Revisão: H Cód. Doc.: 6104-603.5

1. Descrição do Produto

O gateway AL-2400/S-C é um elemento de ligação entre as redes de comunicação ALNET I e ALNET II, possibilitando a comunicação de CPs interconectados pela ALNET II com vários tipos de sistemas que possuam interface serial padrão RS-232C e que sejam compatíveis com o protocolo ALNET I.

De concepção extremamente compacta, o AL-2400/S-C reúne em um único gabinete a UCP e a fonte de alimentação.

Possui duas interfaces de comunicação, uma para o protocolo ALNET I (RS-232C), e outra de alta velocidade, para o protocolo ALNET II.

2. Itens Integrantes

Os seguintes itens compõem o produto:

- AL-2400/S-C: gateway ALNET I ALNET II
- QK2691: bateria de lítio modelo ½ AA Este item pode ser solicitado individualmente em caso de reposição.

3. Itens Opcionais

Os seguintes itens opcionais não acompanham o produto, podendo ser adquiridos separadamente:

- AL-2300: cabo para interligar o AL-2400/S-C ao derivador AL-2600
- AL-2301: cabo de rede RS-485
- AL-2600: derivador e terminação ALNET II
- Cabos de interligação:

Cabos	Equipamentos Interligados	
AL-1342	AL-2400/S-C	Micro IBM-PC [®] com RS-232 (DB9) ou AL-3902
AL-1343	AL-2400/S-C	Micro IBM-PC [®] com RS-232 (DB25)
AL-1383	AL-2400/S-C	Micro IBM-PC [®] com RS-232 (DB25)
AL-1390	AL-2400/S-C	Micro IBM-PC [®] com RS-232 (DB9) ou AL-3902
AL-1397	AL-2400/S-C	Conversor RS-232/RS-485 AL-1413
AL-1397	AL-2400/S-C	Modem AL-1414
AL-2320	AL-2400/S-C	Modens Óticos

4. Características Funcionais

4.1. Características Gerais

- Interface de comunicação serial padrão RS-232C com protocolo ALNET I V1.00 e V2.00
- Interface para rede de comunicação de alta velocidade integrada, multimestre, determinística, protocolo ALNET II
- LEDs indicadores do estado da UCP no painel frontal
- Retentividade de memória de dados por meio de bateria de lítio com teste periódico automático e indicação de estado no painel
- Circuito de supervisão de "cão-de-guarda"
- Microcontrolador Intel® 80C152
- Freqüência de clock: 14,7456 MHz
- Temperatura do ar ambiente de operação: 0 a 60°C excede a norma IEC 1131
- Temperatura de armazenagem: -25 a 75°C conforme a norma IEC 1131

 Umidade relativa do ar de operação: 5 a 95% sem condensação

conforme norma IEC 1131 nível RH2

■ Peso:

sem embalagem: 1900 g com embalagem: 2080 g

■ MTBF: 23.800 horas @ 40°C

calculado segundo norma MIL-HDBK-217E

 Proteção: IP20, contra acessos incidentais dos dedos e sem proteção contra água

conforme normas IEC Pub. 144 (1963), levando-se em conta o produto instalado

4.2. Características Elétricas

■ Tensões de operação:

93,5 a 253 Vac

ou

95 a 250 Vdc

■ Freqüência de operação:

47 a 63 Hz

■ Corrente de pico na partida:

25 A (durante meio ciclo da rede elétrica ou 10 ms)

■ Potência máxima de entrada:

50 VA

■ Fator de potência:

75% (típico),com alimentação de 127 Vac e carga nominal

■ Proteções:

sobretensão e curto circuito, provocando desligamento intermitente da fonte

■ Fusível:

2 A (interno)

■ Rigidez dielétrica:

2500 Vdc/1500 Vac entre a entrada de alimentação (F1 e F2) e o terra de proteção (GND) e a saída (barramento)

- Funcionamento garantido por 10 ms durante falta de energia
- Dissipação do módulo:

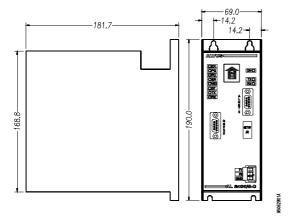
3,5 W

■ Duração da bateria:

	Temperatura de operação	Tempo (anos)
ı	0 a 40°C	5
ı	0 a 60°C	1,6

- Tempo de auto-descarga da bateria: 5 anos
- Nível de severidade de descargas eletrostáticas (ESD): conforme norma IEC, nível 4
- Imunidade a ruído elétrico tipo onda oscilatória: conforme as normas IEC1131, nível de severidade A, e IEEE C37.90.1 (SWC)
- Imunidade a campo eletromagnético radiado: 10 V/m @ 140 MHz

conforme norma IEC 1131


 Proteção contra choque elétrico: conforme norma IEC 536 (1976), classe I

4.3. Características de Software

- Parâmetros de operação configuráveis (módulo R de configuração) armazenados em RAM, carregáveis através dos programadores AL-3830 ou MASTERTOOL (programador para o sistema operacional WINDOWS[®])
- Velocidade de comunicação no canal serial ALNET I configurável de 300 até 38400 bauds (velocidade padrão 9600 bauds)

Cód. Doc.: 6104-603.5 Revisão: H

5. Dimensões Físicas

6. Instalação

6.1. Instalação Mecânica

O gateway AL-2400/S-C possui fendas em suas aletas superiores e inferiores para fixação ao painel através de quatro parafusos. Devem ser usados parafusos com rosca M4 e cabeça cilíndrica com arruelas de pressão para garantir o aterramento da carcaça no painel. A furação deve ser passante com fixação por porcas ou com rosca, de modo a facilitar a montagem.

Após definidas as furações do painel, os seguintes procedimentos devem ser seguidos para fixação do gateway no mesmo:

- Fixar os parafusos no painel sem apertá-los
- Colocar o gateway nos parafusos e baixá-lo de forma a ficar sustentado pelos mesmos
- Apertar os parafusos, de modo a garantir a fixação do gateway ao painel

6.2. Instalação Elétrica

6.2.1. Informações Gerais

O gateway AL-2400/S-C deve possuir uma chave na sua alimentação para facilitar a manutenção. Deve ser prevista uma tomada no painel fornecendo 110 ou 220 Vac, para uso do terminal de programação. É importante que esta tomada possua pino de aterramento, pois o terminal de programação deverá, obrigatoriamente, possuir conexão com o terra do sistema.

É necessário uma borneira de terra no painel, onde devem ser realizados os aterramentos da fonte e cabos de rede. Esta borneira deve estar ligada ao terra do sistema.

6.2.2. Alimentações e Aterramentos

Para alimentar o gateway AL-2400/S-C, é necessário que o mesmo esteja instalado no painel de montagem.

A alimentação é realizada pelo painel frontal nos bornes específicos do conector. A bitola dos cabos de alimentação e do terra deve ser 1 mm² a 1,5 mm²

Um cabo para aterramento deve ser conectado do borne de alimentação do conector direto a borneira de terra do painel de montagem.

6.2.3. Conexões Gerais

■ Interface Serial

A conexão do canal serial é feita através do conector fêmea DB9 localizado no painel frontal.

ATENÇÃO:

Antes de conectar o gateway a qualquer outro equipamento com canal serial (por exemplo, o terminal de programação AL-3902), é imprescindível que ambos equipamentos possuam um ponto de aterramento em comum.

■ ALNET II

Para procedimentos de instalação, configuração e utilização da rede ALNET II, consulte o manual específico (ver item 9, Manuais).

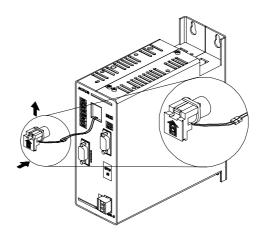
6.2.4. Temperatura e Potência

Com a finalidade de isolar o equipamento das agressividades de ambientes industriais (sujeiras, óleos, rebarbas, limalhas, etc.) é comum a instalação do gateway em armário metálico, junto com outros equipamentos.

Os equipamentos ALTUS são projetados para trabalhar a uma temperatura ambiente de 60°C (exceto quando especificado). Portanto esta deve ser a temperatura interna máxima do armário.

