.	
	By	te 2 –	Entra	da An	alógi	ca O		Descrição	
							0	Canal configurado corretamente.	
							1	Canal com configuração inválida.	
						0		Termopar conectado.	
						1		Termopar aberto.	
					0			Escala de medição dentro da faixa.	
					1			Overrange na escala de medição.	
х	х	х	х	х				Reservado.	
	By	te 3 –	Entra	da An	alógio	ca 1		Descrição	
							0	Canal configurado corretamente.	
							1	Canal com configuração inválida.	
						0		Termopar conectado.	
						1		Termopar aberto.	
					0			Escala de medição dentro da faixa.	
					1			Overrange na escala de medição.	
х	х	х	х	х				Reservado.	
	By	te 4 –	Entra	da An	alógi	ca 2		Descrição	
							0	Canal configurado corretamente.	
							1	Canal com configuração inválida.	
						х		Reservado.	
					0			Escala de medição dentro da faixa.	
					1			Overrange na escala de medição.	
х	х	х	x	х				Reservado.	
	By	te 5 –	Entra	da An	alógi	ca 3		Descrição	
							0	Canal configurado corretamente.	

							1	Canal com configuração inválida.
						х		Reservado.
					0			Escala de medição dentro da faixa.
					1			Overrange na escala de medição.
х	х	х	х	х				Reservado.
	Ву	/te 6 -	- Saíd	a Ana	lógica	a 0		Descrição
							0	Canal configurado corretamente.
							1	Canal com configuração inválida.
х	х	х	х	х	х	х		Reservado.
	Ву	/te 7 -	- Saíd	a Ana	lógica	a 1		Descrição
							0	Canal configurado corretamente.
							1	Canal com configuração inválida.
х	х	х	х	х	х	х		Reservado.

Tabela 6-15. Bytes de diagnóstico dos canais analógicos.

Operando de diagnóstico do Modo Clone

Quando configurado, o Modo Clone disponibiliza ao usuário, na UCP mestre, blocos de 2 operandos %M com diagnósticos de cada módulo escravo do barramento. Estes operandos são definido através da janela de barramento, quando configura-se um escravo.

Estes diagnósticos apresentam características operacionais do escravo, como pontos forçados, por exemplo. Outra informação que é apresentada é uma imagem do Diagnóstico via LEDs de E/S do escravo, que é apresentada em operandos no mestre, seguindo a mesma formatação dos LEDs do escravo. A organização destes diagnóisticos é apresentada a seguir:

Byte	te 0 – Status do Modulo Escravo							Decerieão
7	6	5	4	3	2	1	0	Descrição
0	0	0	0					Escravo em Modo Erro
0	0	0	1					Escravo em Modo Teste
0	0	1	0					Escravo em Modo Ciclado
0	1	0	0					Escravo em Modo Programação
1	0	0	0					Escravo em Modo Execução
				Х	Х	Х	Х	Controle do Modo Clone
Byte	e 1 – N	llensa	gem o	de Dia	gnost	ico		Descrição
Byte X	e 1 – № X	/lensa X	gem o X	de Dia X	gnost X	ico X	х	Descrição Ver tabela Mensagens de Advertência pelos LEDs no item Diagnósticos via LEDs de E/S
Byte X Byte	e 1 – M X e 2 – [Alensa X Diagno	gem o X ostico	de Dia X via L	gnost X EDs -	ico X INPU	X	Descrição Ver tabela Mensagens de Advertência pelos LEDs no item Diagnósticos via LEDs de E/S Descrição
Byte X Byte X	≥ 1 – M X ≥ 2 – C X	Alensa X Diagno X	ostico	de Dia X via L X	ignost X EDs - X	ico X INPU X	X TI X	Descrição Ver tabela Mensagens de Advertência pelos LEDs no item Diagnósticos via LEDs de E/S Descrição Ver tabela Mensagens Específicas pelos LEDs INPUT I no item Diagnósticos via LEDs de E/S
Byte X Byte X Byte	e 1 – M X e 2 – C X e 3 – C	Aensa X Diagno X Diagno	gem o X ostico X ostico	de Dia X via L X via L	EDs - EDs -	ico X INPU X INPU	X TI X TJ	Descrição Ver tabela Mensagens de Advertência pelos LEDs no item Diagnósticos via LEDs de E/S Descrição Ver tabela Mensagens Específicas pelos LEDs INPUT I no item Diagnósticos via LEDs de E/S Descrição

Tabela 6-16. Operandos de Diagnóstico do Modo Clone

Notas:

O bits de zero a três do byte Status do Módulo Escravo são utilizados pelas UCPs para controle do barramento, não devendo ser utilizados no programa aplicativo.

Erros na Operação

A tabela a seguir apresenta as anormalidades mais comuns observadas nos CPs da Série Grano, bem como explicações sobre a identificação de cada tipo de erro e procedimentos a serem executados para corrigi-lo.

EX	PG	DG	ER	Modo	Significado	Causa	Ação
•	•	•	•	Cão-de- guarda	Circuito de cão- de-guarda do microcontrolador ativo	- Erro no programa aplicativo - o microcontrolador está com defeito	 Desligar e religar a alimentação AC do sistema. Se o erro persistir, conectar o programador e passar o microcontrolador para o modo programação, disparando o comando nos três segundos iniciais após a energização. Se o mesmo passar para o modo programação, algum erro no programa aplicativo está ocorrendo e deve ser analisado. Caso não seja possível entrar no modo programação, isso é sinal de que o microcontrolador está com defeito.
0	1x	0	•	Erro	Erro de programa aplicativo	 Não existem os módulos de programa necessários para a execução do programa aplicativo (C000 e/ou E001) O programa aplicativo está com erro ou o checksum de algum módulo de programa está incorreto 	 Consultar a causa do erro com o programador na janela de informações de estado do CP. Se o programa aplicativo está correto ou se a causa do erro foi checksum incorreto, passar o CP para o modo Programação, remover todos os módulos do programa e carregar novamente todo o programa aplicativo. Caso o erro persista, isso é sinal de que a UCP está com defeito.
1x	0	0	•	Erro	Erro de execução do programa ou de E/S	Durante a execução do programa aplicativo, o tempo de ciclo foi excedido	Consultar a causa do erro com o programador na janela de informações de estado do CP. Observar o LED de diagnóstico ou monitorar os operandos de diagnóstico do sistema. Se o erro for de tempo de ciclo, deve-se reduzir o programa até atingir o tempo de ciclo desejado ou aumentar o tempo máximo de ciclo no programador. Para obter maiores informações, consulte o manual de utilização do software programador utilizado.
0	0	1x	•	Erro	Três significados possíveis: - problema no relógio. - canais analógicos descalibrados. - temperatura ambiente acima do permitido.	 o módulo relógio não está presente ou está com bateria fraca. os canais analógicos de entrada ou saída não estão corretamente calibrados. a temperatura de operação do microcontrolador está acima da máxima permitida. 	 Inserir o módulo relógio ou substitui a bateria. Entrar em contato com o suporte técnico da altus (no caso dos canais analógicos descalibrados). Melhorar a refrigeração do ambiente de modo a reduzir a temperatura de operação do microcontrolador.
0	0	2x	•	Erro	Erro de configuração	 Um módulo exigia parâmetros e não recebeu ou recebeu parâmetros que não tivesse exigido Houve um erro de consistência no módulo C000 	 O microcontrolador recebeu uma configuração inválida de parâmetros para módulos, onde um módulo que não possuía parâmetros os recebeu, ou onde um módulo que exigia parâmetros não os recebeu. Houve um erro de consistência no módulo C000 (um módulo de configuração com informações inválidas). Isso pode ocorrer caso o módulo C000 tenha sido modificado por alguma aplicação diferente do programador ou por um programador com uma versão muito antiga.

