Descrição do Produto 1.

Série Hadron Xtorm

A automação de sistemas de energia elétrica é caracterizada pelo uso de equipamentos e dispositivos robustos, confiáveis e que apresentam alta tecnologia com a capacidade de operar em ambientes hostis, onde há presença de níveis significativos de interferência eletromagnética e exposição a temperaturas de operação mais elevadas. Esta é a realidade de aplicações em usinas hidrelétricas (UHEs), subestações de energia elétrica, parques eólicos, entre outras.

Neste contexto, a Série Hadron Xtorm se apresenta como uma inovadora Unidade Terminal Remota (UTR), perfeita para aplicações em geração, transmissão e distribuição de energia elétrica. A Série possui um conjunto ideal de recursos com alto desempenho e facilidades para as diversas etapas no ciclo de vida de uma aplicação, visando redução de custos de engenharia, instalação e comissionamento e a minimização de tempos de indisponibilidade, e manutenção do sistema quando em operação. Com interfaces intuitivas e amigáveis, diagnósticos precisos e inteligentes, um design moderno e robusto, além de diversas características inovadoras, a Hadron Xtorm supera os requisitos de aplicações deste mercado.

A Série possui uma arquitetura inteligente e versátil, oferecendo modularidade em pontos de entrada e saída (E/S), opções em redundância, troca a quente de módulos, protocolos de comunicação de alta velocidade, como IEC 61850 e DNP3, implementação de lógica em conformidade com a norma IEC 61131-3 e sincronismo de tempo.

Os módulos de entrada da Série Hadron Xtorm oferecem 32 entradas digitais isoladas tipo source/sink, com a funcionalidade de registro de eventos com precisão de 200 us e mapeamento de pontos duplos.

Suas principais características são:

- 32 pontos de entrada com registro de eventos com precisão de 200 us
- Ouatro grupos independentes de entradas isoladas por optoisoladores que podem ser utilizadas como source ou sink
- Visor para indicação do estado das entradas e diagnós-
- Suporte a troca a quente
- Design mecânico com alta robustez e temperatura de operação estendida
- Elevada imunidade ruídos eletromagnéticos (EMC/EMI)
- Diagnósticos inteligentes, como One Touch Diag e Electronic Tag on Display

2. Dados para Compra

2.1. Itens Integrantes

A embalagem do produto contém os seguintes itens:

- Módulo HX1100 ou HX1120
- Quatro conectores de 10 terminais HX9402

2.2. Código do Produto

Os seguintes códigos devem ser usados para compra do produto:

Código	Descrição
HX1100	Módulo 32 ED 24 Vdc c/ Registro de Eventos
HX1120	Módulo 32 ED 125 Vdc c/ Registro de Eventos

Tabela 1: Código do Produto

3. Produtos Relacionados

O seguinte produto deve ser adquirido separadamente quando necessário:

Código	Descrição
HX9402	Conector 10 terminais

Tabela 2: Produtos Relacionados

4. Características Inovadoras

A Série Hadron Xtorm traz aos usuários diversas inovações na utilização, supervisão e manutenção do sistema. Estas características foram desenvolvidas focando um novo conceito em automação de usinas hidroelétricas e subestações. A lista abaixo mostra algumas destas características que o usuário encontrará na Série Hadron Xtorm:

One Touch Diag: Esta é uma característica exclusiva dos CPs da Série Hadron Xtorm. Através deste novo conceito, o usuário pode checar as informações de diagnóstico de qualquer módulo do sistema diretamente no visor gráfico da UCP, mediante apenas um pressionamento no botão de diagnóstico do respectivo módulo. A OTD é uma poderosa ferramenta de diagnóstico que pode ser usada offline (sem supervisor ou programador) e reduz os tempos de manutenção e comissionamento.

ETD – Electronic Tag on Display: Outra característica exclusiva apresentada pela Série Hadron Xtorm é o ETD. Esta nova funcionalidade possibilita a verificação da tag de qualquer ponto ou módulo de E/S usado no sistema, diretamente no visor gráfico das UCPs. Juntamente com esta informação, o usuário pode também verificar a descrição. Este é um recurso extremamente útil durante a manutenção e resolução de problemas.