Alguns lembretes para instalação do gateway são necessários:

- Utilizar ventilação forçada ou refrigeração quando a temperatura exceder 60°C
- Distribuir de forma homogênea fontes de calor dentro do armário, para evitar focos de aquecimento


7. Manutenção

7.1. Substituição da Bateria

A substituição da bateria pode ser feita com o gateway ligado, bastando serem executados os seguintes procedimentos:

- Deslocar a tampa da bateria para cima, conforme a seta nela existente, na parte superior do painel frontal. Neste instante a parte inferior da tampa da bateria será automaticamente inclinada para fora do painel frontal, possibilitando a sua retirada.
- Retirar o conjunto tampa-bateria para fora do gateway.
- Desconectar o cabo que conecta a bateria à placa da UCP.
- Conectar o cabo da UCP na nova bateria, observando a correta polaridade.
- Inserir a nova bateria no painel frontal, com a seta apontando para cima.
- Encaixar a parte superior da tampa da bateria na parte superior do rasgo do painel frontal, pressionar a parte inferior da tampa da bateria até encostar no painel frontal e deslocar a tampa para baixo.

A figura a seguir, mostra os procedimentos para a substituição da bateria.

Revisão: H Cód. Doc.: 6104-603.5

8. Programação

Os parâmetros de configuração do gateway são armazenados em um módulo R de configuração, definido como R-XXXXXX.NNN, onde XXXXXX é o nome do módulo (até 6 caracteres) e NNN o seu número (000 a 255).

Este módulo é definido nos programadores AL-3830 ou MASTERTOOL, que o carregam no gateway através do canal de comunicação ALNET I ou via rede ALNET II, onde é armazenado em memória RAM retentiva.

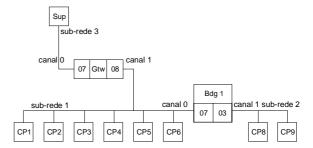
Para a configuração dos parâmetros nos programadores, deve-se declarar o modelo de UCP como sendo AL-2400/S.

O gateway AL-2400/S-C possui dois canais de comunicação, o primeiro (canal 0) correspondendo ao canal serial ALNET I e o segundo (canal 1) ao canal ALNET II. Para cada canal devem ser realizadas as seguintes configurações no programador:

- parâmetros
- roteamento
- redundância

8.1. Parâmetros

Protocolo	Especificar ALNET I ou II (canal 0 é sempre ALNET I e canal 1 é sempre ALNET II)	
Endereço de sub-rede	Especificar o endereço da sub-rede onde o canal está conectado	
Endereço do nó da estação	Especificar o endereço que o canal assume na sub-rede	
Baud rate	Especificar a velocidade de comunicação no canal	
Tipo de Modem	Especificar o tipo do modem do canal 0 (ALNET I), quando utilizado. No canal 01 (ALNET II), este parâmetro não é utilizado	
Timeout intra sub-rede	Especificar o tempo máximo de resposta para comunicações dentro da mesma sub-rede. (em décimos de segundo)	
Timeout inter sub-rede	Especificar o tempo máximo de resposta para comunicações com sub-redes diferentes. (em décimos de sengundo)	
Nome de Identificação da Estação	No canal 1 (ALNET II), especificar o nome que identifica a estação(até 20 caracteres). Este parâmetro não é utilizado no canal 0 (ALNET I)	
Tipo de conexão física	Elétrica ou ótica	


8.2. Roteamento

O gateway possui dois canais de comunicação:

canal 0: ALNET Icanal 1: ALNET II

Existe uma tabela de roteamento para cada canal que especifica para que nodo uma mensagem deve ser enviada, caso seja destinada para uma sub-rede diferente daquela a qual o canal está conectado.

O exemplo a seguir explica como funciona o roteamento.

No exemplo apresentado existem três sub-redes, com endereços 1, 2 e 3. As sub-redes 1 e 2 utilizam o protocolo ALNET II. Na sub-rede 3, que interliga um microcomputador (com um supervisório) ao gateway, o protocolo utilizado é ALNET I.