1x	1x	0	0	Teste	Microcontrolador em modo de teste	O microcontrolador entrou em modo teste.	Neste modo, o microcontrolador não tem as funcionalidades de CP. Para tirá-lo deste modo, é necessário reiniciar o microcontrolador. Caso isto aconteça, é aconselhável também verificar o que provocou a entrada o Grano neste modo e contatar o suporte da Altus.
0	0	•	•		Tensão de alimentação insuficiente.	A fonte de alimentação do microcontrolador está com tensão abaixo da tensão nominal de operação.	Verificar a tensão da fonte de alimentação, e corrigir o valor da tensão para o valor especificado neste manual.

Tabela 6-16. Situações de erro do microcontrolador

Outras Situações de Erro

A tabela a seguir apresenta outras situações de erro que podem ser observadas nos microcontroladores:

Situação	Ação
O LED CM não pisca quando o CP está em ALNET I e se buscam	 Verificar o modelo e as condições do cabo de interligação do microcomputador com o microcontrolador.
informações do CP com o programador através de canal serial	 Conferir se o canal de comunicação utilizado no microcomputador é o mesmo selecionado pelo programador.
	- Verificar o aterramento entre os equipamentos.
	 Caso o erro persista, provavelmente a porta serial do microcomputador ou do CP estão danificadas.
	- Substituir o microcontrolador e utilizar outro microcomputador ou outra porta serial com o software programador.

Tabela 6-17. Outras situações de erro

ATENÇÃO:

Se, após a execução desses procedimentos, o problema não for resolvido, recomenda-se anotar os procedimentos executados, substituir os equipamentos avariados e entrar em contato com o Departamento de Suporte da ALTUS para manutenção do sistema.

Canais Analógicos

Os conversores A/D e D/A do microcontrolador necessitam estar calibrados para que a tensão seja corretamente convertida, tanto no caso das entradas e saídas analógicas, como nas entradas termopar.

A calibração do microcontrolador é realizada no processo de fabricação do produto, existindo uma assinatura gravada em memória Flash internamente garantindo a integridade dos dados de calibração.

Caso o LED DG esteja piscando uma vez, e os bits "Entradas descalibradas" ou "Saídas descalibradas" estejam acionados, significa que os canais analógicos não estão corretamente calibrados. Neste caso, o grupo de canais que não possui calibração (entradas ou saídas) entram em "modo seguro": as saídas são colocadas em 0V e as entradas são lidas com o valor decimal 4095 nos seus operandos de leitura.

Neste caso, deve-se entrar em contato com o suporte imediatamente.

Manutenção Preventiva

- Deve-se verificar, a cada ano, se os cabos de interligação estão com as conexões firmes, sem depósitos de poeira, principalmente os dispositivos de proteção.
- Em ambientes sujeitos a contaminação excessiva, deve-se limpar periodicamente o equipamento, retirando resíduos, poeira, etc.

• Os varistores utilizados para a proteção contra transientes, causados por descargas atmosféricas, devem ser inspecionados periodicamente, pois podem estar danificados ou destruídos, caso a energia absorvida esteja acima do limite. Em muitos casos, a falha pode não ser evidente ou facilmente visível. Em aplicações críticas, é recomendável a substituição periódica dos varistores, mesmo os que não apresentarem sinais visíveis de falha. Veja mais detalhes nos *itens Circuitos de Proteção*.

Módulo Relógio

Recomendamos, na indicação de bateria fraca, disponibilizada por Diagnóstico ou operando específico, que seja efetuada a imediata substituição do módulo relógio. Deve-se executar a função de acerto do relógio em caso de troca. A peça substituída deve ser descartada de forma a não agredir o meio ambiente.

7. Tutorial

Tutorial Série Grano

O objetivo deste Tutorial é propiciar ao usuário o primeiro contato com a Série Grano de microcontroladores. Seguindo este documento, o usuário conseguirá programar um microcontrolador Grano de forma simples, assimilando o princípio básico de funcionamento da série Grano. De posse deste conhecimento, o usuário estará preparado para consultar todo o conteúdo deste manual.

Instalação Elétrica

Após desembalar o produto, e verificar a existência de possíveis defeitos mecânicos no mesmo, é hora de realizar a sua instalação elétrica. Será abordado aqui como realizar as conexões elétricas mínimas necessárias para a utilização e programação do microcontrolador. No caso de instalações mais complexas em campo, deve ser consultado o capítulo Instalação deste manual.

CUIDADO:

Ao realizar a instalação elétrica do produto, certifique-se de que a alimentação geral do sistema esteja desligada.

Bornes com Mola

O tipo de borne utilizado na série Grano possui um sistema de fixação baseado em uma mola de elevada confiabilidade. Para sua montagem, deve ser utilizada a chave PO8523 (ver figuras abaixo). A vantagem de seu emprego é a facilidade e rapidez de montagem dos cabos elétricos.

Figura 7-1. Borne com Mola

ATENÇÃO:

Não é recomendado o emprego de outra chave para bornes do tipo mola que a PO8523. Outras ferramentas podem provocar danos permanente aos contatos borne, perdendo sua funcionalidade.

Alimentação do Microcontrolador

Os microcontroladores Grano devem ser alimentados com tensão contínua de 24 Vdc nominal gerados por uma fonte de tensão externa. Os pontos da borneira responsáveis pela alimentação da parte de controle do microcontrolador estão situados bem a esquerda do módulo, denominados de +, - e \mathbf{G} , como pode ser visto salientado na Figura 7.2.

Figura 7-2. Visão Frontal Grano

Com a fonte desligada, realizar as seguintes conexões na borneira:

- Conectar o aterramento ao ponto G.
- Conectar a saída 0 Vdc da fonte de alimentação externa ao ponto -.
- Interligar os pontos e G.
- Conectar a saída 24 Vdc da fonte de alimentação externa ao ponto +.

Após realizar todas as conexões, e verificá-las, acionar a fonte de alimentação externa.

Os cinco LEDs de estado do Grano devem ascender simultaneamente, e a seguir, devem permanecer ligados apenas os LEDs ER e A1, enquanto que o LED PG deve estar piscando.