5. Características do Produto

5.1. Características Gerais

	HX1100	HX1120	
Tipo de módulo	32 entradas digitais		
Tipo de entrada	Source ou sink		
Tensão de entrada	24 Vdc 15 a 30 Vdc para nível lógico 1 0 a 5 Vdc para nível lógico 0	125 Vdc 91 a max.* para nível lógico 1 0 a 35 Vdc para nível lógico 0 *consulte valores na próx. tabela	
Impedância de entrada típica equivalente	3,5 kΩ	$64~\mathrm{k}\Omega$	
Corrente de entrada típica por canal	6,9 mA @ 24 Vdc	1,95 mA @ 125 Vdc	
Corrente de entrada máxima por ca- nal	9,2 mA @ 30 Vdc	2,35 mA @ 135 Vdc 2,82 mA @ 150 Vdc	
Filtro de entrada	25 μ s (\uparrow) / 40 μ s (\downarrow) (por hardware)	$40 \mu s (\uparrow) / 75 \mu s (\downarrow)$ (por hardware)	
Tempo de atualização das entradas		ms	
Precisão do registro de eventos	200		
Largura mínima de pulso	250 us		
Indicação do estado da entrada	Sim		
One Touch Diag (OTD)	Sim		
Electronic Tag on Display (ETD)		m	
Indicação de status e diagnóstico	Visor, páginas web e memória interna da UCP		
Suporte a troca a quente	Si	m	
Isolação			
Entre grupos de entradas	2000 Vac / 1 minuto		
Entradas para lógica	2500 Vac / 1 minuto		
Entradas para terra de proteção 🖨 Lógica para terra de proteção 🖨	2500 Vac / 1 minuto		
Consumo de corrente do bastidor	2500 Vac / 1 minuto 195 mA		
	9,8 W	11,1 W	
Máxima dissipação de potência Seção do fio	•	•	
Índice de proteção	0,5 a 1,5 mm ² IP 20		
Temperatura de operação	-5 a 70 °C		
Temperatura de operação Temperatura de armazenamento	-5 a 70 °C		
Umidade relativa de operação e ar-			
mazenamento	5 a 96 %, nao condensado		
Revestimento de circuitos eletrônicos			
Dimensões do módulo (L x A x P)	38,0 x 235,3 x 187,2 mm		
Dimensões da embalagem (L x A x P)			
Peso	900 g		
Peso com embalagem	1200 g		

Tabela 3: Características do Produto

Notas:

Série Hadron Xtorm

Tipo de entrada: As entradas dos módulos HX1100 e HX1120 são divididas em 8 grupos de entradas: 00 a 03, 04 a 07, 08 a 11, 12 a 15, 16 a 19, 20 a 23, 24 a 27 e 28 a 31. Cada grupo pode ser usado como entrada tipo source ou sink independentemente. Para usar um grupo de entrada como source, o terminal comum respectivo precisa ser conectado ao potencial positivo. Para usar um grupo de entradas como entradas sink, o terminal comum respectivo precisa ser conectado ao O Vdc. Para mais informações consulte a seção de Instalação neste documento.

Tensão máxima de entrada HX1120: A tabela abaixo apresenta a relação entre a tensão de entrada máxima e o limite de temperatura de operação.

Temperatura de operação máxima	Número de entradas acionadas simultaneamente	Tensão de entrada máxima	
60 °C	32	150 Vdc	
70 °C	32	135 Vdc	
70 °C	22	150 Vdc	

Tabela 4: Tensão máxima de entrada HX1120

Precisão do registro de eventos: Este valor representa o desvio máximo de tempo em relação ao relógio da UCP. A precisão de tempo do sistema depende do método de sincronização utilizado (IRIG-B, SNTP, etc...).

Largura mínima de pulso: Para entradas com o Filtro de Entrada habilitado, este tempo deve ser somado ao Tempo de

Máxima dissipação de potência: Máxima potência dissipada pelo módulo considerando todas as entradas acionadas na tensão máxima de operação.

