
altus

ST Programming Manual
MasterTool Extended Edition

MT8000
Rev. C 08/2010

 Doc.: MP399603

General Conditions

i

No part of this document may be copied or reproduced in any form without the prior written consent

of Altus Sistemas de Informática S.A. who reserves the right to carry out alterations without prior

advice.

According to current legislation in Brazil, the Consumer Defense Code, we are giving the following

information to clients who use our products, regarding personal safety and premises.

The industrial automation equipment, manufactured by Altus, is strong and reliable due to the

stringent quality control it is subjected to. However, any electronic industrial control equipment

(programmable controllers, numerical commands, etc.) can damage machines or processes controlled

by them when there are defective components and/or when a programming or installation error

occurs. This can even put human lives at risk.

The user should consider the possible consequences of the defects and should provide additional

external installations for safety reasons. This concern is higher when in initial commissioning and

testing.

The equipment manufactured by Altus does not directly expose the environment to hazards, since

they do not issue any kind of pollutant during their use. However, concerning the disposal of

equipment, it is important to point out that built-in electronics may contain materials which are

harmful to nature when improperly discarded. Therefore, it is recommended that whenever

discarding this type of product, it should be forwarded to recycling plants, which guarantee proper

waste management.

It is essential to read and understand the product documentation, such as manuals and technical

characteristics before its installation or use.

The examples and figures presented in this document are solely for illustrative purposes. Due to

possible upgrades and improvements that the products may present, Altus assumes no responsibility

for the use of these examples and figures in real applications. They should only be used to assist user

trainings and improve experience with the products and their features.

Altus warrants its equipment as described in General Conditions of Supply, attached to the

commercial proposals.

Altus guarantees that their equipment works in accordance with the clear instructions contained in

their manuals and/or technical characteristics, not guaranteeing the success of any particular type of

application of the equipment.

Altus does not acknowledge any other guarantee, directly or implied, mainly when end customers are

dealing with third-party suppliers.

The requests for additional information about the supply, equipment features and/or any other Altus

services must be made in writing form. Altus is not responsible for supplying information about its

equipment without formal request.

COPYRIGHTS

Ponto Series, MasterTool, PX Series, Quark, ALNET and WebPLC are the registered trademarks of

Altus Sistemas de Informática S.A.

Windows, Windows NT and Windows Vista are registered trademarks of Microsoft Corporation.

Sumary

ii

Summary

1. INTRODUCTION ... 1

Documents Related to this Manual .. 2
Visual Inspection ... 2
Technical Support ... 2
Warning Messages Used on this Manual ... 2

2. TECHNICAL DESCRIPTION .. 4

Software Characteristics ... 4
Types of Data .. 4
Software Limits ... 4
PLC Operands ... 5
Operators ... 5
Commands... 5
Items not Implemented on IEC 61131-3 Standard .. 6

3. PROCEDURES ... 7

Creating a Module P or F in ST Language ... 7
Declaring Global Variables .. 8
Creating a Function to Implement a Filter ... 8
Writing the Main Code – PROGRAM – to a P Module .. 9
Writing the Main Code – PROGRAM – to a F Module .. 9
Diagnostic Operands ... 9
Temporary Operands .. 10
Verifying the Code ... 11
Saving the Code ... 11
Using a Module in ST .. 11

4. PROGRAMMING ... 12

Structure of a Module in ST Language ... 12
Elements of ST Language ... 12

Identifiers .. 13
Empty Space .. 13
Comments ... 13
Numerical Constants: .. 14
Boolean constants .. 15

Types of Data ... 15
Basic Types of Data .. 15
Classifying Data .. 15
Types Conversion .. 16

Variables... 19
Declaring de Variables .. 19
Only-Reading Variables .. 19
Declaring Vectors .. 20
Starting the Variables .. 20
Mapping Variables in Simple Operands and Table ... 20
Mapping Vectors in Simple Operands and Table ... 21

Sumary

iii

Functions .. 22
Program .. 23

Parameters Passing .. 24
Parameters Passing to F Module ... 26
Signs of Module Input and Output .. 26
Internal Variable of Control .. 27

Scope and Life Time Rules ... 27
Commands ... 28

Expressions ... 28
Integer Constants ... 30
Attribution Command ... 31
Command of Program control ... 31
Commands of selection ... 31
Commands de Repetition or Iteration ... 32

5. DEBUG ... 35

Debug methods .. 35
Cycled Mode ... 35
Status Machines .. 35

Errors in Verification Time .. 35
Errors in Execution Time ... 37

6. EXAMPLES OF USE ... 40

Buffer of events .. 40
Conversion of Values ... 41

7. APPENDIX .. 43

Keywords .. 43

8. GLOSSARY ... 44

1. Introduction

1

1. Introduction

ST Language (Structured Text) is a structured text language, high level, with resources similar to C

and Pascal languages. It can be used for writing programs with commands IF, THEN, ELSE, loops

FOR and WHILE, local variables and vectors can be created, creation and calling of sub-routines,

etc. It is an alternative to the use of Ladder graphic language, as it can access operands.

Programming in ST language is facility of MasterTool XE Advanced. It is available to use with CPU

AL-2004, as well as Ponto Series PLCs. Through this language it is possible to create procedure

modules (P module) and function modules (F modules), as defined by the norm IEC-1131-3.

After creation, the ST modules have the same characteristics as the other F of P modules already

existent. The parameters number of input and output can be configured. The calling of new ST

module must be done on the application program Ladder with CHF or CHP instruction, as it is done

to other modules F and P.

The module created in ST language can be read again from the microcomputer PLC. In this case, the

source program ST is normally restored, even with its comments. There are passwords to protect

against not allowed reading and/or modifying, protecting the designer technology. MasterTool XE

implements a subgroup of ST Language, and it includes most of the structures and data commands

defined by IEC-61131-3.

The execution performance of the PLC of a ST module is better than an equivalent module in Ladder,

as the ST module is verified as a whole, while in Ladder it is divided in many instruction calls.

The main benefits of the use of ST Language are:

 Another option on programming language, according to international norm

 Possibility of creating programming, according to international norm

 Text language instead of graphic: copy/paste/substitute or traditional editors text macros

 Shorter time to developing, resulting in less engineering costs

 Better execution performance

The following picture is an example of ST Language use on MasterTool XE:

Figure 1-1. Example of use of ST language

The software MasterTool Extended Edition has three distribution versions, each one with an

optimized profile, in accordance with the necessity of the user. They are:

1. Introduction

2

 Lite: programming software specific for small applications. This version does not support ST.

 Professional: programming software with tools for all lines of Altus CLPs.

 Advanced: programming software with tools for bigger applications

Each version has its characteristics, ends and functions specified for each purpose. Further details

about these differences can be seen on Master Tool XE Using Manual.

Documents Related to this Manual

To get additional information about the use of ST Language other documents can be consulted

(manuals and techniques characteristics) beyond this. These documents are available in its last

revision at www.altus.com.br.

Each product has a document called Technical Characteristics (CT), where the characteristics of the

product can be found. The product can have, in addition, User‟s Manual (the codes are cited on the

CTs)

The following documents are suggested as source of additional information:

 Technical Characteristics MT8000

 MasterTool XE Using Manual

 MasterTool XE Programming Manual

Visual Inspection

Before proceeding the installation, it is recommendable to make a careful visual inspection of the

material, verifying if it does not have damages caused by the transport. Check if all the products

received are in perfect state. In case of defects, inform the transport company and the nearer Altus

representative.

It is important to register the serial number of each equipment received, as well as the revisions of

software, in case it exists. This information will be necessary in case of need to contact the Altus

technical support.

Technical Support

To contact Altus technical support in São Leopoldo, RS, Call +55-51-35899500. To know Altus

technical support centers in others localities, check our site (www.altus.com.br) or send an email to

altus@altus.com.br.

If the equipment is already installed, please have the following information upon requesting the

assistance:

 The model of the equipments used and the configuration of the installed system.

 The PLC serial number.

 Equipments review and executive software version, in the label on the side of the product.

 Information about the operating mode of the PLC, obtained through Master Tool programmer.

 The content of the application program (modules), obtained through MasterTool programmer.

 The version of the programmer used.

Warning Messages Used on this Manual

On this manual, the messages of warnings will be presented in the following formats and meanings:

http://www.altus.com.br/
http://www.altus.com.br/
mailto:altus@altus.com.br

1. Introduction

3

DANGER: indicates a risk to life, production, serious harm to people, or that substantial
material or environmental damage may happen it the necessary precautions are not taken.

WARNING:
Indicates configuration, application and installation details that must be followed to avoid
situations that can cause system errors and related consequences.

ATTENTION:
Indicates important configuration, application or installation details to obtain the maximum
performance of the system.

2. Technical Description

4

2. Technical Description

This section presents the technical characteristics of ST Editor.

Software Characteristics

Types of Data

The available types of data are shown in the following table:

 Description Bits Related PLC Operand

BOOL Boolean 1 Bit of %A, %E, %S or %M

BYTE 8 bits sequence 8 Operand %A, %E or %S

WORD 16 bits sequence 16 Operand %M or %TM

DWORD 32 bits sequence 32 Operand %I or %TI

USINT Short int not signed 8 Operand %A, %E or %S

INT Integer 16 Operand %M or %TM

DINT Long Integer 32 Operand %I or %TI

REAL Real 32 Operand %F or %TF

Table 2-1. Types of data

A variable is a memory area that stores a value defined by its type of data. All the VARIÁVEIS must

be declared before its use. Its scope is limited to the function or the program in which they were

declare, allowing that the names can also be used in other parts of the software, without the

occurrence of any conflict.

The declared variables can be associated to operands of the programmable controller, so, allowing

the creating of algorithms to the execution of the control of the desired industrial process.

Software Limits

 Description

Call nested functions 16 function call

Size of módule P or F Up to 32KB

Data area for variables Up to 3KB
1

Function quantity It is size limit of module.

Table 2-2. Software limits

1
 To variables declared between VAR..END_VAR and are not mapped to PLC operand, and to variables alloced

automatically for MasterTool XE and used in temporary operations.