A etapa de alimentação está concluída, desligar o módulo e passar para a próxima etapa.

Conexão Serial

A Série Grano possui um canal serial no padrão RS-232 através qual é realizada a programação dos microcontroladores. Para comunicação entre Grano e PC é utilizado o cabo AL-1715 fornecido pela Altus.

Nesta etapa, com a alimentação desligada, o cabo AL-1715 deve ser conectado entre o canal serial RS-232 do PC (extremidade DB9) e o canal serial do microcontrolador Grano (extremidade RJ45).

Figura 7-3. Canal Serial

Configuração

Os microcontroladores da Série Grano são programados através do software MasterTool, que é executado em ambiente Windows versões 95/98/ME/NT/2000. Algumas das funções realizadas com o MasterTool Programming são:

- desenvolvimento do programa aplicativo para execução no microcontrolador
- configuração dos canais seriais, protocolos e operandos
- comunicação através do protocolo ALNET I v2.0 para obtenção de diagnósticos, monitoração de operandos e envio de comandos de controle para o microcontrolador

Instalação MasterTool

Vamos começar instalando o programador MasterTool, a partir de CD ou de download do site da Altus.

Requisitos de Hardware e Software

Para a instalação do MasterTool Programming são necessários os seguintes requisitos mínimos de hardware e software:

- Microcomputador IBM-PC ou compatível:
 - UCP Pentium 200 MHz ou superior
 - 64 Mbytes de memória RAM
 - 1 unidade de CD-ROM
 - 1 unidade de disco rígido com um mínimo de 50 Mbytes livres
 - 1 interface serial
- Windows 95/98/ME ou Windows NT/2000.
- Microsoft Mouse ou dispositivo compatível (opcional e recomendado).

ATENÇÃO:

No Windows NT/2000 a instalação do MasterTool Programming MT4100 deve ser feita utilizandose um login de usuário pertencente ao grupo administradores.

Instalando o MasterTool Programming

Para instalar o MasterTool no Windows a partir do CD:

- 1. Inserir o CD-ROM no drive D: ou conforme a configuração do microcomputador.
- 2. Automaticamente é exibido um programa auxiliar que pergunta qual produto será instalado. Selecione o MasterTool Programming e clique em Instalar.
- 3. Quando iniciar a instalação, seguir os procedimentos exibidos na tela.

Para instalar o MasterTool a partir da Web:

- 1. Fazer o download do MasterTool a partir do endereço: <u>www.altus.com.br</u>
- 2. Executar o arquivo salvo.
- 3. Automaticamente é exibido um programa auxiliar que pergunta qual produto será instalado. Selecione o MasterTool Programming e clique em Instalar.
- 4. Quando iniciar a instalação, seguir os procedimentos exibidos na tela.

Executando MasterTool

Terminada a instalação, vamos agora configurar o MasterTool para realizar a configuração dos microcontroladores Grano.

Iniciando o MasterTool

Após a instalação do MasterTool, é criado um novo grupo na barra de tarefas do menu iniciar do Windows™. O MasterTool pode ser iniciado pelo ícone do MasterTool.

Ícone do MasterTool

O MasterTool também pode ser iniciado como qualquer outro aplicativo Windows™ diretamente a partir do Gerenciador de Programas, Windows Explorer ou do Gerenciador de Arquivos. Também pode ser feito tal ação clicando no botão Iniciar, selecionar Programas..., MasterTool e clicar em MasterTool Programming.

Contrato de Licença de Software Altus

Para utilização software completo deve ser utilizado o Contrato de Licença de Software Altus.

MasterTool Programming - MT4000 Licença	×
Para registrar o software instalado: - Informe o nome da empresa e o número de série do produto corretamente; - Clique OK para concluir o registro do software.	*
Nome da Empresa: Número de Série: Chave de Software:	

Figura 7-4. Contrato de licença de Software Altus

Este contrato contém o nome da empresa, o número de série e a chave do produto, que são solicitados quando se executa o MasterTool pela primeira vez. Após o preenchimento correto destas informações, pode-se executar normalmente o MasterTool.

Configuração do Canal Serial

Após a instalação do MasterTool, durante sua primeira execução, deve ser selecionado o comando de menu "Opções/Comunicação" para que seja feita a configuração do canal serial que deverá ser utilizado para a comunicação com o controlador programável.

Os microcontroladores Grano são distribuídos com o canal serial configurado com velocidade de 9600 bps e sem sinais de modem. No caso da primeira comunicação com o Grano devem ser selecionadas estas configurações.

Configuraçõe	es da Serial	Canais Usados —
Porta serial:	COM1 🗾	🔽 Canal Serial
/elocidade:	9600 💌	Canal Ethernet
Uso dos s	inais RTS/CTS	Canal AL-2420

Figura 7-5. Configurando Canal Serial

Também deve ser selecionado qual canal serial do PC está conectado o cabo de comunicação com o microcontrolador.

ATENÇÃO:

Para obter informações completas sobre o MasterTool Programming, consulte os manuais específicos.

Programação

Com o software MasterTool já instalado, chegou o momento de programar o microcontrolador. Será desenvolvido um programa aplicativo simples, com o intuito de exercitar o processo de programação do Grano.

Este programa irá monitorar uma entrada, acionando uma saída se a entrada estiver em nível baixo ou outra se ela estiver em nível alto. O mesmo programa pode ser desenvolvido em qualquer microcontrolador da série Grano.

Criando um novo projeto

Vamos começar criando um novo projeto no MasterTool. Para tanto, devemos entrar no menu Projeto e selecionar a opção novo. A seguinte caixa de diálogo será exibida:

Nome do Projeto:	APLIC	
Tipo de Projeto:	Programação 🗾	
Diretório:	c:\PROGRAM\APLIC	
Módulo de Config	uração: PLICA-APLIC 000	

Figura 7-6. Novo Projeto

O campo Nome do Projeto deve ser preenchido com o nome pelo qual você deseja chamar o projeto. Após ser selecionado o diretório em que será salvo o projeto, o Mastertool cria uma pasta, com o nome do projeto, salvando a partir daí todos os dados nesta pasta.

Na opção Tipo de Projeto deve ser selecionada a opção Programação, que já é a opção padrão.

Após clicar no botão OK o projeto é criado, sendo aberto para o usuário o Módulo de Configuração, denominado, no nosso exemplo, de C-APLIC.000.

Módulo de Configuração

O Módulo de Configuração do projeto permite que o usuário selecione e altere diversas opções de cada microcontrolador. No nosso caso, vamos utilizar a configuração padrão em sua maioria.