Revestimento de circuitos eletrônicos: O revestimento de circuitos eletrônicos protege as partes internas do produto contra umidade, poeira e outros elementos agressivos a circuitos eletrônicos.

5.2. Normas e Certificações

Normas e Certificações				
IEC	61131-2: Industrial-process measurement and control - Programmable controllers - Part 2: Equipment requirements and tests			
CE	2014/30/EU (EMC) 2014/35/EU (LVD) 2011/65/EU and 2015/863/EU (ROHS)			
UK	S.I. 2016 No. 1091 (EMC) S.I. 2016 No. 1101 (Safety) S.I. 2012 No. 1101 (ROHS)			
EAC	TR 004/2011 (LVD) CU TR 020/2011 (EMC)			

Tabela 5: Normas e Certificações

5.3. Compatibilidade com Outros Produtos

O suporte a este produto foi introduzido na versão 1.03 do MasterTool Xtorm. Demais informações sobre compatibilidade podem ser encontradas no Manual de Utilização Hadron Xtorm – MU223000.

6. Instalação

Série Hadron Xtorm

Para correta instalação deste produto se faz necessária a utilização de um bastidor (backplane rack) e a mesma deve ser realizada conforme instruções de instalação mecânica e elétrica que seguem.

6.1. Identificação do Produto

Este produto possui algumas partes que devem ser observadas antes de sua instalação e utilização. A figura a seguir identifica cada uma dessas partes.

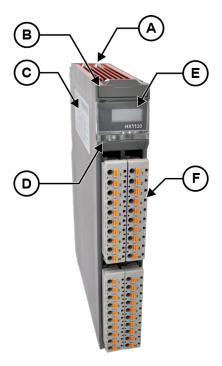


Figura 1: HX1120

- A Trava de fixação.
- B Cursor de fixação do módulo.
- © Etiqueta para identificação do módulo.
- D Botão e LED de diagnóstico.
- Visor de estado e diagnóstico.
- © Conector de 10 terminais.

O produto possui em sua mecânica uma etiqueta que o identifica e na mesma estão apresentados alguns símbolos cujo significado está descrito a seguir:

 Λ

Atenção! Antes de utilizar o equipamento e realizar a instalação, leia a documentação.

=== Corrente contínua.

6.2. Instalação Elétrica

A figura abaixo mostra um exemplo onde as entradas dos módulos HX1100 e HX1120 estão sendo usadas como entradas tipo source ou sink. As entradas 00 a 03, 10 a 13, 20 a 23 e 30 a 33 estão sendo utilizadas como entrada tipo sink, enquanto as entradas 04 a 07, 14 a 17, 24 a 27 e 34 a 37 estão sendo utilizadas como entrada tipo source. Cada grupo de entrada está isolado. Conforme apresentado a seguir.

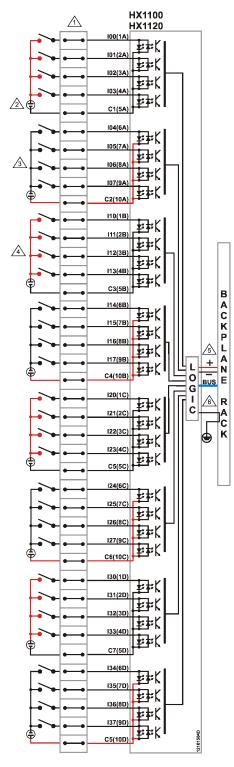


Figura 2: Instalação Elétrica

Notas do Diagrama

1 Conjunto de bornes.

A tensão nominal da entrada é 24 Vdc para o HX1100 e 125 Vdc para o HX1120.

Utilização típica de entradas digitais tipo source, C2 é o potencial positivo comum para grupo de entrada I04 a I07.

4 Utilização típica de entradas digitais tipo sink, C3 é o 0 Vdc comum para grupo de entrada I10 a I13.

A fonte de alimentação do módulo é derivada pela conexão com o bastidor, e não requer conexões externas.