2. Technical Description

5

PLC Operands

A module developed through ST language can access CLP operands. The following table shows the

PLC operands, as well as its compatibility with ST Language:

Operand Type Can be used by ST ?

%A, %E and %S Yes

%M and %TM Yes

%I and %TI Yes

%F and %TF Yes

%D and %TD No

Table 2-3. Operands type

The variables used on ST modules must be declared before being used. PLC operands cannot be used

directly on the ST function, but it is possible to place those addresses on the variables declared on the

function.

Operators

The operators of arithmetic expressions and logic in ST are similar to other languages, as shown in

the following table:

Type Operators

Mathematics + Sum

- Subtraction

* Multiplication

/ Division

MOD Rest

Logics &

AND

Operation
“AND”

OR Operation “OR”

XOR Operation “OR”
exclusive

NOT Operation
“NOT”

Comparing < Less Than

> Greater Than

<= Lesser or Equal

>= Greater or
Equal

Equals = Equal

<> Difference

Table 2-4. Operators and arithmetic expressions

Commands

The following table shows the commands of ST language:

Typo Commands

Repetition WHILE

REPEAT

FOR

Selection IF

CASE

Table 2-5. Commands of ST language

2. Technical Description

6

Items not Implemented on IEC 61131-3 Standard

The following items are part of the definitions of the norm IEC 61131-3 and are not implemented in

this product:

 Types of data SINT, UINT, UDINT, LREAL

 Types of data TIME, DATE e STRING

 Enumerated, Sub-Range

 Arrays with more than one dimension (matrixes)

 Structs

 Function Blocks

 Resource, Tasks, Configurations

3. Procedures

7

3. Procedures

In this section is presented an example of how to generate a procedure module or a function module

with ST Editor. In both examples, a digital filter program that must be applied on three input

operands will be used.

Creating a Module P or F in ST Language

Once MasterTool XE is executed, the option Module/New must be selected. The following screen

will be shown:

Figure 3-1. Creating a ST module

Selects the following options in "Type of Module": "Module ST Function" or "Module Procedure

ST". In the box of selection "Language" selects "ST". ST Editor will be executed and will be ready

for the edition, after this selection OK button.

 To follow an example of a possible configuration for a new module of Function in Language ST:

3. Procedures

8

Figure 3-2. Creating a new ST module

Select the option “Module ST Function” or “Module Procedure ST”. The ST Editor will be executed

and it will be ready for editing the chosen module after selecting OK button.

Declaring Global Variables

Further details about the declaration and the types of variables can be found on the section

Programming on the chapter Variables. In this example the constants of the filter are declared as

constants of global use.

VAR CONSTANT

FILTER_TIME0: REAL:=0.1; (*Time constant of the filter*)

SAMPLE_TIME: REAL:=0.02; (*Sample time period*)

END_VAR

Creating a Function to Implement a Filter

In this example more than an input value is filtered and for that it is necessary the use of a function.

This function applies a filter whose time constant and sample time are defined as global variables. It

is a recursive filter, so, besides its input value (INPUT), a parameter is necessary as the last filtered

value (PREVIOUS OUTPUT).

VAR CONSTANT

FILTER_TIME0: REAL:=0.1; (*Time constant of the filter*)

SAMPLE_TIME: REAL:=0.02; (*Sample time period*)

END_VAR

FUNCTION FILTER: REAL

VAR_INPUT

INPUT: INT; (*Input data to be filtered*)

LAST_OUTPUT: REAL; (*Last filter result*)

END_VAR

VAR

FILTER_FACTOR: REAL; (*Local variable to the filter factor*)

END_VAR

(*Store the division of the sample time and the filter time constant*)

(*in a local variable*)

FILTER_FACTOR := SAMPLE_TIME/FILTER_TIMEO;

(*Apply the filter on the input *)

TOFILTER := LAST_OUTPUT + (INPUT – LAST_OUTPUT)* FILTER_FACTOR;

END_FUNCTION

3. Procedures

9

Writing the Main Code – PROGRAM – to a P Module

The aim of this code is applying a filter defined by the function FILTER on three input operands

(%M200, %M201 e %M202). For it, it is necessary to keep the results of the last filtering and, as the

result of each filter call will be the previous result in the next call, they can be the same operands

(%F0, %F1 e %F2).

PROGRAM FILTER

VAR

INPUT_0 AT %M200: INT;

INPUT_1 AT %M201: INT;

INPUT_2 AT %M202: INT;

LAST_RESULT_0 AT %F0: REAL;

LAST_RESULT_1 AT %F1: REAL;

LAST_RESULT_2 AT %F2: REAL;

RESULT_0 AT %F0: REAL;

RESULT_1 AT %F1: REAL;

RESULT_2 AT %F2: REAL;

END_VAR

(*Apply the filter on the inputs*)

RESULT_0:= TOFILTER(INPUT_0, LAST_RESULT_0);

RESULT_1:= TOFILTER(INPUT_1, LAST_RESULT_1);

RESULT_2:= TOFILTER(INPUT_2, LAST_RESULT_2);

END_PROGRAM

Writing the Main Code – PROGRAM – to a F Module

In case of F module, the input and output operands can be declared through input parameters. In this

case there are 6 input parameters (%M200, %M201, %M202, %F0, %F1, %F2).

Here there is an important characteristic on the passage of parameters, where the three first operands

are operands exclusively input, but the three last operands are input and output as, it is a recursive

filter, the last result will be used as input of the following iteration. They must be all declared on the

input area of the CHF and discriminated in input and/or output in the respective declaration on ST

module. To further details check the chapter Passage of Parameters to a F Module on the section

Programming.

PROGRAM FILTER

VAR_INPUT

OP_INPUT_0: INT;

OP_INPUT_1: INT;

OP_INPUT_2: INT;

END_VAR

VAR_IN_OUT

OP_INPUT_OUTPUT_0: REAL;

OP_INPUT_OUTPUT_1: REAL;

OP_INPUT_OUTPUT_2: REAL;

END_VAR

(*Apply the filter on the inputs *)

OP_INPUT_OUTPUT_0:=FILTER(INPUT_0, OP_INPUT_OUTPUT_0);

OP_INPUT_OUTPUT_1:=FILTER(INPUT_1, OP_INPUT_OUTPUT_1);

OP_INPUT_OUTPUT_2:=FILTER(INPUT_2, OP_INPUT_OUTPUT_2);

END_PROGRAM

Diagnostic Operands

The diagnostic operands are used to report for user any error in execution time. The operands can be

configured through menu Module / Operands / Diagnostic. If the operands were not configured an

error is reported in verification time. The errors code can be seen in section Errors in Execution

Time.

3. Procedures

10

Figure 3-3. Window of configuration of the diagnostics operands

The diagnostic operands can be the same for all ST modules.

Temporary Operands

The temporary operands are used to solve some operations that use variables of type DINT and

REAL. It is an optional configuration, but if the compiler needs it will be reported on verification

time. The operands can be configured through menu Module / Operands / Temporary. The maximum

quantity of the operands, if required, is 4.

Figure 3-4. Window of configuration of the temporary operands

The temporary operands can be the same for all ST modules.

3. Procedures

11

Verifying the Code

Before sending the module to the PLC, the user should verify the program, it is, make sure that there

are not many programming errors on the module. For that, use the command verify of the menu

module. If there are errors, they will be shown on the bottom of the window.

Saving the Code

Whenever a code written on ST language is saved in disk, it will be verified. The CÓDIGO FONTE

is always saved on the module, but if the verification shows errors no executable code is added to the

module.

WARNING:
MasterTool XE only allows sending modules without errors to the PLC. However, the previous
versions of MasterTool XE do not execute it, so in this case a module with error can be sent to the
PLC. But due to the verification error, the module will not execute it and an error in execution time
will happen.

Using a Module in ST

The ST module is used as modules in Ladder. It must be called through another ladder module using

the CHP instructions (to P modules) or the instructions CHF (to F modules).

Figure 3-5. Calling of P module written in ST

4. Programming

12

4. Programming

This chapter describes the rules to write a program in ST language, presenting its syntax, semantic

rules and the structure of the source code.

Structure of a Module in ST Language

A module in ST language is composed by:

 Global Variables (not mandatory)

 Functions, (not mandatory)

 Main program

Its basic structure must be as following:

Figure 4-1. Structure of a program in ST language

Elements of ST Language

The elements of ST Language are all the symbols, numbers, operators and other punctuation used by

the language and that cannot be textually divided. The ST language elements are:

 Identifiers

 Numerical constants

BEGIN TEXT

END TEXT

The ST program can
have many declarations
of global variables or
none.

The ST program can
have many function, or
none.

VAR...END_VAR

PROGRAM...END_PROGRAM

FUNCTION...END_FUNCTION

It is obligatory to have a
program declaration. This
is the code that will be
executed when the
module is called by
ladder.

4. Programming

13

 Boolean constants

 Empty space

 Comment

 Operators and other punctuation signs

The following table shows some definitions of the elements:

Char Any char from „a‟ to „z‟, capital or small

Digit Any digit from „0‟ to „9‟

Binary digit Any digit from „0‟ to „1‟

Octal digit Any digit from „0‟ to „7‟

Hexadecimal digit Any digit from „0‟ to „9‟, or any char from „a‟ to „f‟, capital or small

Table 4-1. Notations to represent values and data

Identifiers

An identifier is used to name different elements in the language, being an unique element in its

scope. It is formed by letters, numbers and by the character subscribed (“_”). It must start by letter or

by the subscribed character, but it cannot have two consecutive subscribed characters and cannot end

with this character.

Only the first 32 characters of the sequence. The others will not have meaning and will be ignored.

The use of capital or small letters does not have meaning on the identifier, it means, Level_Vase1,

level_vase1 or Level_vase1 are distinct identifiers

The following table has some example of valid and non-valid identifiers:

Valid Identifiers PumpStatus

 ALM_PressureHigh

 B1_ACTIVE

 _1001_1

 pressureTest

Invalid Identifiers __Test

 Pump__B3214

 Valve-125201

 154_TurnOn

 Pressure_

Table 4-2. Identifiers

WARNING:
An identifier can have up to 32 characters. The characters up this limit are not considered. The
identifier name is not case sensitive.