Na opção Modelo de CP deve ser selecionado na lista apresentada o modelo de microcontrolador que está sendo utilizado: GR310, GR316, GR330, GR350, GR351, GR370 ou GR371.

dodelo de <u>C</u> P:	GR330	-			Tempo máximo	de var <u>r</u> edura
Operandos	AL-3003	_			400 ms 💌	
Total	AL-3004 GR310	_	Operar	idos Retentivos	Período aciona	nento E <u>0</u> 18
<u>M</u> emória:	GR316 GR330 CD250	a %M0127	0	Não Declarado	50 ms 💌	
<u>D</u> ecimal:	GR370 PL 101	a %D0063	0	Não Declarado	Barram	ento
<u>R</u> eal:	PL102 PL103	arado	0	Não Declarado	<u>P</u> arâme	tros
S <u>a</u> ída:	PL104 PL105	arado	0	Não Declarado	Redes	
Au <u>x</u> iliar:	PL106 P03045	a %A0511	0	Não Declarado	СОМ <u>1</u>	AL <u>N</u> ET II
Tabelas	P03145	-				()
Memó <u>r</u> ias 0	P03142	E Rea	ais 🛛	posições	Ethernet	Sincronismo
Dec <u>i</u> mais 0	P03342 QK600	ļ			COM <u>2</u>	COM <u>3</u>
	QK800 QK801	-	Bu	ites livres: 7680	PROFIBUS	

Figura 7-7. Módulo de Configuração

O primeiro octeto de saída de um microcontrolador Grano pode receber valores diferentes, dependendo do modelo de Grano utilizado.

Neste Tutorial será utilizado como padrão %S0010 como o primeiro octeto de saída de um microcontrolador Grano genérico. A tabela a seguir apresenta por que octeto deve ser trocado o %S0010 em todas as situações em que é mencionado neste documento, conforme o modelo de microcontrolador utilizado:

Microcontrolador	Primeiro Octeto de Saída
GR310	%S0001
GR316 e GR330	%S0002
GR350 e GR351	%S0002
GR370 e GR371	%S0002

Tabela 7-1. Primeiro Octeto de Saída

Módulo Principal

Após alterar o Módulo de Configuração, vamos criar o aplicativo propriamente dito, representado pelo Módulo Principal. A partir do menu Módulo e da opção Novo, visualiza-se a janela Criar Módulo.

iar Módulo			
C <u>M</u> ódulo de Partida:	e- APLIC .00	0	
Módulo Principal:	e- APLIC .00	n	
C Módulo de Interrupção de <u>T</u> empo:	e- APLIC .01	8	
C Módulo de Interrupção <u>E</u> xterna:	e- APLIC .02	0	
🔿 Módulo <u>F</u> unção:	f- APLIC.001		
C Módulo <u>P</u> rocedimento:	p- APLIC.001		
C Módulo <u>C</u> onfiguração Estendido:	c- APLIC	*	
– Tipo Módulo Configuração Este	ndido		
	~		
<u> </u>	incelar		

Figura 7-8. Criar Módulo

Deve ser selecionada a opção Módulo Principal, que no nosso exemplo será criado um módulo com o nome E-APLIC.001. Após clicar em OK é criado o novo módulo, apresentado em modo de edição.

O programa aplicativo dos microcontroladores Grano é programado em Diagrama de Relés, numa matriz de 8 linhas e quatro colunas. Após a criação do módulo, o mesmo é apresentado com a primeira célula (coluna um, linha um) selecionada.

Vamos agora inserir um contato aberto no programa. Para tanto, com a primeira célula selecionada, devemos clicar no botão Contato Aberto, e será apresentada a caixa Edição de Instrução de Contato.

	2
	E
ł	+

Figura 7-9. Botão Contato Aberto

Na caixa apresentada, vamos colocar o ponto de entrada que será monitorado pelo contato, no nosso exemplo: %E0000.0.

	+	+	+	+	+	+	+
			Edição	o de instruçã	o de contato		×
_	+	+	Та	ig ou Endere	ço:	<u>0</u> K	
			EC).0		<u>C</u> ancela	ər
	+	+	4	[]		<u>A</u> juda	
	+	+	+	+	+	+	+

Figura 7-10. Contato Aberto

Agora vamos preencher da célula dois a célula sete da primeira linha com ligações horizontais. É só selecionar uma célula de cada vez e clicar no botão Ligação Horizontal.

Figura 7-11. Botão Ligação Horizontal

Agora para finalizar essa primeira lógica, vamos acionar um ponto de saída, em função do ponto de entrada estar acionado. Para acionar um ponto de saída vamos utilizar a instrução Bobina Simples. Assim como nas outras instruções, é só selecionar a célula destino e clicar no botão Bobina Simples.

Figura 7-12. Botão Bobina Simples

Na caixa Edição de Instrução de Contato colocar o primeiro ponto de saída digital que, conforme o configurado no Módulo de Configuração, é o %S0010.0.

% E00	00.0				_
		Ň	li li		<u> </u>
	+	+	Edição de instrução de contato		×
			Tag ou Endereço:	<u>0</u> K	
	Ŧ	÷	S10.0	<u>C</u> ancelar	+
			()	<u>Aj</u> uda	

Concluída a primeira lógica do programa, adicionar mais uma lógica, através do menu Edição, selecionando a opção Nova Lógica. Será então apresentada a janela a seguir:

Lógica:	0		
Tag:			
Descrição): [
Observaç	ões:		

Figura 7-14. Insere Nova Lógica

Nesta janela a lógica pode receber um nome e outras descrições, caso seja desejo do usuário. Neste Tutorial vamos apenas selecionar OK na janela, para ser criada uma nova lógica para edição.

Será apresentada uma lógica semelhante a lógica inicial. Selecionar a célula um, e clicar no botão Contato Fechado.

Figura 7-15. Botão Contato Fechado

Assim como na primeira lógica, na caixa Edição de Instrução de Contato preencher com o octeto %E0000.0.

Completar as lógicas de dois a sete da primeira linha com Ligações Horizontais

Selecionada a última célula da linha, adicionar uma Bobina Simples. Associar a bobina ao ponto %S0010.1.

%E00	00.0 . l	2					
		6	Ediç	ão de instruçã	o de contato		×
	÷	÷4	2	lag ou Endere	ço:	<u>0</u> K	
			1	510.1		<u>C</u> ancelar	
	+	+		()		<u>Aj</u> uda	
				4.575	1.128	x 1.215	

Figura 7-16. Segunda Lógica

O programa que foi proposto está concluído. Deve-se fechar a janela de edição e confirmar quando perguntado sobre o salvamento das alterações. Na janela da seleção do diretório destino deve ser confirmada a opção padrão.

Comunicando com o Microcontrolador

Com o Módulo Principal e o Módulo de Configuração concluídos já podemos comunicar com o microcontrolador, para a seguir lhe enviar os programas.