Os módulos HX1100 e HX1120 estão conectados ao terra de proteção através do bastidor.

Terminal terra de proteção.

6.3. Pinagem do Conector

A figura abaixo indica a posição do conector A, B, C e D.

Figura 3: Distribuição de Terminais do Conector

A tabela a seguir mostra as descrições de cada terminal do conector:

Número do Terminal	Descrição		
1A	Entrada 00		
2A	Entrada 01		
3A	Entrada 02		
4A	Entrada 03		
5A	Comum para Entrada 00 a 03		
6A	Entrada 04		
7A	Entrada 05		
8A	Entrada 06		
9A	Entrada 07		
10A	Comum para Entrada 04 a 07		
1B	Entrada 10		
2B	Entrada 11		
3B	Entrada 12		
4B	Entrada 13		
5B	Comum para Entrada 10 a 13		
6B	Entrada 14		
7B	Entrada 15		
8B	Entrada 16		
9B	Entrada 17		
10B	Comum para Entrada 14 a 17		
1C	Entrada 20		
2C	Entrada 21		
3C	Entrada 22		
4C	Entrada 23		
5C	Comum para Entrada 20 a 23		
6C	Entrada 24		
7C	Entrada 25		
8C	Entrada 26		
9C	Entrada 27		
10C	Comum para Entrada 24 a 27		
1D	Entrada 30		
2D	Entrada 31		
3D	Entrada 32		
4D	Entrada 33		
5D	Comum para Entrada 30 a 33		
6D	Entrada 34		
7D	Entrada 35		
8D	Entrada 36		
9D	Entrada 37		
10D	Comum para Entrada 34 a 37		

Tabela 6: Pinagem do Conector

6.4. Montagem Mecânica e Elétrica

A montagem mecânica e elétrica e a inserção ou remoção do conector para um módulo de entrada/saída estão descritas no Manual de Utilização Hadron Xtorm – MU223000.

ATENÇÃO

Produtos com selo de garantia violado não serão cobertos pela garantia.

CUIDADO

Dispositivo sensível à eletricidade estática. Sempre toque em um objeto metálico aterrado antes de manuseá-lo.

PERIGO

A Série Hadron Xtorm pode operar com tensões de até 250 Vac. Cuidados especiais devem ser tomados durante a instalação, que só deve ser feita por técnicos habilitados. Não tocar na ligação da fiação de campo quando em operação.

6.5. Dimensões Físicas

Dimensões em mm.

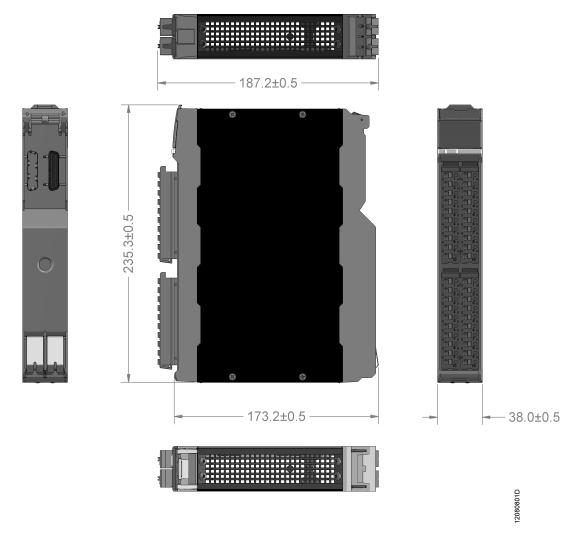


Figura 4: Dimensões Físicas

7. Configuração

Os módulos HX1100 e HX1120 foram desenvolvidos para serem utilizados com os produtos da Série Hadron Xtorm. A configuração de um determinado módulo pode ser acessada através de um duplo clique no módulo desejado no editor gráfico.