Empty Space

The space characters, tab and break line are considered empty spaces, it means, they can be used

freely among the other elements of ST language.

Comments

Comments on the source code must be done between “(*” and “*)”.

Many lines can be commented with the same block. However it is not allowed the use of comments

nested as: "(* ... (* ... *) ... *)".

4. Programming

14

Numerical Constants:

There are two types of constants: integer and real. In both cases, a number can have several

characters of subscribed inside it. This character does not have meaning, it serves only to make a

number more legible. However the subscribed character cannot start or finish a number, as well as it

is not allowed the use of two subscribed characters together.

An integer number can also be expressed in binary, octal or hexadecimal bases. For this, one of the

prefixes 2#, 8# and 16# must be used before the number, as can see below.

2#0000_1001 (* Binary constant equal to 9 *)

2#1111_1111 (* Binary constant equal to 255 *)

8#457 (* Octal constant equal to 303 *)

16#00AA (* Hexa constant equal to 170 *)

16#8000 (* Hexa constant equal to 32768 *)

The following table brings some examples of numerical literal valid and non-valid:

 Example Value in decimal

Valid numerical literal 12547

 10_531

 -1_532

 6978

 2#0000_1001

 2#01001100

 2#001

 8#457

 8#6254

 16#4576_ab4f

 16#980ABE4D

 16#FFFF_ffff

 12547

 10531

 -1532

 6978

 9

 76

 1

 303

 3244

 1165405007

 2550840909

 4294967295

Invalid numeric literal _1546

 4578_

 -_5447

 10__135

 #0010001

 2#4577_0158#00159

 16#_1789

 16#4587_

Table 4-3. Numerical literal

Real numerical literal has the decimal point “.” between the integer and the fraction part. The exponent of the

base 10 can be specified using the prefixes „E‟ or „e‟. In case it is not informed, the value 0(zero) will be

considered. The table bellow shows examples:

Valid numeric literal -1.34E-2

 1.0e+6

 1.234E6

 1_254.4879

Invalid numeric literal 1.34E-2.10

 e +6

 _254.4879

Table 4-4. Numeric literal with decimal base

4. Programming

15

Boolean constants

For boolean constants the words TRUE or FALSE can be used; or its numerical equivalents 1 or 0.

Types of Data

The type of data defines the manner in which the data can be stored on the PLC memory. This

section defines the possible types of data as well as the conversion functions applicable from a type

to another.

Basic Types of Data

ST language used the following types of data:

Type Description Bytes Band

BOOL Boolean 1 FALSE, TRUE, 1 or 0.

BYTE 8 bits sequence 1 Note 1

WORD 16 bits sequence 2 Note 1

DWORD 32 bits sequence 4 Note 1

USINT Short integer 1 0 .. 255

INT Integer 2 - 32.768 .. 32.767

DINT Double integer 4 -2.147.483.648 ..
2.147.483.647

REAL Real 4 10
 38

 Note 2

Table 4-5. Data basic types

Note 1: Numerical band is not applicable to the types BYTE, WORD and DWORD.

Note 2: the floating point with simple precision is defined by the norm IEC 559 (IEEE 754).

Classifying Data

The several types of data are classified in groups according to a hierarchy. Afterwards, it will be seen

that the use of operators usually is limited to determined types of a same group.

Figure 4-2. Data classification

4. Programming

16

Types Conversion

The variable can be converted to another format through the converting type functions. The

converting of a type to another can occur on an implicit manner, when the verifier inserts a

conversion function automatically; or in an explicit manner, when the user must insert the conversion

function.

The conversion functions use the format:

<source type>_TO_<target type>(<value to convert>)

The implicit conversions among types are possible since there is no risk of losing information, and

that there is compatibility among types. The following figure presents all the possible implicit

conversions between two types:

Figure 4-3. Implicit conversions

The following table shows the operations carried out on the conversion of types. It can be observed,

that even the implicit conversions have conversion functions to the case of conversion before a

mathematics operation whose result requires more numerical resolution.

4. Programming

17

Source Target Comment Conversion Function

BOOL

BYTE

If the source is TRUE the target will
be 1.

If the source is FALSE the target will
be 0.

Explicit BOOL_TO_BYTE

WORD Explicit BOOL_TO_WORD

DWORD Explicit BOOL_TO_DWORD

USINT Explicit BOOL_TO_USINT

INT Explicit BOOL_TO_INT

DINT Explicit BOOL_TO_DINT

REAL Explicit BOOL_TO_REAL

BYTE

BOOL
If the source is zero the target will be
FALSE, on contrary case will be
TRUE.

Explicit BYTE_TO_BOOL

USINT
The target will receive a value from 0
to 255.

Explicit BYTE_TO_USINT

WORD

Convert the absolute value from
source to the target format. The
values will remain unchanged.

Implicit BYTE_TO_WORD

DWORD Implicit BYTE_TO_DWORD

INT Explicit BYTE_TO_INT

DINT Explicit BYTE_TO_DINT

REAL Explicit BYTE_TO_REAL

Source Target Comment Conversion Function

WORD

BOOL
If the source is zero the source will
be FALSE, on contrary case will be
TRUE.

Explicit WORD_TO_BOOL

BYTE The target will receive the low byte of
the source.

Explicit WORD_TO_BYTE

USINT Explicit WORD_TO_USINT

INT
The target will receive a value from
–32768 to 32767, and can assume
negative values.

Explicit WORD_TO_INT

DWORD Convert the absolute value from
source to target. The values will
remain unchanged.

Implicit
WORD_TO_DWOR

D

DINT Explicit WORD_TO_DINT

REAL Explicit WORD_TO_REAL

DWORD

BOOL
If the source is zero the target will be
FALSE, on contrary case will be
TRUE.

Explicit DWORD_TO_BOOL

BYTE The target will receive the low byte of
the source.

Explicit DWORD_TO_BYTE

USINT Explicit DWORD_TO_USINT

WORD
The target will receive the low word
of the source.

Explicit
DWORD_TO_WOR

D

INT The target will receive the binary
form of the source, and it can have
negative values.

Explicit DWORD_TO_INT

DINT Explicit DWORD_TO_DINT

REAL

The conversion to REAL accur with
the lost of numerical resolution (only
to values with modules greater than
16777215)

Explicit DWORD_TO_REAL

USINT

BOOL
If the source is zero the target will be
FALSE, on the contrary case will be
TRUE.

Explicit USINT_TO_BOOL

BYTE
The target receives the binary form
of the source.

Explicit USINT_TO_BYTE

WORD Explicit USINT_TO_WORD

DWORD Explicit USINT_TO_DWORD

INT Convert the absolute value of the
source to the target format. The
values will remain the same.

Implicit USINT_TO_INT

DINT Implicit USINT_TO_DINT

REAL Explicit USINT_TO_REAL

4. Programming

18

Source Target Comment Conversion Function

INT

BOOL
If the source is zero the target will be
FALSE, on the contrary case will be
TRUE.

Explicit INT_TO_BOOL

BYTE The target will receive the low byte of
the source.

Explicit INT_TO_BYTE

USINT Explicit INT_TO_USINT

WORD
The target receives the binary form
of the source.

Explicit INT_TO_WORD

DWORD

The target receives the binary form
of the source. If the source is a
negative number the word more
significative will receive the value
0xFFFF.

Explicit INT_TO_DWORD

DINT Convert the absolute value of the
source to the target format. The
values will remain the same.

Implicit INT_TO_DINT

REAL Implicit INT_TO_REAL

Source Target Comment Conversion Function

DINT

BOOL
If the source is zero, the target will be
FALSE, on the contrary case will be
TRUE.

Explicit DINT_TO_BOOL

BYTE The target will receive the low byte of
the source.

Explicit DINT_TO_BYTE

USINT Explicit DINT_TO_USINT

WORD The target receives the binary form
of the source low word.

Explicit DINT_TO_WORD

INT Explicit DINT_TO_INT

DWORD
The target receives the source binary
form.

Explicit DINT_TO_DWORD

REAL

The target will receive the integer
source value.

The conversion to REAL occur with
the lost of the numerical resolution to
values with module greater than
16777215.

Explicit DINT_TO_REAL

REAL

BOOL
If the source is zero, the target will be
FALSE, on the contrary case will be
TRUE.

Explicit REAL_TO_BOOL

WORD

The source is first converted to DINT.

See DINT conversion to the other
types.

Explicit

REAL _TO_WORD

INT

Convert the absolute value of the
source to the target.

Values out of the numerical band will
be saturated on the numerical limits
of INT (-32768 to 32767).

Explicit REAL _TO_INT

DINT

The target will receive the source
integer value.

Values out of the numerical range
will be sautéed on the DINT
numerical limits (-2147483648 to
2147483647).

Explicit REAL _TO_DINT

Table 4-6. Operations on type conversion

Parallel to those conversion operations there are functions able to convert any type of input to a

specific type. Those functions of type conversion use the format:

 ANY_TO_<target type>(<value to convert>)

WARNING:
The conversion of variables type REAL to any variable type ANY_INT using the functions of
conversion type, will always be passed the integer part of the REAL variable. Those functions do not
carry out rounding.

4. Programming

19

Variables

A variable is a memory area that stores a type of language data. The data are defined as Basic Types

of Data. All the variables must be declared before being used.

Declaring de Variables

Any variable declaration must be done between the words VAR and END_VAR. Each declaration

can have many variables, separated by comma. In this case, all will be of a same type.

VAR

<Var1>, <Var2>, ... , <VarM> : <tipo1>;

<VarN>, <VarO>, ... , <VarZ> : <tipoN>;

END_VAR

The variables are always initiated automatically with the standard value, according to the following

table. Only the variable placed in PLC operands are not initiated automatically.

Data Type Default start value

BOOL FALSE or 0

USINT, INT, DINT 0

BYTE, WORD, DWORD 0

REAL 0.0

Table 4-7. Start value of the variables

Only-Reading Variables

A variable declared as only reading only accepts value attribution in its declaration. Any other

attribution during the code will cause error in verifying time.