Primeiro deve-se ligar a fonte externa e observar o acionamento do Grano. Após a inicialização (LEDs EX, PG, DG, ER e A1 ligados), já pode-se testar a comunicação com módulo. Para testar tal comunicação vamos utilizar o comando Informações do CP representado pelo botão abaixo:

Figura 7-17. Botão Informações do CP

Com o cabo AL-1715 conectado entre o microcontrolador e o PC, clicar no botão Informações do CP. Se a comunicação estiver funcionando corretamente deve aparecer na tela a janela Informações, semelhante a apresentada a seguir:

	00000		
Modelo de UCP: U	aH350	Modo de Operação: E	ino
Versão de Executivo: V	/1.00		
Mensagens			
Mensagem de Erro/Ad	vertência: Não há	á módulo de configuração	
Mensagem de Advertê	ncia 1:		
Mensagem de Advertê	ncia 2:		
Mensagem de Advertê	ncia 3:		
Fatada			
Estano			100
Saídas:	Habilitadas	Tempo Máximo de Execução de Programa:	400 ms
Relés Forçados:	Não	Tempo de Ciclo Instantâneo:	1 ms
Compactando RAM:	Não	Tempo de Ciclo Médio:	1 ms
Copiando módulo:	Não	Tempo de Ciclo Máximo:	1 ms
Nível de Proteção:	0	Tempo de Ciclo Mínimo:	1 ms
Troca de módulos de E	:/S	Período de Acionamento de E018:	Sem E018
com CP energiza	do: Não		
🗖 Leitura contínua		Neur Faleda	

Figura 7-18. Informações

Caso isto não acontecer, verificar a conexão e a configuração do canal serial. Se a comunicação estiver funcionando corretamente, carregar o programa no microcontrolador.

Carregando o Programa Aplicativo

Para carregar o programa no microcontrolador primeiro deve-se colocá-lo em Modo Programação. Para realizar essa operação, deve-se clicar no botão de mesmo título, situado próximo ao botão Informações do CP.

Figura 7-19. Botão Modo Programação

O Grano sinaliza que está no Modo Programação nos LEDs de seu painel: ficam ligados os LEDs PG, DG e A1, enquanto que os demais ficam desligados.

Já em Modo Programação, para carregar o aplicativo no microcontrolador deve-se através do menu Comunicação selecionar a opção Ler/Enviar Módulos. Será apresentada a janela Ler ou Enviar Módulos, onde a esquerda são relacionados os módulos desenvolvidos no projeto, e a direita os módulos que estão salvos no microcontrolador.

Para carregar os módulos C-APLIC.000 e E-APLIC.001, eles devem ser selecionados no campo à esquerda na janela, e após deve-se clicar no botão Enviar Módulos, situado no centro.

ATENÇÃO:

Este processo carrega os módulos na memória RAM do microcontrolador, de forma que se o mesmo for desligado o programa será perdido. A seguir será explicado como carregar o programa em memória Flash, de forma que o mesmo permaneça salvo mesmo sem alimentação.

r ou Envi Módulos	iar Módu : no Proj	los eto				– Módulos no Dispo	sitivo		
Nome		Tar	nanho	>	<u>E</u> nviar Módulo (s)	Nome	Tamanho	Data I	Envio CRC
C-APLIO	2.000 2.001	(33 (10	3 8		>> E <u>n</u> viar Todos .er Módulo (s) < . <u>e</u> r Todos <<< Compactar RAM	C-GR900.003 C-GR900.004	[32716] [9924]	EPROM EPROM	
		2 m	iódulos		Informações				2 módulo
Memória	Livre p	or Banco	s (byte:)		CRC Geral			
RAM	00-03:	32768	0	0	0	Dispositivo:			
EPROM	00-03:	32768	0	0	0	Projeto: 4901	DE438	<u>S</u> alvar Lista	CRC
	04-07:	0	0	0	0	- Memória Dourada	(butae)		
	08-11:	0	0	0	0	RAM : 0	(Dytes)		
	12-15:	0	0	0	0	EPROM : 42640			

Figura 7-20. Ler ou Enviar Módulo

Após concluída a comunicação, fechar a janela Ler ou Enviar Módulos.

Com o Grano programado, passá-lo para Modo Execução através do botão Modo Execução situado entre os botões Informações do CP e Modo Programação.

Ao passar para Modo Execução o CP apresenta os LEDs EX, DG e A1 ligados, e os demais desligados.

Carregando o Programa na Memória Flash

O Programa Aplicativo já foi carregado em RAM, para carregá-lo em Flash deve-se selecionar a opção Módulos no menu Comunicações do MasterTool. Será apresentada uma janela que a esquerda mostrará os módulos carregados em RAM e a direita os módulos carregados em Flash (EPROM).

Para carregar o Programa Aplicativo na Flash, devem ser selecionados os módulos C-APLIC.000 e E-APLIC.001 e acionado o botão RAM -> Flash.

Módulos	em RAM					Módulos em Flas	:h		
C-APLIC.000 E-APLIC.001		[335] [106]		RAM> Flash		C-GR900.003 C-GR900.004	[32716] [9924]	Informaçõe	es
				Tode	os RAM>> Flas	- h		Compactar R	AM
				1 <u></u>				Apagar Fla	sh
					HAM < Hash			Apagar Mód	ulo
]		l << Todos Flas	h		Reabilitar Módulo	
		2 mó	dulos			2	módulos		
Memória	a Livre p	or Banco	s (bytes) ———		Memória Ocupa	da (bytes)		
RAM	00-03:	32327	0	0	0	BAM : 441			
EPROM	00-03:	32768	0	0	0	EPROM : 426	40		
	04-07:	0	0	0	0	TOTAL : 430	31		
	08-11:	0	0	0	0				
	12-15:	0	0	0	0			Fechar	

Figura 7-21. Módulos de RAM para Flash

Após o término da comunicação, deve-se fechar a janela Módulos. A partir de então, o Programa Aplicativo está salvo em Flash e é restaurado, mesmo após o desligamento do microcontrolador.

Verificando o Funcionamento do Programa

Quando em execução, o microcontrolador deve ficar com o LED da saída T.1 ligado, e a saída T.0 desligada. Apenas o LED está acionado, para acionar a saída propriamente dita deve-se alimentar os pontos T+ da borneira com 24Vdc.

Figura 7-22. Alimentação T+

Se os pontos T+ forem alimentados pode-se medir a tensão de alimentação entre T+ e G ou -, confirmando o acionamento da saída.

Quanto ao funcionamento do programa aplicativo, o mesmo deve acionar a saída T.0 se a entrada I.0 for acionada, desligando a saída T.1. Para verificar tal funcionamento, basta alimentar I.0 com 24Vdc. Se o programa estiver funcionando corretamente, a saída T.0 deve ser acionada e a T.1 desligada. Obtemos assim, a seguinte tabela:

I.0 (Entrada)	T.0 (Saída)	T.1 (Saída)
0 Vdc	0 Vdc	24 Vdc
24 Vdc	24 Vdc	0 Vdc

Tabela 7-2. Tabela Verdade

Após verificar o funcionamento do programa aplicativo desenvolvido, o usuário deve ler os demais capítulos deste manual, que abordam o funcionamento da Série Grano, com uma abordagem mais avançada.