7.1. Dados do Processo

Dados de processo, quando disponíveis, são variáveis usadas para acessar e controlar o módulo. A lista a seguir descreve todas as variáveis entregues pelos módulos HX1100 e HX1120. Além destes dados, o módulo também fornece um conjunto de variáveis que contêm informações relacionadas aos diagnósticos que estão descritas neste documento.

Dado do Processo	Descrição	Tipo	
Digital Inputs Byte-0	Valor da entrada do canal 00 a 07	Entrada (Leitura)	
Digital Inputs Byte-1	Valor da entrada do canal 10 a 17	Entrada (Leitura)	
Digital Inputs Byte-2	Valor da entrada do canal 20 a 27	Entrada (Leitura)	
Digital Inputs Byte-3	Valor da entrada do canal 30 a 37	Entrada (Leitura)	

Tabela 7: Dados do Processo

7.2. Parâmetros do Módulo

Nome	Descrição	Valor Padrão	Opções
Máscara de Habilitação da Detecção de Eventos	Habilita ou Desabilita a Detecção de Eventos	FALSE	TRUE ou FALSE
Máscara de Habilitação do Filtro de Entrada	Habilita ou desabilita o Filtro de Entrada	FALSE	TRUE ou FALSE
Tempo do Filtro de Entrada	Configura o Tempo do Filtro de Entrada (ms)	10	1 a 255

Tabela 8: Parâmetros do Módulo

Notas:

Máscara de Habilitação do Filtro de Entrada: O campo pode ser selecionado pelo usuário para habilitar o recurso de filtro em um canal específico. Se o filtro de entrada for habilitado em um canal, o módulo irá rejeitar pulsos com largura de tempo menor do que o tempo configurado no parâmetro Tempo do Filtro de Entrada. A habilitação do filtro não afeta a precisão do registro de eventos. A detecção é realizada imediatamente na ocorrência da borda do sinal de entrada, mantendo o evento armazenado temporariamente até que o acionamento da entrada seja confirmado (pulso maior que o tempo de filtro), quando então é efetivamente transmitido.

Tempo do Filtro de Entrada: O campo determina o Tempo de Filtro, que determina a largura mínima de pulso que será detectada pelo módulo. Este parâmetro é global para todas as entradas, e pode ser ajustado de 1 a 255 ms.

8. Utilização

Série Hadron Xtorm

8.1. Leitura de Entrada de Uso Geral

Os módulos HX1100 e HX1120 possuem quatro variáveis para acessar suas entradas (Digital Inputs Byte-0, Digital Inputs Byte-1, Digital Inputs Byte-2 e Digital Inputs Byte-3). Cada variável possui 8 bits onde cada bit representa o estado lógico de cada canal de entrada. A relação entre cada bit e sua respectiva entrada pode ser encontrada na aba Bus: Mapeamento de E/S.

8.2. Registro de Eventos

O módulo de entrada com registro de eventos monitora 32 entradas digitais e registra variações dessas entradas com precisão de 200 us. O resultado vem em forma de "eventos", ou seja, registros que contêm o tempo da variação (hora/minutos/segundos/milissegundos), o número da entrada e seu novo estado.

Os módulos HX1100 e HX1120 armazenam internamente os eventos em uma estrutura que pode conter de 1 a 32 eventos. Quando apenas uma entrada muda de estado, esta estrutura armazenará somente um evento. Agora, quando todas as 32 entradas mudarem de estado simultaneamente, esta estrutura armazenará 32 eventos.

O módulo possui uma fila interna com capacidade para armazenar até 420 estruturas (isto é, de 420 a 13.440 eventos). A UCP realiza através do barramento local a leitura de 38 estruturas a cada 3 ciclos de execução da UTR (MainTask).

O tempo é mantido pelo módulo em sincronia com a UCP através de pulsos recebidos a cada segundo. Esse sincronismo garante a precisão de 200 us entre os relógios da UCP e do módulo.

A hora do sistema é acertada no módulo pela UCP periodicamente. Essas operações de sincronização e acerto de hora são controladas internamente pelo módulo, sendo totalmente transparentes à aplicação.