The declaration of only-reading variables, also known as constant variables, is done through the

clause CONSTANT, according to what is shown bellow:

VAR CONSTANT

<Var1>, <Var2>, ... , <VarM> : <type1>;

<VarN>, <VarP>, ... , <VarZ> : <typeN>;

END_VAR

The application of those variables occurs when it is necessary to map a variable of the PLC inside the

ST module and that cannot have writing operations on them. Other application occurs when it is

desired to substitute symbols for numerical constants and group in an only place the values

associated to them.

The following example shows a simple application of variables type CONSTANT:

VAR CONSTANT

INI : INT := 1;

END : INT := 100;

END_VAR

VAR

VECTOR : ARRAY[1..100] OF INT;

LEVEL AT %F0030 : REAL;

I : INT;

END_VAR

FOR I := INI TO END DO

VECTOR[I] := REAL_TO_INT(LEVEL * 100);

END_FOR;

4. Programming

20

Declaring Vectors

Vectors are declared using the clause ARRAY. The inferior and superior limits can be specified

freely. That is, it is possible to define a vector of 10 elements, being the first element accessed by the

index 14 and the last one by 23, for example. Those vectors can be indexed through any expression

of type USINT, INT or DINT, since it is positive. The maximum number of elements is limited only

by the size of the data area (3kbytes).

VAR

<vetor1> : ARRAY [<inferior_limit> .. <superior_limit >] OF <type>;

<vetor2> : ARRAY [<inferior_limit> .. <superior_limit>] OF <type>;

END_VAR

A declaration of vectors where the superior limit is less than the inferior limit or where the inferior

limit is less than zero will cause a verification error.

Starting the Variables

Variables can be started with a value different from the standard, placing this value after the type as

is following shown:

VAR

<name of the variable > : <type> := <start value >;

END_VAR

A vector can also be started on the declaration. In this case, the values are written in sequence and

must be separated by comma.

VAR

Vector : ARRAY [1..10] OF INT := [11, 12, 13, 0, 0, 0, 0, 18, 19, 20];

END_VAR

It is equivalent to:

Vector[1] := 11;

Vector[2] := 12;

Vector[3] := 13;

Vector[4] := 0;

Vector[5] := 0;

Vector[6] := 0;

Vector[7] := 0;

Vector[8] := 18;

Vector[9] := 19;

Vector[10] := 20;

Mapping Variables in Simple Operands and Table

All the variables are placed by the verifier in a data area reserved to the use of modules P and F. As

this memory area is destroyed in the end of the module call all the variable values are also destroyed.

The mapping of variables in operands %M allows keeping the variable value between the module

calls. It also allows accessing the operands inside the PLC used by other modules. It is possible map

operands %E, %S, %A, %M, %F, %I, %TM, %TF e %TI.

All the mapping is done in the variables declaration with the clause AT. As it MAPEA a global

address for all the programming modules of the PLC, this operation has the following restrictions:

 It can only be used inside VAR.

 Declared variable with operands mapping are not automatically started with its standard value, but

can be started explicitly.

 The use of the word CONSTANT is allowed, indicates that the variable will not be modified

during the program.

 The signal “%” is mandatory before the operand.

4. Programming

21

Bellow, the declaration syntax:

VAR

<variable> AT <operand_CP> : <type> ;

END_VAR

The types allowed on the declaration must be compatible with the operands. The following table

shows the possible associations among operands and types:

Operand Allowed Types

%M.x, %A.x, %E.x and
%S.x

BOOL

%A, %E and %S USINT or BYTE

%M or %TM INT, or WORD

%I or %TI DINT, or DWORD

%F or %TF REAL

Table 4-8. Related types with operands on PLC

It is also possible to associate operand bit to a variable type BOOL. The allowed operands are: %E,

%S, %A e %M. In this case, the mapping is done to an operand type BOOL.

Some examples of MAPEAMENTOS allowed are shown in the following figures:

Mapping to BOOL:

VAR

HIGH_PRESSURE AT %M0006.6 : BOOL;

START_ECR AT %A0006.6 : BOOL := FALSE;

INPUT AT %E0010.5 : BOOL;

OUTPUT AT %S0008.7 : BOOL;

END_VAR

Mapping to INT and WORD:

VAR

LEVEL AT %M0123: INT;

TEMPERATURE AT %TM010[15]: INT;

ALARMS AT %M1432: WORD;

END_VAR

All the operands MAPEAMENTOS are verified during the module execution so that it is possible to

be sure that this operand was declared on C module. In case it not exists, an error in execution time

occurs, according the description of the Table 5-2.

Mapping Vectors in Simple Operands and Table

It is also possible to map vectors to PLC operands using the clauses AT and ARRAY. Blocks of

simple operands can be mapped, table operands or parts of table operands.

As in the mapping of variables, in the vectors mapping the vector type must be compatible with the

operand type according to the table 4-5.

Bellow some examples of different mapping of vectors in operands.

VAR

(*Declaring a vector of 150 positions on the operands block of operands M1000 to

M1149*)

ALARMS AT %M1000 : ARRAY[1..150] OF WORD;

(*Declaring a vector of 100 positions on the operands block

 %TM200[000] to %TM200[099]. It is obligatory to define the first position of

the table. *)

PRESSURES AT %TM200[000] : ARRAY[1..100] OF INT;

4. Programming

22

(*Declaring a vector of 50 positions on the operands block

%TM030[050] to %TM030[099]. *)

SILOS AT %TM030[050] : ARRAY[1..50] OF INT;

END_VAR

In operands mapping, every block must be declared on module C of the CP. A mapped vector in table

operand must be totally in the table operand mapped. In case any of these conditions is false, an error

in execution time occurs.

Mapped vectors in operands cannot be BOOL type.

Functions

A function is a routine that must be executed several times. The main use of the functions is allow a

better modularity to a program. A function is declared in the following manner:

Figure 4-4. Text structure to define a function

Before the function returns to the routine which called it, a return value must be configured. This

operation can be done attributing a value to the function name. The return value can be attributed in

several parts of the commands block and can be done more than once.

FUNCTION FUNCTION1 : INT

 VAR_INPUT

 A : INT;

START TEXT

END TEXT

The function must
contain at least one input
parameter declared on
the block
VAR_INPUT...END_VAR

The function can have
many declarations of
internal variables, or
none.

VAR...END_VAR

FUNCTION <Name> : <Type>

It is obligatory at least
one comand on the
function code.

VAR_INPUT...END_VAR

The declaration of the
function must contain a
name and the retunr
type.

END_FUNCTION

Comands

4. Programming

23

END_VAR

FUNCTION1 := A * 2;

END_FUNCTION

The input parameters must be specified between the words VAR_INPUT and END_VAR. The order

in which the parameters are specified determines the order in which they must pass to this function.

The input parameters cannot be mapped in PLC operands, or be defined as vectors.

A function can call other functions defined by the user. However, the call of the same function is not

allowed and an error in verification time occurs. The limit of calls nested function is 16 calls, that is,

from the main program, can only be called 16 functions according to the following picture:

Figure 4-5. Calling function limits

Program

Program is the code routine where the execution of module starts. A program can access all the

global variable and functions defined on the module. It is declared as in the following figure:

4. Programming

24

Figure 4-6. Text structure to define a function

Parameters Passing

Whenever a module F is being programmed, the passing of input and output parameters is possible.

They are passed through the ladder instruction and are limited to the amount of parameters allowed

by the instruction, being a total of 10 input parameters to input and/or output and 10 more output

parameters.

START TEXT

END TEXT

The program can contain
on or more input prameters
declared on the block
VAR_INPUT...END_VAR.

VAR...END_VAR

PROGRAM <Nome>

It is obligatory at least one
command on the program
code.

VAR_INPUT...END_VAR

The declaration of the
function must have a name

END_PROGRAM

Comands

VAR_IN_OUT...END_VAR

VAR_OUTPUT...END_VAR

The program can contain
one or more input and
output parameters
declared on the block
VAR_IN_OUT...END_VAR.

The program can contain
one or more output
parameters declared on
the block VAR_OUTPUT...
END_VAR.

The program can have
many declarations of
internal variables , or none.

4. Programming

25

Declaration Description CHF – Calling F Modules

VAR_INPUT Input parameters. Read only. The first n input parameters.

VAR_IN_OUT Input and Output parameters. Read and Write. The last n Input parameters.

VAR_OUTPUT Output Parameters. Write only. The output parameters.

Table 4-9. Parameters types

The following figure shows the association between the input and output variables of a CHF with the

types of variable used in the ST module.

Figure 4-7. Relations between inputs and outputs of CHF with ST module operands

All the parameters are passed by value. They can be table operands, blocks of simple operands. The

consistence rules to the passing of parameters are shown bellow, and any violation will cause an error

in execution time:

 The parameters must be passed to equivalent types according to the table 4-8;

 Constant operands, %KM, %KI and %KF, can only be related to VAR_INPUT and only to simple

variable, they cannot be vector

 Can not be passed part of the operand, like bit, nible, byte or word.

 Table operands can be related only to vector;

 A VECTOR must be related to a table operand or to a block of simple operands, where the first

VECTOR position is the operand passed on the CHF;

 All the operands passed by parameters must be declared;

 All the operands related to vector must be declared, and it includes the complete vector size.

Table 4-9 represents the input and output operands declaration to the following declaration of

variables in a ST module.

PROGRAM TEST

VAR_INPUT

OP_INPUT0: ARRAY[1..100] OF INT;

OP_INPUT1: INT;

OP_INPUT2: INT;

END_VAR

VAR_IN_OUT

OP_IN_OUT0: REAL;

OP_IN_OUT1: REAL;

OP_IN_OUT2: REAL;

END_VAR

VAR_OUTPUT

OP_OUTPUT0: ARRAY[1..10] OF INT;

OP_OUTPUT1: INT;

OP_OUTPUT2: INT;

OP_OUTPUT3: REAL;

OP_OUTPUT4: REAL;

OP_OUTPUT5: REAL;

END_VAR

;

END_PROGRAM

4. Programming

26

Parameters Passing to F Module

A module F programmed in ST language allows the passing of parameters type VAR_INPUT,

VAR_IN_OUT e VAR_OUT. The variables type VAR_INPUT e VAR_IN_OUT are declared on

“Input…”, while the variables type VAR_OUT are declared on “Output…”, of the CHF. The

distinction between input and output variables is made at the moment of the variables declaration on

ST module. The following example describes the variable declaration of a module F with three input

variables, two input and output variables and two output variables. In this case five variable must be

declared on “Input” and two on “Output” on the CHF.