8. Exemplos de Aplicação

Exemplos de Aplicação do Modo Clone

Para exemplificar o desenvolvimento de aplicações utilizando a característica do Modo Clone, estão disponíveis no site da Altus (<u>www.altus.com.br</u>) aplicações que agregam diversas características da Série Grano de microcontroladores. Mais informações sobre o Modo Clone podem ser encontradas nos capítulos Descrição Técnica, e Configuração.

As aplicações foram desenvolvidas com o intuito de exemplificar algumas configurações, onde os microcontroladores GR351 e GR371 são utilizados como escravos no Modo Clone, e tem suas interfaces de E\S controladas pelo microcontrolador mestre. Porém, elas também podem ser utilizadas como referência inicial para o desenvolvimento de outras aplicações.

Os exemplos estão organizados em dez configurações, onde cada uma delas apresenta dois projetos para mestre do Modo Clone: um para ser utilizado com o GR351, e outro para o GR371. Está incluído ainda, um projeto para o escravo, pois as configurações estão organizadas conforme a característica do escravo.

O pacote com as aplicações para o escravo e o mestre do barramento estão divididos em uma estrutura de diretórios dentro do arquivo zip. Esta estrutura funciona da seguinte forma: todos os diretórios tem o nome CFGXXX, onde XXX representa o número da configuração. Dentro de cada diretório existem outros dois diretórios chamados CFGXXX_S e CFGXXX_M. No primeiro deles encontra-se o ladder a ser gravado no CP escravo. Já o diretório CFGXXX_M está dividido nos diretórios GR351 e GR371 que são os ladders para os mestres possíveis do barramento.

ATENÇÃO:

Os módulos F-SAIDR e F-CONTR, chamados pelos aplicativos dos escravos que utilizam saídas rápidas e/ou contador, não fazem parte das aplicações exemplo, devendo ser adicionados posteriormente pelo usuário. As chamadas dos módulos F citados já está implementada, sendo necessário apenas adicionar o módulo ao projeto.

A seguir é apresentada uma tabela resumida com todas as configurações disponíveis de aplicação para o escravo do barramento:

CFGXXX	Descrição do módulo Escravo
001	GR351: 14ED, 10SD
002	GR351: 14ED, 10SD, Contador (Modo 0)
003	GR351: 14ED, 10SD, Contador (Modo 0), 2 VFO(1000Hz, 50% de Duty Cycle)
004	GR351: 14ED, 10SD, Contador (Modo 1), 2 VFO(5000Hz, 50% de Duty Cycle)
005	GR371: 14ED, 10SD
006	GR371: 14ED, 10SD, Contador (Modo 0)
007	GR371: 14ED, 10SD, Contador (Modo 0), 2 VFO(1000Hz, 50% de Duty Cycle)
008	GR371: 14ED, 10SD, Contador (Modo 1), 2 VFO(5000Hz, 50% de Duty Cycle)
009	GR371: 14ED, 10SD, 4EA(Tensão 0-10V), 2AS(Tensão 0-10V), Contador(Modo 0), 2 VFO(1000Hz, 50% de Duty Cycle)
010	GR371: 14ED, 10SD, 2EA(Termopar Tipo J), 2EA(Tensão 0-10V) , 2SA(Tensão 0-10V), Contador(Modo 0), 2 VFO(1000Hz, 50% de Duty Cycle)

Tabela 8-1. Exemplos de Aplicação

Nas aplicações exemplo, os pontos de E\S do escravo serão copiados para operandos % A no mestre. Os contadores, saídas rápidas e canais analógicos terão seus operandos % F e % M replicados no mestre do Modo Clone. Os diagnósticos das interfaces de E\S do escravo também são repassados ao mestre, para a detecção de possíveis problemas no escravo.

Para verificar quais operandos são utilizados, devem ser consultado no relatório de TAGs e Descrições do programador MasterTool, onde cada operando utilizado possui sua função descrita.

Os módulos desenvolvidos em linguagem de diagrama de reles apresentam sua funcionalidade descrita nas Notas de Módulo, e no Relatório de Lógicas no programador MasterTool. Como estão bem documentados, podem ser facilmente modificações pelo usuário, caso necessário.

Abaixo é apresentada a descrição de cada uma das especificações.

CFG001

Esta configuração permite que se utilize um escravo GR351, com os seus operandos de E\S digitais replicados em operandos %A do mestre.

CFG002

Esta configuração permite que se utilize um escravo GR351, com os seus operandos de E\S digitais replicados em operandos %A do mestre. Permite leitura do valor do contador (modo 0) em um operando %F no mestre, além do envio comandos para o contador.

CFG003

Esta configuração permite que se utilize um escravo GR351, com os seus operandos de E\S digitais replicados em operandos %A do mestre. Permite leitura do valor do contador (modo 0) em um operando %F no mestre, além do envio comandos para o contador. O escravo possui 2 saídas VFO de 1000Hz, com duty cycle de 50%, e pode receber comandos para as saídas através do mestre.

CFG004

Esta configuração permite que se utilize um escravo GR351, com os seus operandos de E\S digitais replicados em operandos %A do mestre. Permite leitura do valor do contador (modo 1) em um operando %F no mestre, além do envio comandos para o contador. O escravo possui 2 saídas VFO de 5000Hz, com duty cycle de 50%, e pode receber comandos para as saídas através do mestre.

CFG005

Esta configuração permite que se utilize um escravo GR371, com os seus operandos de E\S digitais replicados em operandos %A do mestre.

CFG006

Esta configuração permite que se utilize um escravo GR371, com os seus operandos de E\S digitais replicados em operandos %A do mestre. Permite leitura do valor do contador (modo 0) em um operando %F no mestre, além do envio comandos para o contador.

CFG007

Esta configuração permite que se utilize um escravo GR371, com os seus operandos de E\S digitais replicados em operandos %A do mestre. Permite leitura do valor do contador (modo 0) em um operando %F no mestre, além do envio comandos para o contador. O escravo possui 2 saídas VFO de 1000Hz, com duty cycle de 50%, e pode receber comandos para as saídas através do mestre.

CFG008

Esta configuração permite que se utilize um escravo GR371, com os seus operandos de E\S digitais replicados em operandos %A do mestre. Permite leitura do valor do contador (modo 1) em um operando %F no mestre, além do envio comandos para o contador. O escravo possui 2 saídas VFO de 5000Hz, com duty cycle de 50%, e pode receber comandos para as saídas através do mestre.

CFG009

Esta configuração permite que se utilize um escravo GR371, com os seus operandos de E\S digitais replicados em operandos %A do mestre. Permite leitura do valor do contador (modo 0) em um operando %F no mestre, além do envio comandos para o contador. O escravo possui 2 saídas VFO de 1000Hz, com duty cycle de 50%, e pode receber comandos para as saídas através do mestre. O escravo possui quatro canais analógicos de entrada de tensão, de 0 a 10V, e duas saídas analógicas, também de 0 a 10V, que são facilmente acessadas através de operandos %M no mestre.