8.3. Mapeamento de Pontos Duplos

Os mapeamentos de pontos duplos são utilizados para mapear pontos digitais duplos para os módulos de entrada digital. Este tipo de mapeamento é utilizado para indicar a posição de equipamentos como válvulas, disjuntores e seccionadoras onde a transição entre os estados aberto e fechado demandam um determinado tempo, permitindo assim indicar um estado intermediário de transição entre os dois estados finais. Abaixo podemos visualizar a relação entre as entradas lógicas e os pontos lógicos.

Mapeamento	Entrada Lógica	Ponto Lógico
	00	0
	01	l
	02	1
Byte-0	03	1
Byte-0	04	2
	05	1
	06	3
	07	1
	10	4
	11	1
	12	5
Byte-1	13	1
Byte-1	14	6
	15] ~ ~ ~
	16	7
	17]

Mapeamento	Entrada Lógica	Ponto Lógico
	20	8
	21	o
	22	9
Byte-2	23	9
Byte-2	24	10
	25	10
	26	11
	27	11
	30	12
	31	12
	32	13
Byte-3	33	13
Dytc-3	34	14
	35	17
	36	15
	37	13

Tabela 9: Mapeamento de Pontos Duplos

As variáveis a serem utilizadas para o mapeamento de pontos duplos deverão ser declaradas como DBP.

No caso dos pontos mapeados como pontos duplos, a variável "ON" (nomedavariavel.ON) deverá estar mapeada em uma entrada de número ímpar do módulo, e a variável "OFF" (nomedavariavel.OFF) deverá estar mapeada em uma entrada de número par do módulo conforme mostrado na figura a seguir:

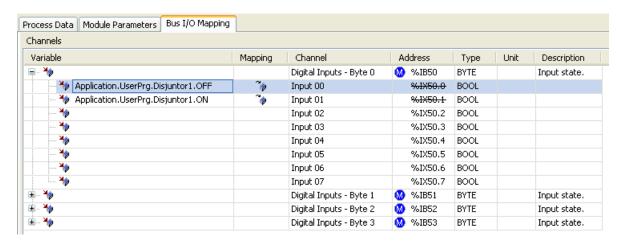


Figura 5: Mapeamento de Pontos Duplos

Para pontos de entrada duplos, o parâmetro "Máscara de Habilitação da Detecção de Eventos" deve ser configurado com o mesmo valor para ambas as entradas que compõem o ponto duplo.

Manutenção 9.

Série Hadron Xtorm

A Altus recomenda que todas as conexões dos módulos sejam verificadas e que poeira ou qualquer tipo de sujeira no exterior do módulo seja removida a cada 6 meses.

Este módulo oferece cinco importantes funcionalidades para auxiliar o usuário durante a manutenção: Electronic Tag on Display, One Touch Diag, Indicadores de Status e Diagnósticos, Página Web com Lista Completa de Status e Diagnósticos, e Diagnósticos através de Variáveis.

9.1. Electronic Tag on Display e One Touch Diag

Electronic Tag on Display e One Touch Diag são características importantes que possibilitam ao usuário a opção de verificar a tag, descrição e diagnósticos relacionados a um dado módulo diretamente no visor gráfico da UCP.

Para visualizar a tag e diagnóstico de um dado módulo, basta um pressionamento curto no botão de diagnóstico. Depois de um pressionamento, a UCP irá mostrar a tag e os diagnósticos do módulo. Para acessar a respectiva descrição, basta um pressionamento longo no botão de diagnóstico do respectivo módulo.

Mais informações sobre Electronic Tag on Display podem ser encontradas no Manual de Utilização Hadron Xtorm -MU223000.

9.2. Indicadores de Status e Diagnósticos

Os módulos HX1100 e HX1120 da Série Hadron Xtorm possuem um visor e um LED bicolor para representar os diagnósticos. O visor possui os seguintes símbolos: D, E, Q, T, Q G e caracteres numéricos. Os estados dos símbolos D, E são comuns para todos os módulos escravos da Série Hadron Xtorm, estes estados podem ser consultados na tabela a seguir. Os mesmos estados dos símbolos D, E são indicados através da cor do LED no frontal do módulo.