PROGRAM <program name>

VAR_INPUT

VAR_0: INT;

VAR_1: INT;

VAR_2: INT;

END_VAR

VAR_IN_OUT

VAR_IN_OUT_0: REAL;

VAR_IN_OUT_1: REAL;

END_VAR

VAR_OUTPUT

VAR_OUT_0: INT;

VAR_OUT_1: INT;

END_VAR

<program body>

END_PROGRAM

At the end of the execution of the ST module the operands type VAR_IN_OUT are copied to their

respective source operands.

ATTENTION:
Only parameters type VAR_INPUT can be associated to constant operands (%KM, %KI, %KF)
through the input parameters of the CHF.

Signs of Module Input and Output

Inside the PROGRAM scope, there are up to six variables type BOOL pre-declared referring to the

input and output signs of the CHF and CHP instructions. The following figure presents this

association:

Figure 4-8. Modules outputs and inputs signals

The variable INPUT1, INPUT2 and INPUT3 are only for reading. The value of each variable

corresponds to the value of the input instruction CHF or CHP on ladder.

ATTENTION:
For the execution of the program it is necessary that the first input of the CHF and CHP instruction
is enabled.

4. Programming

27

The variable OUTPU1, OUTPUT2 and OUTPUT3 are only writing. The variable OUPUT1 is started

with TRUE while the others are started with FALSE. In case there is an error in execution time, the

variable OUTPUT1 is placed in FALSE, independently of what the user have already written on it.

PROGRAM SUM

VAR_INPUT

 I ,J : INT;

END_VAR

VAR

 SUM : INT;

END_VAR

(* Input 2 of the function defines if the sum must be times 2 or times 4*)

IF INPUT2 THEN

 SUM := (I + J) * 2;

ELSE

 SUM := (I + J) * 4;

END_IF;

(* The output of the function will be unpowered if an overflow occur *)

IF INTERNAL_OVERFLOW THEN

 OUTPUT1 := FALSE;

ELSE

 OUTPUT1 := TRUE;

END_IF;

END_PROGRAM

Internal Variable of Control

INTERNAL_OVERFLOW
It indicates that an overflow or underflow in last arithmetic operation of kind addition, subtraction,

multiplication, negation or in EXPT function.

PROGRAM SUM

VAR_INPUT

 I ,J, K : INT;

END_VAR

VAR

 TEMP : INT;

END_VAR

TEMP := I + J;

IF INTERNAL_OVERFLOW THEN

 OUTPUT1 := FALSE;

 RETURN;

END_IF;

TEMP := TEMP + K;

IF INTERNAL_OVERFLOW THEN

 OUTPUT1 := FALSE;

END_IF;

END_PROGRAM

When an overflow or underflow happen, the result of operation will be limited on type used in

operation. For example, add two variables of type INT, whose values are 15_000 and 25_000, the

result will be 32_767.

Scope and Life Time Rules

The names used to identify variables, functions and the program can be declared in global or local

scope.

In the global scope, the name is visible to all the functions and to the program. All the functions and

the program are declared on the global scope, but the variables, are only global the ones which are

declared out of the functions and the program, in the beginning of the code.

4. Programming

28

The local scope is the scope inside the functions and the program. The declared variables inside this

scope are visible only to the functions in which they were declared.

It is not allowed to declare the same name twice inside the same scope. However, when a local

variable name coincides with a global variable name, the name declared in the global scope will

always be used.

The lifetime of variables will depend on the local where they were declared. To variables inside the

functions, the value of those variables is destroyed at the end of the function call. The variable values

declared on the global scope are destroyed at the end of the module call, when the program returns to

ladder. The variables mapped in operands, which keep its value between the modules call, are

exceptions.

Commands

A program written in ST is composed by a sequence of “commands”. The types of commands are:

 Commands of attribution

 Commands of function call

 Commands of program control

 Commands of selection

 Commands of repetition

Besides the commands, the verifier or the ST Language is able to evaluate mathematics expressions

to value calculus.

Expressions

Expressions are used to calculate or evaluate values. An expression is composed by several operands

and operators. They can be variable, literal or function call.

Operators can use one or two operands. When they use only one operator they are called “unary”. In

this case, they will always be located before the operand. When they use two operands, they are

called binary. In this case, the operator must be between the operands.

Both operators used in binary operations, in most of the operations, must be the of the same type.

When operators of different types are used, a conversion function must be used, according to the

description of the section Types Conversion .

Mathematics Operators
Those operators carry through mathematics operations between two operands. The operands can be

any ANY_NUM, but they cannot be different among them. The mathematics operator always returns

the same type of used operands.

Operator Description Application Change
INTERNAL_OVERFLOW

+ Addition ANY_NUM + ANY_NUM Yes

- Subtraction ANY_NUM – ANY_NUM Yes

- Denied - REAL

- DINT

- INT

Yes

* Multiplication ANY_NUM * ANY_NUM Yes

/ Division ANY_NUM / ANY_NUM No

MOD Modulo of division ANY_INT MOD ANY_INT No

Table 4-10. Mathematics operands basic

4. Programming

29

The operation Var1 MOD 0 will return 0 (zero). This operation will not create error of division by zero.

Relation Operators
Relation operands execute a comparison between two numerical types according to the description

on the Table 4-11. The operands must be of the same type and the operation returns always in a type

BOOL.

Operator Description Application

< Less than ANY_NUM < ANY_NUM

> Grater than ANY_NUM > ANY_NUM

<= Lesser or equal ANY_NUM <= ANY_NUM

>= Greater or equal ANY_NUM >= ANY_NUM

= Equality ANY = ANY

<> Inequality ANY <> ANY

Table 4-11. Related operator

Operators Logic and Bit-to-Bit
Those operators execute two different operations: Boolean logic and bit-to-bit logic. The operation

selection is done according to the types of operands used.

Boolean logic operations are executed among operand type BOOL. The following table represents

the result of an operation BOOL. The result will always be BOOL type.

Operand A Operand B AND, & OR XOR

FALSE FALSE FALSE FALSE FALSE

FALSE TRUE FALSE TRUE TRUE

TRUE FALSE FALSE TRUE TRUE

TRUE TRUE TRUE TRUE FALSE

Table 4-12. Logic operators

Logic operations bit-to-bit are executed when the operands are BYTE, WORD and DWORD, being

the two operands of the same type. The bit-to-bit operation carries through a Boolean operation for

each bit of the operands, according to the description on the Table 4-12. Those operations return to

the same type of the operands used.

Inputs := 2#0011_1001; (* Inputs, type BYTE *)

Filters := 2#0001_1100; (* Filters, type BYTE *)

Alarms := Inputs AND Filters; (* Alarms, type BYTE *)

 (*Alarms is equal to 2#0001_1000 *)

Operator Description Application

AND, & Operation “AND” ANY_BIT AND ANY_BIT

ANY_BIT & ANY_BIT

XOR Operation “OR” exclusive boolean ANY_BIT XOR ANY_BIT

OR Operation “OR” boolean ANY_BIT OR ANY_BIT

NOT Boolean Complement NOT ANY_BIT

Table 4-13. Operators bit-to-bit

Operators Precedence
The evaluation of the expression is done according to the preference of the operators, as shown on

Table 4-14. Operators of bigger precedence are evaluated first. If the operators have the same

precedence, the one which is more on the left will be evaluated first.

4. Programming

30

Precedence Operator Description

0 (greater)
(...) Expression between parentheses

function (...) Function

1
- Negation

NOT Complement

2

* Multiplication

/ Division

MOD Rest

3
+ Addition

- Subtraction

4 < , > , <= , >= Comparing

5
= Equality

 <> Inequality

6 AND, & Operation “AND” boolean

7 XOR Operation “OR” exclusive boolean

8 (less) OR Operation “OR” boolean

Table 4-14. Operations precedence

Function Calls
A function can be called inside an expression. The value to be passed for each parameter is written

inside the parenthesis and separated by comma. The order in which the value must be written must be

the same as the parameters were declared in the function.

 (* Function calling: first form *)

function_name (expression_1, expression_2, ... , expression_n)

In an expression that has more than one function, it is not possible to determine what function will be executed first.

EXPT Function
The EXPT function return the result of the operation (base

exponent
), where the base can be ANY_INT

or REAL and the exponent can be USINT. The type of result will be the same type of the base. This

function change the value of INTERNAL_OVERFLOW.

VAR

 base, result : INT;

 exponent : USINT;

END_VAR

base := 4;

exponent := 2;

result := EXPT(base, exponent);

(* result is equal to 16 *)

Integer Constants

Integer constants can be used in operation with ANY_INT since the literal value does not pass the

limit of the type of the other operand.

4. Programming

31

Band Types compatible

0 to 255 USINT, INT, DINT, BYTE, WORD and DWORD

-1 to –32.768 INT and DINT

0 to 32.767 INT, DINT, WORD and DWORD

0 to 65.535 DINT, WORD and DWORD

-1 to -2.147.483.648 DINT

0 to 2.147.483.647 DINT and DWORD

0 to 4.294.967.296 DWORD

Table 4-15. Integer constants

The real numerical literal can only be used in operations with variables that are also type REAL.

Attribution Command

Attribution is used to write a given value in a variable.

<variable> := <expression>;

Command of Program control

Command RETURN
A function always returns to the routine which called it after the execution of the last affirmation.

However, it is possible return in the middle of the code, through the use of the reserved word

RETURN.

In case the word RETURN is used in the main program, the program will be stopped, returning the

execution control to ladder program.

Commands of selection

A command of selection executes one among several affirmation blocks. The chosen of the block is

defined by an evaluation function expressed by non-terminal <boolean_expression>.There are two

kinds of affirmation of selection: the command IF and the command CASE.