CFG010

Esta configuração permite que se utilize um escravo GR371, com os seus operandos de E\S digitais replicados em operandos %A do mestre. Permite leitura do valor do contador (modo 0) em um operando %F no mestre, além do envio comandos para o contador. O escravo possui 2 saídas VFO de 1000Hz, com duty cycle de 50%, e pode receber comandos para as saídas através do mestre. O escravo possui dois canais analógicos de entrada de tensão, de 0 a 10V, duas entradas analógicas, de termopar tipo J, e duas saídas analógicas, também de 0 a 10V, que são facilmente acessadas através de operandos %M no mestre.

9. Glossário

Acesso ao meio	Método utilizado por todos os nós de uma rede de comunicação para sincronizar as transmissões de dados e resolver possíveis conflitos de transmissões simultâneas.
Algoritmo	Seqüência finita de instruções bem definidas, objetivando à resolução de problemas.
Arrestor	Dispositivo de proteção contra raios carregado com gás inerte.
Backoff	Tempo que o nó de uma rede tipo CSMA/CD aguarda antes de voltar a transmitir dados após a ocorrência de colisão no meio físico.
Barramento	Conjunto de sinais elétricos agrupados logicamente com a função de transferir informação e controle entre diferentes elementos de um subsistema.
Barramento	Conjunto de módulos de E/S interligados a uma UCP ou cabeça de rede de campo.
Barramento local	Conjunto de módulos de E/S interligados a uma UCP.
Baud rate	Taxa com que os bits de informação são transmitidos através de uma interface serial ou rede de comunicação (medido em bits/segundo).
Bit	Unidade básica de informação, podendo estar no estado 0 ou 1.
Bridge (ponte)	Equipamento para conexão de duas redes de comunicação dentro de um mesmo protocolo.
Broadcast	Disseminação simultânea de informação a todos os nós interligados a uma rede de comunicação.
Byte	Unidade de informação composta por oito bits.
Cabo da rede de campo	Cabo que conecta os nós de uma rede de campo, como a interface de rede de campo e a cabeça de rede de campo.
Cabo de expansão	Cabo que interliga os expansores de barramento.
Canal serial	Interface de um equipamento que transfere dados no modo serial.
Ciclo de varredura	Uma execução completa do programa aplicativo de um controlador programável.
Circuito de cão de guarda	Circuito eletrônico destinado a verificar a integridade do funcionamento de um equipamento.
Codigo comercial	Código do produto, formado pelas letras GR, seguidas por três números.
programável	Também chamado de CP. Equipamento que realiza controle sob o comando de um programa aplicativo. E composto de uma UCP, uma fonte de alimentação e uma estrutura de E/S.
СР	Veja controlador programável.
CSMA/CD	Disciplina de acesso ao meio físico, baseada na colisao de dados, utilizada pelas redes Ethernet.
Database	Banco de dados.
Detault	valor predefinido para uma variavel, utilizado em caso de nao naver definição.
Diagnostico	Procedimento utilizado para detectar e isolar falhas. E também o conjunto de dados usados para tal determinação, que serve para a análise e correção de problemas.
Download	Carga de programa ou configuração no CP.
E/S	Veja entrada/saida.
E2PROM	Memoria nao-volatil, que pode ser apagada eletricamente.
EIA RS-485	Padrao Industrial (nivel físico) para comunicação de dados.
EN 50170	Em redes PROFIBUS, e a norma que derine a rede de campo.
Encoder Enderses de médule	Fransouror para medidas de posição.
Endereço de modulo Entrada/saída	Também chamada da E/S. Dispositivos da E/S da dadas da um sistema. Na casa da CPs, correspondem
Entrada/Salua	tipicamente a módulos digitais ou analógicos de entrada ou saída que monitoram ou acionam o dispositivo controlado.
EPROM	Significa Erasable Programmable Read Only Memory. É uma memória somente de leitura, apagável e programável. Não perde seu conteúdo quando desenergizada.
ER	Sigla usada para indicar erro nos LEDs.
Escravo	Equipamento ligado a uma rede de comunicação que só transmite dados se for solicitado por outro equipamento denominado mestre.
ESD	Sigla para descarga devida a eletricidade estática em inglês (electrostatic discharge).
Estação de supervisão	Equipamento ligado a uma rede de CPs ou instrumentação com a finalidade de monitorar ou controlar variáveis de um processo.
Fiação de campo	Cabos que conectam sensores, atuadores e outros dispositivos do processo/máquina nos módulos de E/S da Série Ponto.
Flash EPROM	Memória não-volátil, que pode ser apagada eletricamente.
Frame	Uma unidade de informação transmitida na rede.
Freeze	Em redes PROFIBUS, é o estado da rede quando os dados das entrada são congelados.
Gateway	Equipamento para a conexão de duas redes de comunicação com diferentes protocolos.