O significado dos caracteres numéricos pode ser diferente para módulos específicos.

9.2.1. Estado dos Símbolos D, E e LED de Diagnósticos (DL)

Símbolo D	Símbolo E	DL (Cor)	Descrição	Causa	Solução	Prioridade
Desligado	Desligado	Desligado	Módulo desligado, falha no visor ou falha no OTD	Módulo desconectado, falta de alimentação externa, falha de hardware ou falha no botão OTD	Verifique se o módulo está completamente conectado ao bastidor e se o bastidor está alimentado por uma fonte externa	-
Ligado	Desligado	Ligado (Azul)	Uso normal	-	-	7 (Mais baixo)
Piscando 1x	Desligado	Piscando 1x (Azul)	Diagnósticos ativos	Existe, no mínimo, um diagnóstico ativo relacionado a este módulo	Verifique qual é o diagnóstico ativo. Mais informações podem ser encontradas na seção Manutenção deste documento	6

Série Hadron Xtorm

Símbolo D	Símbolo E	DL (Cor)	Descrição	Causa	Solução	Prioridade
Piscando 2x	Desligado	Piscando 2x (Azul)	UCP em modo STOP	UCP em modo STOP	Verifique se a UCP está em modo RUN. Mais informações podem ser encontradas na documentação da UCP	5
Piscando 4x	Desligado	Piscando 4x (Azul)	Erro não fatal de hardware	Falha de hardware	O módulo permanece com a sua funcionalidade principal, porém, para correção da falha, a equipe de suporte técnico da Altus deve ser contatada	4
Desligado	Piscando 1x	Piscando 1x (Vermelho)	Erro / Falta de parametrização	O módulo ainda não foi parametrizado ou recebeu um parâmetro inválido	Verifique se a parametrização do módulo está correta	2
Desligado	Piscando 2x	Piscando 2x (Vermelho)	Perda de mestre	Perda de comunicação entre o módulo e a UCP	Verifique se o módulo está completamente conectado no bastidor. Verifique se a UCP está no modo RUN	3
Desligado	Piscando 4x	Piscando 4x (Vermelho)	Erro fatal de hardware	Falha de hardware	Contate a equipe de suporte técnico da Altus em caso de erro fatal de hardware	1 (Mais alto)

Tabela 10: Estado dos Símbolos D, E e LED de Diagnósticos (DL)

Nota

Qualquer padrão de sinalização diferente dos acima listados indica que o módulo deve ser encaminhado ao setor de Suporte da Altus.

9.2.2. 0, 1, 2, 3 e Caracteres Numéricos

Os segmentos 🗓, 🗓, 🗵 e 🗵 são utilizados para agrupar os caracteres numéricos utilizados para as 32 entradas. Os caracteres que estão colocados ao lado direito do caractere 🖸 representam as entradas de 00 a 07, onde o caractere 0 representa a entrada 00 e o caractere 7 representa a entrada 07. Os caracteres que estão colocados à direita do caractere 🗇 representam as entradas 10 a 17, onde o caractere 0 representa a entrada 10 e o caractere 7 representa a entrada 17. Os caracteres que estão colocados à direita do caractere 🖾 representam as entradas 20 a 27, onde o caractere 0 representa a entrada 20 e o caractere 7 representa a entrada 27. Da mesma forma, os caracteres que estão colocados à direita do caractere 🖾 representam as entradas 30 a 37, onde o caractere 0 representa a entrada 30 e o caractere 7 representa a entrada 37. A figura abaixo apresenta a relação entre os caracteres numéricos e as respectivas entradas.