Command IF
IF command executes the affirmations after THEN if the test <boolean_expression> is true.

Optionally, it is possible insert other test conditions with the ELSIF clause, being only the

affirmation group where the first test is true executed.

Optionally, it is possible to specify an affirmation block to be executed, in case all the tests fail,

through the clause ELSE.

IF <boolean_expression> THEN <commands>

{ ELSEIF <boolean_expression> THEN <commands> }

[ELSE <commands>]

END_IF;

Example:

IF A = B THEN

 TEST := 10;

ELSEIF A = C THEN

 TEST := 11;

ELSEIF A = D THEN

 TEST := 12;

4. Programming

32

ELSEIF A = E THEN

 TEST := 13;

ELSE

 TEST := 0;

END_IF;

Command CASE

Command CASE also executes only one affirmation block. The block selection is done by comparing

the integer value of <integer_expression> with the values written on <cases>.

Optionally it is possible to specify an affirmation block to be executed if all the tests fail through the

clause ELSE.

CASE <integer_expression> OF

<cases> : <commands>

{ <cases> : <commands> }

[ELSE <commands>]

END_CASE;

<cases> indicates value list or sub-band separated by comma.

Example:

CASE Temperature OF

0 : Bomb1 := 10;

1, 2, 5..10 : Bomb1 := 10;

END_CASE;

The values tested must be compatibles with <expression integer >.

Commands de Repetition or Iteration

An iteration command executes repeatedly an affirmation block. The number of times it is executed

depends on the iteration type that can be: command WHILE, command FOR and command

REPEAT.

For all the commands, it is possible to stop the iteration loop prematurely through the EXIT

command. This command can only be used inside the iteration loop. The use of the command EXIT

out of an iteration affirmation will cause a verification error.

Command WHILE
The command WHILE executes a block of commands while the evaluation function

<boolean_expression> is true. The command WHILE always test the evaluation function before

executing the block. So, if in the first iteration the result of the test is false, the affirmation block will

not be executed.

WHILE <boolean_expression> DO

<commands>

END_WHILE;

Example:

WHILE I <= END_TABLE DO

ACUMULATOR := ACUMULATOR + TABLE[I];

I := I + 1;

END_WHILE;

4. Programming

33

Command REPEAT
The command REPEAT executes the commands block until the evaluation function

<boolean_expression> is true. Differently of the command WHILE, the command REPEAT

executes first the affirmation block and after tests the evaluation function. So, the affirmation block is

executed at least once.

REPEAT

<comands>

UNTIL <boolean_expression> END_REPEAT;

Example:

REPEAT

ACUMULATOR := ACUMULATOR + TABLE[I];

I := I + 1;

UNTIL I > END_TABLE END_REPEAT;

Command FOR
The command FOR allows executing an statement block repeatedly. The number of repetitions is

controled by a <control_variable>. This variable must be type USINT or INT and cannot be an

operand of the CPU of the programmable controller (%M, for example).

First, <control_variable> is initialized with the value of <start_exp>. In the beginning of each

repetition, it is verified if the value of <control_variable> exceeds the value defined by <end_exp>.

If it did not exceed, the statement block is executed. If not, the FOR command is stopped. In the end

of the block execution, <control_variable> is incremented in 1, or by the value defined by

<inc_exp><inc_exp>. The <control_variable> and the expressions <start_exp>, <expr_inicial>

and <end_exp> must be data of the same type (USINT or INT).

FOR <control_variable> := <start_exp> TO <end_exp> [BY

<inc_exp><inc_exp><inc_exp><inc_exp>] DO

<commands>

END_FOR;

or

FOR <control_variable> := <expr_start> TO <expr_end> DO

<commands>

END_FOR;

 <control_variable>, inside the scope of the loop FOR, can be read but cannot be written.

During the iterations, the value <end_exp>evaluated in the beginning of FOR. That is, this expression is not evaluated again

during the command.

Example:

FOR I := START_TABLE TO END_TABLE DO

ACUMULATOR := ACUMULATOR + TABLE[I];

4. Programming

34

END_FOR;

5. Debug

35

5. Debug

Debug methods

This chapter describes as the debug of a module created in language ST, according to the orientations

on Chapter 4 – Programming. Besides forcing and monitoring variables, there are other resources

very useful when it is desired to debug an application, in ladder or ST language.

Afterwards, two methods are described. The first one uses execution in cycled mode of the

programmable controller, and the second one uses status machines to implement the debug.

Cycled Mode

When in cycled mode, the programmable controller does not execute periodically the module E001,

and remains waiting for commands of MasterTool programmer. To further details about mode cycled

check the Programming Manual of MasterTool XE.

Using the depuration in cycled mode, a verification of the variable values used can be done between

a cycle and other, verifying the variable values used and even force values to verify the behavior of

the application that is being debugged.

Status Machines

This debug method consists in creating a defined sequence of actions related to an index or status.

This manner, the code can be executed step by step, and each step can be a simple code line or a part

of any code.

A simples implementation of this status machine can be obtained through the IF command, according

to what is shown in the following example:

IF STATUS = 1 THEN

< commands block 1>

STATUS := 0;

END_IF;

IF STATUS = 2 THEN

< commands block 2>

STATUS := 0;

END_IF;

.

.

.

IF STATUS = n THEN

< commands block n>

STATUS := 0;

END_IF;

Each command block of the code presented is executed once, as the status index is zeroed at the end

of the block execution. Incrementing the variable of the status, different parts of the code can be

executed in a controlled manner. Between a status and another, different values can be forced to the

verification of the code behavior and the values obtained in the involved variables, for example.

Errors in Verification Time

An useful information about the level of debug of source codes are the errors returned by the

verification, upon checking the written code. Those errors can be typing problems, invalid

5. Debug

36

associations and inappropriate use of instructions, easing the process of development of the ST

module.

The language ST verification can generate the following errors in a module:

Description Probably cause

Invalid Char The verifier did not recognize the typed text or char.

Invalid Symbol Indicates that the lexical notation used is incorrect. The possible notations
are listed below:

Identifier:

- Ended with "_"

- Have two consecutive "_".

Numeric Literal:

- Ended with "_"

- Have two consecutive "_".

- Floating point with exponent without value.

- Invalid digit to the numerical base.

Commentary not closed with *) End of file was found before the end of comment.

Was expected <token 1> instead of
<text 2>

Syntax Error. Probably was typed a wrong text, or a text is missing.

It was not expected <text 1> after <text
2>

Syntax Error. Probably was typed a wrong text, or a text is missing.

It was not expected <text 1> Syntax Error. Probably was typed a wrong text, or a text is missing.

The Identifier <name> was already
declared on this scope.

The Identifier was already declared. Use another name.

Identifier Identifier

Variable <name> was not declared. The variable was not declared. Declare the variable before use it.

Vector<name> was not declared. The vector was not declared. Declare the vector before use it.

Function <name> was not declared. The function was not declared. Declare the function before use it.

Was expected an integer expression. The commands CASE expect integer expressions to test. The expression
used is not integer.

Impossible to convert <type 1> to <type
2>

The conversion between the types is not allowed. Try using an explicit
function conversion.

Is not possible execute the operation
<operation> between the types <left
type> and the <right type>.

The operation is not valid to the types. Use de conversion function to
convert to correct type.

Is not possible execute the operation
<operation> with <right type>.

The operation is not valid to the type. Use de conversion function to
convert to correct type.

Command EXIT can not be executed
out of a loop WHILE, FOR or REPEAT.

The command EXIT can not be executed out of a loop WHILE, FOR or
REPEAT.

This code will never be executed. The code was written after a command of RETURN or EXIT and will
never be executed.

Recursive calling of the function
<name>

A function can not be called recursively.

One part of the function <name> does
not return a value.

Exist a part of the code that do not return a value through the command:

Function := value;

Function <name> was called with more
parameters than declared.

Function <name> was called with less
parameters than declared.

Symbol <name> is not a function Was expected that the symbol was a function.

Symbol <name> is not a vector Was expected that the symbol was a vector.

Symbol <name> is not a variable Was expected that the symbol was a variable.

Symbol <name> is not a constant Was expected that the symbol was a constant.

5. Debug

37

Symbol <name> do not allow reading

Symbol <name> do not allow writing

Constant <value> is already used on
other case.

The integer constant has already been used on other CASE command.

FOR control variable <name> can not
be related to an operand on the PLC.

FOR control variable <name> can not
be written inside a FOR

Incorrect number of elements to start
the vector

PLC operand <operand type> is
incompatible with <variable type>

<Type> can not be used as parameter
of <name function or program>

The declared type can not be used as parameter.

The F module can not have more than
10 parameters VAR_INPUT and
VAR_IN_OUT

The number of declared parameters in VAR_INPUT and VAR_IN_OUT
can not be more than 10.

The F module can not have more than
10 parameters VAR_OUTPUT.

The number of declared parameters in VAR_OUTPUT can not be more
than 10.

Procedure module do not allow
parameters

Function not allow parameters of the
type VAR_IN_OUT or VAR_OUTPUT

Was declared one or more variables of the type VAR_IN_OUT or
VAR_OUTPUT on the FUNCTION scope.

Value <value> out of the limits

Minimal value greater than maximum
value

Operand <operand> is not valid. The index used on operand name is out of limits.

The number of variables exceed the
limit.

CPU <CPU name> is not supported by
ST

Only CPUs PO3x42, PO3x47, AL-2004, PX2004 and PX2014 are support
by ST

Quantity the <type operand> operands
temporary is not sufficient. Minimal
<minimal quantity> operands.

Configure more temporary operands.

The data area exceeds limit of the CPU
<CPU name> . Byte used <bytes>. Limit
<limit of bytes>.

Use less variables.

Invalid size array. Maximus <quantity>
elements.

Fail on assembly module. Error on assembly module. Please contact Altus support.

Table 5-1. Errors on verification time

Errors in Execution Time

Whenever the ST module executes an illegal operation, as for example a division by zero or even an

access to operands non-declared, the occurrence of an error in execution time is defined. This type of

information indicates that, although correct according to ST language, the module ST is receiving

values or variable types for each it is not prepared. The operands are configured on the menu

Modules/Operands/Diagnosis.