Hardware	Equipamentos físicos usados em processamento de dados onde normalmente são executados programas (software).
IEC 1131	Norma genérica para operação e utilização de CPs.
IEC Pub. 144 (1963)	Norma para proteção contra acessos incidentais e vedação contra água, pó ou outros objetos estranhos ao equipamento.
IEC-536-1976	Norma para proteção contra choque elétrico.
IEC-801-4	Norma para testes de imunidade a interferências por trem de pulsos.
IEEE C37.90.1 (SWC)	SWC significa Surge Withstand Capability. Esta norma trata da proteção do equipamento contra ruídos tipo onda oscilatória.
Interface	Dispositivo que adapta elétrica e/ou logicamente a transferência de sinais entre dois equipamentos.
Interface de rede de campo	Módulo mestre de redes de campo, localizado no barramento local e destinado a fazer a comunicação com cabeças de rede de campo.
Interrupção	Evento com atendimento prioritário que temporariamente suspende a execução de um programa e desvia para uma rotina de atendimento específica
ISOL.	Sigla usada para indicar isolado ou isolamento.
kbytes	Unidade representativa de quantidade de memória. Representa 1024 bytes.
LED	Sigla para light emitting diode. É um tipo de diodo semicondutor que emite luz quando estimulado por eletricidade. Utilizado como indicador luminoso.
Linguagem Assembly	Linguagem de programação do microprocessador, também conhecida como linguagem de máquina.
Linguagem de programação	Um conjunto de regras e convenções utilizado para a elaboração de um programa.
Linguagem de relés e blocos Altus	Conjunto de instruções e operandos que permitem a edição de um programa aplicativo para ser utilizado em um CP.
Lógica	Matriz gráfica onde são inseridas as instruções de linguagem de um diagrama de relés que compõe um programa aplicativo. Um conjunto de lógicas ordenadas seqüencialmente constitui um módulo de programa.
MasterTool	Identifica o programa Altus para microcomputador, executável em ambiente WINDOWS [®] , que permite o desenvolvimento de aplicativos para os CPs das séries Ponto, Piccolo, AL-2000, AL-3000 e Quark. Ao longo do manual, este programa é referido pela própria sigla ou como programador MasterTool.
Menu	Conjunto de opções disponíveis e exibidas por um programa no vídeo e que podem ser selecionadas pelo usuário a fim de ativar ou executar uma determinada tarefa.
Mestre	Equipamento ligado a uma rede de comunicação de onde se originam solicitações de comandos para outros equipamentos da rede.
Módulo (referindo-se a hardware)	Elemento básico de um sistema completo que possui funções bem definidas. Normalmente é ligado ao sistema por conectores, podendo ser facilmente substituído.
Módulo (referindo-se a software)	Parte de um programa aplicativo capaz de realizar uma função específica. Pode ser executado independentemente ou em conjunto com outros módulos, trocando informações através da passagem de parâmetros.
Módulo C	Veja módulo de configuração.
Módulo de configuração	Também chamado de módulo C. É um módulo único em um programa de CP que contém diversos parâmetros necessários ao funcionamento do controlador, tais como a quantidade de operandos e a disposição dos módulos de E/S no barramento.
Módulo de E/S	Módulo pertencente ao subsistema de entradas e saídas.
Módulo E	Veja módulo execução.
Módulo execução	Módulo que contém o programa aplicativo, podendo ser de três tipos: E000, E001 e E018. O módulo E000 é executado uma única vez, na energização do CP ou na passagem de programação para execução. O módulo E001 contém o trecho principal do programa que é executado ciclicamente, enquanto que o módulo E018 é acionado por interrupção de tempo.
Módulo F	Veja módulo função.
Módulo função	Módulo de um programa de CP que é chamado a partir do módulo principal (módulo E) ou a partir de outro módulo função ou procedimento, com passagem de parâmetros e retorno de valores. Atua como uma sub- rotina.
Módulo P	Veja módulo procedimento.
Módulo procedimento	Módulo de um programa de CP que é chamado a partir do módulo principal (módulo E) ou a partir de outro módulo procedimento ou função, sem a passagem de parâmetros.
Monomaster	Em redes PROFIBUS, é a rede com apenas um mestre.
Multicast	Disseminação simultânea de informação a um determinado grupo de nós interligados a uma rede de comunicação.
Multimaster	Em redes PROFIBUS, é a rede com mais de um mestre.
Nibble	Unidade de informação composta por quatro bits.
Νό	Qualquer estação de uma rede com capacidade de comunicação utilizando um protocolo estabelecido.
Octeto	Conjunto de oito bits numerados de 0 a 7.
Operandos	Elementos sobre os quais as instruções atuam. Podem representar constantes, variáveis ou um conjunto de variáveis.

Operando Retentivos	Operandos cujos valores são armazenados em posição de memória não volátil em caso de desenergização da unidade
PC	Sigla para programmable controller. É a abreviatura de controlador programável em inglês.
Peer to peer	Tipo de comunicação onde dois nós de uma rede trocam dados e/ou avisos sem depender de um mestre.
Ponte de ajuste	Chave de seleção de endereços ou configuração composta por pinos presentes na placa do circuito e um pequeno conector removível, utilizado para a seleção.
Posta em marcha	Procedimento de depuração final do sistema de controle, quando os programas de todas as estações remotas e UCPs são executados em conjunto, após terem sido desenvolvidos e verificados individualmente.
Programa aplicativo	É o programa carregado em um CP, que determina o funcionamento de uma máquina ou processo.
Programa executivo	Sistema operacional de um controlador programável. Controla as funções básicas do controlador e a execução de programas aplicativos.
Protocolo	Regras de procedimentos e formatos convencionais que, mediante sinais de controle, permitem o estabelecimento de uma transmissão de dados e a recuperação de erros entre equipamentos.
RAM	Sigla para random access memory. É a memória onde todos os endereços podem ser acessados diretamente de forma aleatória e com a mesma velocidade. É volátil, ou seja, seu conteúdo é perdido quando o equipamento é desenergizado, a menos que se possua uma bateria para a retenção dos valores.
Rede de comunicação	Conjunto de equipamentos (nós) interconectados por canais de comunicação.
Rede de comunicação determinística	Rede de comunicação onde a transmissão e a recepção de informações entre os diversos nós é garantida com um tempo máximo conhecido.
Rede de comunicação mestre-escravo	Rede de comunicação onde as transferências de informações são iniciadas somente a partir de um único nó (mestre da rede) ligado ao barramento de dados. Os demais nós da rede (escravos) apenas respondem quando solicitados.
Rede de comunicação multimestre	Rede de comunicação onde as transferências de informações são iniciadas por qualquer nó ligado ao barramento de dados.
Ripple	Ondulação presente em tensão de alimentação contínua.
RX	Sigla usada para indicar recepção serial.
Segmento de barramento	Parte de um barramento. Um barramento local ou remoto pode ser dividido em, no máximo, quatro segmentos de barramento.
Software	Programas de computador, procedimentos e regras relacionadas à operação de um sistema de processamento de dados.
Sub-rede	Segmento de uma rede de comunicação que interliga um grupo de equipamentos (nós) com o objetivo de isolar o tráfego local ou utilizar diferentes protocolos ou meio físicos.
Subsistema de E/S	Conjunto de módulos de E/S digitais ou analógicos e interfaces de um controlador programável.
Тад	Nome associado a um operando ou a uma lógica que permite uma identificação resumida de seu conteúdo.
Terminação de barramento	Componente que deve ser conectado no último módulo de um barramento.
Time-out	Tempo preestabelecido máximo para que uma comunicação seja completada. Se for excedido procedimentos de retentiva ou diagnóstico serão ativados.
Toggle	Elemento que possui dois estados estáveis, trocados alternadamente a cada ativação.
Token	E uma marca que indica quem é o mestre do barramento no momento.
Trilho	Elemento metálico com perfil normalizado segundo a norma DIN50032, também chamado de trilho TS35.
Troca a quente	Procedimento de substituição de modulos de um sistema sem a necessidade de desenergização do mesmo. Normalmente utilizado em trocas de módulos de E/S.
TX	Sigla usada para indicar transmissão serial.
UCP	Sigla para unidade central de processamento. Controla o fluxo de informações, interpreta e executa as instruções do programa e monitora os dispositivos do sistema.
UCP ativa	Em um sistema redundante, a UCP ativa realiza o controle do sistema, lendo os valores dos pontos de entrada, executando o programa aplicativo e acionando os valores das saídas.
UCP inoperante	E a UCP que não está no estado ativo (controlando o sistema) nem no estado reserva (supervisionando a UCP ativa). Não pode assumir o controle do sistema.
UCP redundante	Corresponde à outra UCP do sistema, como, por exemplo, a UCP2 em relação à UCP1 e vice-versa.
UCP reserva	Em um sistema redundante, é a UCP que supervisiona a UCP ativa, não realizando o controle do sistema, mas estando pronta para assumir o controle em caso de falha na UCP ativa.
Upload	Leitura do programa ou configuração do CP.
Varistor	Dispositivo de proteção contra surto de tensão.
WD	Sigla para cão de guarda em inglês (watchdog). Veja circuito de cão de guarda.
Word	Unidade de informação composta por 16 bits.