Na sub-rede 1 estão os CPs com endereço de nó de 1 a 6, o bridge 1 conectado pelo canal 0 com endereço de nó 7 e o gateway conectado pelo canal 1, com endereço de nó 8.

O gateway, ao receber uma mensagem enviada pelo supervisório para o CP9 da sub-rede 2, verifica que a sub-rede destino (sub-rede 2) é diferente daquela à qual está conectado (sub-rede 1). Consulta então sua tabela de roteamento para saber para qual nodo de sua sub-rede deve enviar a mensagem. Na posição 2 da tabela (relativa a mensagens enviadas para a sub-rede 2) deve estar o número 07, que é o endereço do nó para quem deve ser enviada a mensagem. Este nó é um bridge, que ao receber esta mensagem, também realizará o mesmo processo para passá-la adiante, até atingir o nó destino.

Portanto, a tabela de roteamento do gateway, relativa ao canal 1, deverá ter a seguinte configuração:

1>	17>	33>	49>
2>07	18>	39>	50>
3>	19>	40>	51>
-	-	-	-
-	-	-	-
-	-	-	-

Cada posição da tabela é relativa a uma sub-rede destino

Esta configuração indica que para este canal enviar uma mensagem para a sub-rede 2, deve enviá-la para o nó 7, que neste exemplo é o endereço do bridge.

Da mesma forma, para que a resposta do CP9 à mensagem recebida retorne ao supervisório, a tabela de roteamento do bridge, relativa ao canal 0, deverá ter a seguinte configuração:

1>	17>	33>	49>
2>	18>	39>	50>
3>08	19>	40>	51>
-	-	-	-
-	-	-	-
-	-	-	-

Cada posição da tabela é relativa a uma sub-rede destino

Assim a resposta do CP9, recebida no canal 1 do bridge, será transmitida para o nó 08 na sub-rede 1, correspondente ao gateway, para que este possa retransmití-la ao programa supervisório.

Cód. Doc.: 6104-603.5 Revisão: H

8.3. Redundância

O gateway AL-2400/S-C foi projetado para trabalhar com redundância de meio físico, quando este se tratar de fibra ótica. Na operação com redundância existe uma fibra normalmente utilizada, denominada conexão ativa e outra normalmente em espera, denominada conexão inativa. Periodicamente o gateway pode testar estas fibras através de mensagens especiais. Se for detectada falha no meio que está ativo, automaticamente o gateway realiza o chaveamento para o outro, garantindo o funcionamento da rede. Caso detecte falha em qualquer uma das conexões, o gateway sinaliza a falha através das posições 39 e 40 da sua TM0, que podem ser consultadas por qualquer nó da rede, CP ou supervisório.

Devem ser configurados no módulo R:

Redundância na Comunicação	Deve ser definido se existe ou não redundância de meio físico
Período de teste da redundância	Definir o período de tempo em que devem ser testadas as conexões ativas (em décimos de segundo)
Atraso para comutação	Tempo para comutação da conexão física em caso de falha (em décimos de segundo)

9. Manuais

Para informações mais detalhadas a respeito da configuração do gateway AL-2400/S-C, utilização e instalação da rede ALNET II, os seguintes manuais podem ser consultados:

- Manual de Utilização AL-3830
- Manual de Utilização MASTERTOOL
- Manual de Utilização da Rede ALNET II

10. Compatibilidade

O gateway AL-2400/S-C é compatível com todos os produtos que utilizam a rede ALNET II, exceto os citados a seguir:

- AL-2000/MSP versão do programa executivo menor que 1.25
- AL-2002/MSP versão do programa executivo menor que 1.32
- AL-2400 versão 1.00 do programa executivo

Para conectar um gateway AL-2400/S-C em uma rede contendo os elementos nas versões acima, deve-se atualizar as versões dos CPs AL-2000/MSP e AL-2002/MSP para as mais recentes e substituir o gateway AL-2400 V1.00 pelo gateway AL-2400/S ou AL-2400/S-C (qualquer versão).

O CP AL-2000/MSP também pode ser substituído pelo AL-2000/MSP-C (qualquer versão), sendo este último compatível com o AL-2400/S-C.