Five %M operands are used to indicate the reason for the error, according to the following table:

5. Debug

38

Operand Description

%M+0 Line that the error occurred:
Line = 0: shows that an error was found on the beginning of the module,
before the first line of the code.
Line = -32.768 or bit15 with 1: no error was found, the other operands are
zeroed.

%M+1 Error code. See the following table.

%M+2 First error complement information.

%M+3 Second error complement information.

%M+4 Error complement information.

Table 5-2. Errors on execution time

The following table presents a detailed description of the possible errors in execution time:

Code Description Probably Cause Comp 1 Comp 2 Comp 3 Correction

2000 Access to a
not declared
operand.

The operand was not
declared on C
module.

Operand Type:

0: %M

8: %E/S

9: %A

4: %F

1: %I

Operand
Address

Not used Declare the
operand on C
module.

2001 Table
operand not
declared

The table operand
was not declared on
C module.

Operand Type:

0: %M

4: %F

1: %I

Table
Address

Not used Declare the
operand on C
module.

2002 Table
position not
declared

The table was not
declared on C
module with the
number of positions
used by the program.

Operand Type:

0: %M

4: %F

1: %I

Table
Address

Table
Position

Declare the
operand on C
module.

2003 Incorrect
input
parameter.

The operand used as
input parameter on
CHF is not
compatible with the
declared type.

Number of the
input
parameter.

Not used Not used Correct the operand
on the CHF
instruction.

2004 Incorrect
output
parameter.

The parameter used
as output parameter
on CHF is not
compatible with the
declared type.

Number of the
output
parameter.

Not used Not used Correct the operand
on the CHF
instruction.

2005 Operand of
the input
parameter is
not
declared.

The operand used as
input parameter on
CHF is not declared
on C module of the
PLC. Or the
operands of the
vector are not
declared on the C
module of the PLC.

Number of the
input
parameter.

Not used Not used Declare the
operand on the C
module or correct
the operand on
CHF.

2006 Operand of
the output
parameter
not
declared.

The operand used as
output parameter on
CHF is not declared
on C module of the
PLC. Or the
operands of the
vector are not
declared on the C
module of the PLC.

Number of the
output
parameter.

Not used Not used Declare the
operand on the C
module or correct
the operand on
CHF.

2008 Invalid value
to constant
operand

The used constant
value exceed the
parameter size of
CHF

Number of the
input or output
parameter.

Not used Not used Correct the used
constant value.

2009 Incorrect
Number of
input
parameters.

The quantity of input
parameters declared
on CHF is incorrect.

Not used Not used Not used Verify the correct
number of input
parameters used on
CHF instruction.

5. Debug

39

Code Description Probably Cause Comp 1 Comp 2 Comp 3 Correction

2010 Incorrect
Number of
output
parameters.

The quantity of
output parameters
declared on CHF is
incorrect.

Not used Not used Not used Verify the correct
number of output
parameters used on
CHF instruction.

2011 Input
parameter of
array type
with
insufficient
positions.

Table operands with
insufficient positions.

Number of the
input or output
parameter.

Not used Not used Verify the positions
correct number
used on the
respective input
parameter.

2012 Output
parameter of
array type
with
insufficient
positions.

Table operands with
insufficient positions.

Number of the
output
parameter.

Not used Not used Verify the positions
correct number
used on the
respective output
parameter.

2015 Invalid
vector index.

The index used to
access the vector is
less than its minor
limit or is less than its
major limit.

Not used Not used Not used Verify the possible
values that can be
used as vector
index on the
program.

2020 Division by
zero.

Occurred a division
by zero.

Not used Not used Not used Verify the possible
values that can be
used on division
operation.

2030 Execution
time
exceeded.

The execution time
allowed for the
module was
exceeded.

Not used Not used Not used Probably a loop
instruction as
WHILE or REPEAT
was executed to
infinite.

2031 Execution
inside E018

The module is being
executed inside
E018, what is
prohibited

Not used Not used Not used It is not possible to
call the module ST
from E018.

2032 Firmware
version

The version of the
firmware is lesser
than expected by the
function.

Minimal version
of the firmware.
(decimal)

Not used Not used The module
generated on ST
can not be executed
in inferior versions
of firmware.

2040 Module
saved with
error

The module was
saved with
verification errors
generating a blank
program.

Not used Not used Not used The module was
saved and uploaded
to the PLC with
verification errors.

2050 Calling limits
exceeded.

The number of
functions calling in
sequence exceeded
the limit.

Not used Not used Not used See the limit of
callings. See
Software.

Table 5-3. Description of errors in execution time

6. Examples of Use

40

6. Examples of Use

This chapter presents examples of programs written in ST.

Buffer of events

The module F-EVT.030 inserts an event in the event buffer implemented in the operand %TM0010.

Each event operand occupies 3 positions in the buffer. The first position stores the minute value in

the high byte and the second value in the low byte. The second position stores the time. The third

position stores the event code.

(*

 Store the events in a TM. Each event is stored in 3 positions.

 High byte low byte

 pos 0 minute second

 pos 1 hour

 pos 2 event

 The event code is used as a parameter of CHF.

*)

(* Global Variables --- *)

(* Events Buffer *)

VAR

 BUFFER AT %TM0010[000] :ARRAY[1..120] OF INT;(* Events Buffer

*)

 BUFFER_IN AT %M0000 :INT; (* Buffer input*)

 BUFFER_OUT AT %M0001 :INT; (* Buffer output*)

 BUFFER_NUM_EVENTS AT %M0002 :INT; (* Number of stored events*)

 BUFFER_OVERFLOW AT %A0001.0 :BOOL; (* Overflow *)

END_VAR

(* Constants *)

VAR CONSTANT

 BUFFER_INF : INT := 1; (* First array index *)

 BUFFER_SUP : INT := 120; (* Last array index *)

 BUFFER_LIMIT : INT := 40; (* Maximal number of elements on buffer *)

END_VAR

(* Functions-- *)

(*

 Function: InsertValue

 Insert a value on the next position of event buffer;

 Return TRUE if overflow;

 *)

FUNCTION INSERT_VALUE : BOOL

VAR_INPUT

 VALUE : INT;

END_VAR

 (* Insert the position value *)

 BUFFER[BUFFER_IN] := VALUE;

 (* Control the buffer limits *)

 IF BUFFER_IN = BUFFER_SUP THEN

 BUFFER_IN := BUFFER_SUP;

 ELSE

 BUFFER_IN := BUFFER_IN + 1;

 END_IF;

 (* Control overflow *)

 IF BUFFER_NUM_EVENTS = BUFFER_LIMIT THEN

 INSERT_VALOR := TRUE;

 ELSE

 BUFFER_NUM_EVENTS := BUFFER_NUM_EVENTS + 1;

 INSERT_VALUE := FALSE;

 END_IF;

6. Examples of Use

41

END_FUNCTION

(* Program -- *)

PROGRAM F_EVT_030

 (*CHF input parameters*)

 VAR_INPUT

 EVENT : INT; (* Parameter 1 of CHF*)

 HOUR : INT; (* Parameter 2 of CHF*)

 MINUTE : INT; (* Parameter 3 of CHF*)

 SECOND : INT; (* Parameter 4 of CHF*)

 END_VAR

 (* Insert event *)

 INSERT_VALUE(MINUTE*256 + SECOND);

 INSERT_VALUE(HOUR);

 INSERT_VALUE(EVENT);

END_PROGRAM

Conversion of Values

The module P-CONV.040 converts the table degree values Fahrenheit to Celsius, storing the values

in another table.

(*

 Convert the temperatures from ºF to ºC

*)

(* Functions-- *)

(*

 Function: Convert

 Execute the conversion from one unit to another. Retorns the converted value.

 Makes the operation using the REAL type to obtain precision.

 *)

FUNCTION CONVERT : INT

VAR_INPUT

 INPUT : REAL;

 MAXIMUM_INPUT : REAL;

 MINIMUM_INPUT : REAL;

 MAXIMUM_OUTPUT : REAL;

 MINIMUM_OUTPUT : REAL;

END_VAR

 (* Normalize the input value *)

 CONVERT := REAL_TO_INT(INPUT / (MAXIMUM_INPUT - MINIMUM_INPUT) *

 (MAXIMUM_OUTPUT - MINIMUM_OUTPUT));

END_FUNCTION

(* Program -- *)

PROGRAM P_CONV_040

 (* Variables *)

 VAR

 TEMPERATURES_CELSIUS AT %TM0010[0]: ARRAY[1..100] OF INT;

 TEMPERATURES_FAHRENHEIT AT %TM0011[0]: ARRAY[1..100] OF INT;

 I : INT;

 END_VAR

 (* Constants *)

 VAR CONSTANT

 START : INT := 1;

 END : INT := 100;

 END_VAR

 (* Convert the temperatures from Celsius to Fahrenheit *)

 FOR I := START TO END DO

 TEMPERATURES_FAHRENHEIT[I] :=

 CONVERT (TEMPERATURES_CELSIUS[I],

 0, 100,

6. Examples of Use

42

 32, 232);

 END_FOR;

END_PROGRAM

7. Appendix

43

7. Appendix

Keywords

Here are presented a relation of keyworks pertaining to ST language. Not all of them are currently

used by ST Language, but they were saved to future implementations.