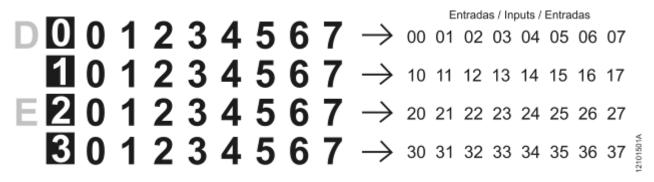


Figura 6: 0, 1, 2, 3 e Caracteres Numéricos

9.3. Páginas Web com Lista Completa de Status e Diagnósticos

Outra forma de acessar as informações de diagnóstico na Série Hadron Xtorm é via página web. As UCPs da Série Hadron Xtorm possuem um servidor de páginas web embarcado que disponibilizam todas as informações de status e diagnósticos. Tais páginas podem ser acessadas através de um simples navegador web. Maiores informações sobre páginas web com lista completa de diagnósticos podem ser encontradas no Manual de Utilização Hadron Xtorm – MU223000.

9.4. Diagnósticos através de Variáveis

Todos os diagnósticos dos módulos HX1100 e HX1120 podem ser acessados através de variáveis simbólicas que podem ser manipuladas pela aplicação de usuário ou até mesmo encaminhadas para um supervisório utilizando um canal de comunicação. A tabela abaixo mostra todos os diagnósticos disponíveis para os módulos HX1100 e HX1120 e suas respectivas variáveis simbólicas, descrição e texto que será mostrado no visor gráfico da UCP e na web.

9.4.1. Diagnósticos Gerais

Mensagem de Diagnóstico	Variável Simbólica DG_modulename.tGeneral.	Descrição	
DIAGNOSTICO DESCONHECIDO	bReserved_0815	Reservado	
MODULO C/ DIAGNOSTICO		TRUE – O módulo possui diagnósticos ativos	
SEM DIAG	bActiveDiagnostics	FALSE – O módulo não possui diagnósticos ativos	
MODULO C/ ERRO FATAL	bFatalError	TRUE – Módulo com erro fatal FALSE – Módulo sem erro fatal.	
CONFIG. INCOMPATIVEL	bConfigMismatch	TRUE – Erro de parametrização FALSE – Parametrizado corretamente	
ERRO CAO-DE-GUARDA	bWatchdogError	TRUE – Cão-de-guarda detectado FALSE – Sem Cão-de-guarda detectado	
ERRO TECLA OTD	bOTDSwitchError	TRUE – Falha no botão de diagnóstico FALSE – Sem falha no botão de diagnóstico	
DIAGNOSTICO DESCONHECIDO	bReserved_0506	Reservado	

Mensagem de Diagnóstico	Variável Simbólica DG_modulename.tGeneral.	Descrição
ERRO COM. BARRAMENTO	bCommunicationError	TRUE – Falha na comunicação do módulo com o barramento FALSE – Sem falha na comunicação do módulo com o barramento

Tabela 11: Diagnósticos Gerais

Nota:

Variável Simbólica: Algumas variáveis simbólicas servem para acessar os diagnósticos. Todos os diagnósticos mapeados automaticamente em variáveis simbólicas podem ser encontrados no objeto Diagnostics.

9.4.2. Diagnósticos Detalhados

Mensagem de Diagnóstico	Variável Simbólica DG_modulename.tDetailed.	Descrição	
-	wEventBufferOverflowCounter	Número de vezes que o buffer de eventos teve um estouro na fila.	

Tabela 12: Diagnósticos Detalhados

Nota:

wEventBufferOverflowCounter: Essa variável será reiniciada toda vez que for desligada a UCP.

9.5. Troca a Quente

Este produto suporta troca a quente. Para maiores informações sobre como executar corretamente uma troca a quente, consulte o Manual de Utilização Hadron Xtorm – MU223000.

10. Manuais

Para mais detalhes técnicos, configuração, instalação e programação, a tabela a seguir deve ser consultada.

Esta tabela é apenas um guia de alguns documentos relevantes que podem ser úteis durante o uso, manutenção e programação deste produto.

Código	Descrição	Idioma
CE123000	Hadron Xtorm Series Technical Characteristics	Inglês
CT123000	Características Técnicas Série Hadron Xtorm	Português
MU223600	Hadron Xtorm Utilization Manual	Inglês
MU223000	Manual de Utilização Hadron Xtorm	Português

Tabela 13: Documentos Relacionados