AT

ARRAY OF

CASE OF ELSE END_CASE

INPUT1 INPUT2 INPUT3

OUTPUT1 OUTPUT2 OUTPUT3

INTERNAL_*

EXIT

FALSE TRUE

FOR TO BY DO END_FOR

FUNCTION END_FUNCTION

IF THEN ELSIF ELSE END_IF

REPEAT UNTIL END_REPEAT

RETURN

CONSTANT

VAR END_VAR

VAR_INPUT END_VAR

WHILE DO END_WHILE

BOOL

SINT USINT INT UINT

REAL

AND OR XOR NOT MOD

*_TO__** (conversion types)

EN ENO

F_EDGE

FUNCTION_BLOCK

END_FUNCTION_BLOCK

PROGRAM WITH

PROGRAM END_PROGRAM

R_EDGE

READ_ONLY READ_WRITE

RESOURCE ON END_REPEAT

RETAIN

STRUCT END_STRUCT

TASK

TYPE END_TYPE

VAR_IN_OUT END_VAR

VAR_OUTPUT END_VAR

VAR_EXTERNAL END_VAR

VAR_ACESS END_VAR

WITH

BYTE WORD DWORD LWORD

DINT LINT UDINT U LINT

LREAL TRUNC

TIME DATE TIME_OF_DAY TOD

DATE_AND_TIME DT

ANY ANY_NUM ANY_REAL

 ANY_INT ANY_BIT STRING

 ANY_DATE

ABS SQRT LN LOG EXP SIN COS

TAN ASIN ACOS ATAN

SEL MAX MIM LIMIT MUX

LEFT RIGHT MID CONCAT INSERT

DELETE REPLACE LEN FIND

JMP CAL RET

ADD MUL DIV EXPT MOVE

SHL SHR ROR ROL

GT GE EQ LE LT NE

N R S L D P SD DS SL LD ST

ACTION END_ACTION

INITIAL_STEP END_STEP

STEP END_STEP

TRANSITION FROM TO

END_TRANSITION

8. Glossary

 44

8. Glossary

Active CPU In a redundant system is the CPU that is controlling the system – reading the inputs, executing the
application program and activating the outputs.

Jumpers Small connector to shortcut pins located on a circuit board. Used to set addresses or configuration.

Algorithm Finite and well defined sequence of instructions with the goal to solve problems

Altus Relay and Blocks
Language

Set of rules, conventions and syntaxes used when building a application program to run in an Altus PLC.

Application Program Program downloaded into the PLC and has the instructions that define how the machinery or process will
work.

Arrestor Lightning protection device using inert gases.

Assembly Language Microprocessor programming language, it is also known as machine language

Backup CPU In a redundant system, it is the CPU supervising the active CPU. It is not controlling the system, but is
ready to take control if the main CPU fails.

Bit Basic information unit, it may be at 1 or 0 logic level.

BT Battery test.

Bus Set of electrical signals that are part of a logic group with the function of transferring data and control
between different elements of a subsystem

Byte Information unit composed by eight bits.

C-Module See Configuration Module.

Commercial Code Product code formed by the letters PO and followed by four digits.

Commissioning Final verification of a control system, when the application programs of all CPUs and remote stations are
executed together, after been developed and verified individually.

Configuration Module Also referred to as C-Module. Unique module in a remote application program that carries several needed
parameters for its operation, such as the operands quantity and disposition of I/O modules in the bus

CPU Central Processing Unit. It controls the data flow, interprets and executes the program instructions as well
as monitors the system devices.

Diagnostic Procedures to detect and isolate failures. It also relates to the data set used for such tasks, and serves for
analysis and correction or problems.

E2PROM Electrically Erasable Programmable Read-Only Memory. Non-volatile memory that may be electrically
erased by the electronic circuit.

E-Module See Execution Module

Encoder Normally refers to position measurement transducer.

EPROM Erasable Programmable Read Only Memory. Memory for read only that may be erased and programmed
out of the circuit. The memory doesn‟t loose its contents when powered off.

ER Acronym used on LEDs to indicate error

ESD Electrostatic Discharge.

Execution Module Application program modules. May be one of three types: E000, E001 and E018. The E000 module is
executed just once upon system powering or when setting programming into execution mode. The E001
module has the main program that is executed cyclically, while the E018 module is activated by the time
interruption.

Firmware The operating system of a PLC. It controls the PLC basic functions and executes the application programs.

FLASH EPROM Non volatile memory that may be electrically erased and programmed..

F-Module See Function Module.

FMS Fieldbus Message System.

Function Module Application software module called from the main module (E-module) or from another function module or
procedure module. It passes parameters and return values. Works as a subroutine.

Hardkey Connector normally attached to the parallel port of a microcomputer to avoid the use of illegal software
copies

Hardware Physical equipment used to process data where normally programs (software) are executed

I/O See Input/Output.

I/O Module Hardware module that is part of the Input/Output (I/O) subsystem.

I/O Subsystem Set of digital or analog I/O modules and interfaces of a PLC

IEC 61131 Generic international standard for operation and use of programmable controllers.

IEC Pub. 144 (1963) International standard for protection of accidental access and sealing the equipment from water, dust and
other foreign objects.

IEC-536-1976 International standard for electrical shock protection.

8. Glossary

 45

IEC-801-4 International standard for tests of immunity against interference by pulses burst

IEEE C37.90.1 (SWC) SWC stands for Surge Withstand Capability. This is the international standard for oscillatory wave noises
protection.

Input/Output Also known as I/O. Data input or output devices in a system. In PLCs these are typically the digital or
analog modules that monitor or actuate the devices controlled by the system.

Interface Normally used to refer to a device that adapts electrically or logically the transferring of signals between
two equipments.

Interruption Priority event that temporarily halts the normal execution of a program. The interruptions are divided into
two generic types: hardware and software. The former is caused by a signal coming from a peripheral,
while the later is caused within a program

ISOL. Acronym used to indicate isolation or isolated.

kbytes Memory size unit. Represents 1024 bytes.

LED Light Emitting Diode. Type of semiconductor diode that emits light when energized. It‟s used for visual
feedback.

Logic A graphic matrix in Altus Relay and Blocks Language where are inserted the relay diagram language
instructions that are part of an application program are inserted. A set of sequentially organized logics
makes up a program module.

MasterTool The Altus WINDOWS
®

based programming software that allows application software development for
PLCs from the Ponto, Grano, Piccolo, AL-2000, AL-3000 and Quarks series. Throughout this manual, this
software is referred by its code or as MasterTool Programming.

Menu Set of available options for a program, they may be selected by the user in order to activate or execute a
specific task

Module (hardware) Basic element of a system with very specific functionality. It‟s normally connected to the system by
connectors and may be easily replaced.

Module (software) Part of a program capable of performing a specific task. It may be executed independently or in conjunction
with other modules through information sharing by parameters.

Module address: Address used by the CPU in order to access a specific I/O module.

Nibble Information unit composed of four bits.

Not-operant CPU In a redundant system this is the CPU that is neither active nor backup. May not take control of the system.

Operands Elements on which software instructions work. They may represent constants, variables or set of variables.

PA See Jumpers.

PLC See Programmable Controller.

P-Module See Procedure Module.

Procedure Module PLC application software module called from the main module (E-module) or from another procedure
module or function module that does not have parameters.

PROFIBUS PA Means PROFIBUS Process Automation.

Programmable
Controller

Also know as PLC. Equipment controlling a system under the command of an application program. It is
composed of a CPU, a power supply and I/O modules.

Programming Language Set of rules, conventions and syntaxes utilized when writing a program.

RAM Random Access Memory. Memory where all the addresses may be accessed directly and in random order
at the same speed. It is volatile, in other words, its content is erased when powered off, unless there is a
battery to keep its contents.

Redundant CPU The other CPU in a redundant system. For instance, the redundant CPU of CPU2 is CPU1 and vice versa.

Redundant system System with a backup or double elements to execute specific tasks. Such system may suffer certain
failures without stopping the execution of its tasks.

Ripple Oscillation present in continuous voltages.

RX Acronym used to indicate serial reception.

Scan Cycle A complete execution of the PLC application program.

Sockets Part to plug in integrated circuits or other components, thus facilitating their substitution and maintenance.

Software Computer programs, procedures and rules related to the operation of a data processing system

Supervisory Station Equipment connected to a PLC network with the goal of monitoring and controlling the process variables

Tag Name associated to an operand or to a logic that identifies its content.

Toggle Element with two stable states that are switched at each activation.

Hot swap Procedure of replacing modules in a system without powering it off. It is a normal procedure for I/O
modules.

TX Acronym used to indicate serial transmission.

Upload Reading a program or configuration from the PLC.

Varistor Protection device against voltage spikes.

Watchdog timer Electronic circuit that checks the equipment operation integrity.

WD Acronym for watchdog. See Watchdog timer

Word Information unit composed by 16 bits.

	Summary
	Introduction
	Documents Related to this Manual
	Visual Inspection
	Technical Support
	Warning Messages Used on this Manual

	Technical Description
	Software Characteristics
	Types of Data
	Software Limits
	PLC Operands
	Operators
	Commands
	Items not Implemented on IEC 61131-3 Standard

	Procedures
	Creating a Module P or F in ST Language
	Declaring Global Variables
	Creating a Function to Implement a Filter
	Writing the Main Code – PROGRAM – to a P Module
	Writing the Main Code – PROGRAM – to a F Module
	Diagnostic Operands
	Temporary Operands
	Verifying the Code
	Saving the Code
	Using a Module in ST

	Programming
	Structure of a Module in ST Language
	Elements of ST Language
	Identifiers
	Empty Space
	Comments
	Numerical Constants:
	Boolean constants

	Types of Data
	Basic Types of Data
	Classifying Data
	Types Conversion

	Variables
	Declaring de Variables
	Only-Reading Variables
	Declaring Vectors
	Starting the Variables
	Mapping Variables in Simple Operands and Table
	Mapping Vectors in Simple Operands and Table

	Functions
	Program
	Parameters Passing
	Parameters Passing to F Module
	Signs of Module Input and Output
	Internal Variable of Control
	INTERNAL_OVERFLOW

	Scope and Life Time Rules
	Commands
	Expressions
	Mathematics Operators
	Relation Operators
	Operators Logic and Bit-to-Bit
	Operators Precedence
	Function Calls
	EXPT Function

	Integer Constants
	Attribution Command
	Command of Program control
	Command RETURN

	Commands of selection
	Command IF
	Command CASE

	Commands de Repetition or Iteration
	Command WHILE
	Command REPEAT
	Command FOR

	Debug
	Debug methods
	Cycled Mode
	Status Machines

	Errors in Verification Time
	Errors in Execution Time

	Examples of Use
	Buffer of events
	Conversion of Values

	Appendix
	Keywords

	Glossary

