1. Descrição do Produto

A automação de sistemas de energia elétrica é caracterizada pelo uso de equipamentos e dispositivos robustos, confiáveis e que apresentam alta tecnologia com a capacidade de operar em ambientes hostis, onde há presença de níveis significativos de interferência eletromagnética e exposição a temperaturas de operação mais elevadas. Esta é a realidade de aplicações em usinas hidrelétricas (UHEs), subestações de energia elétrica, parques eólicos, entre outras.

Neste contexto, a Série Hadron Xtorm se apresenta como uma inovadora Unidade Terminal Remota (UTR), perfeita para aplicações em geração, transmissão e distribuição de energia elétrica. A Série possui um conjunto ideal de recursos com alto desempenho e facilidades para as diversas etapas no ciclo de vida de uma aplicação, visando redução de custos de engenharia, instalação e comissionamento e a minimização de tempos de indisponibilidade, e manutenção do sistema quando em operação. Com interfaces intuitivas e amigáveis, diagnósticos precisos e inteligentes, um design moderno e robusto, além de diversas características inovadoras, a Hadron Xtorm supera os requisitos de aplicações deste mercado.

A Série possui uma arquitetura inteligente e versátil, oferecendo modularidade em pontos de entrada e saída (E/S), opções em redundância, troca a quente de módulos, protocolos de comunicação de alta velocidade, como IEC 61850 e DNP3, implementação de lógica em conformidade com a norma IEC 61131-3 e sincronismo de tempo.

Suas principais características são:

- Suporte a redundância de UCP no mesmo bastidor
- Suporte a redundância de portas Ethernet
- 6 portas Ethernet com conector RJ45
- 1 porta RS-232/RS-485
- 1 porta RS-485/RS-422 isolada
- Interface SD Card
- Sincronismo de tempo via IRIG-B, SNTP, PTP ou pelo centro de controle
- Protocolo IEC 61850 Servidor (Servidor MMS e GO-OSE Publisher/Subscriber)
- Protocolo IEC 60870-5-104 Cliente e Servidor
- Protocolo DNP3 Cliente e Servidor
- Protocolo MODBUS RTU, MODBUS TCP e MOD-BUS RTU via TCP
- Alta velocidade de processamento em 32 bits
- Recursos de servidor web
- Serviços de diagnóstico avançado
- Sistema de log de mensagens
- Funções de automação incluindo 6 linguagens (IEC 61131-3)
- One Touch Diag
- Relógio de tempo real (RTC)
- Troca a quente
- Design de alta robustez
- Facilidade de instalação e remoção
- Ausência de partes móveis e baterias internas

2. Dados para Compra

2.1. Itens Integrantes

A embalagem do produto contém os seguintes itens:

- Módulo HX3040
- Um conector HX9405

3. Código Do Produto

Os seguintes códigos devem ser usados para compra do produto:

Código	Descrição
HX3040	UCP de alta velocidade, 6 portas Ethernet, 2 canais seriais, interface para cartão de memória, e suporte a redundância.

Tabela 1: Código do Produto

4. Produtos Relacionados

Os seguintes produtos devem ser adquiridos separadamente quando necessário:

Código	Descrição
MT8500	MasterTool IEC XE
HD8500	MasterTool Xtorm
AL-2600	Derivador e terminador de rede RS-485
AL-2306	Cabo RS-485 p/ rede MODBUS ou CAN
AL-1729	Cabo RJ45-CMDB9
AL-1748	Cabo CMDB9-CFDB9
AL-1752	Cabo CMDB9-CMDB9
AL-1753	Cabo CMDB9-CMDB25
AL-1754	Cabo CMDB9-CFDB9
AL-1762	Cabo CMDB9-CMDB9
AL-1763	Cabo CMDB9-borneira
NX9202	Cabo RJ45-RJ45 2 m
NX9205	Cabo RJ45-RJ45 5 m
NX9101	Cartão de 32 GB microSD com adaptador para miniSD e SD
HX9405	Conector 04 terminais
HX9102	Tampa de Conector de Bastidor

Tabela 2: Produtos Relacionados

Notas:

HD8500: MasterTool Xtorm é a ferramenta de programação utilizada para a Série Hadron Xtorm.

MT8500: MasterTool IEC XE está disponível em quatro diferentes versões: LITE, BASIC, PROFESSIONAL e ADVAN-CED. Para maiores informações, favor consultar o Manual de Utilização do MasterTool IEC XE - MU299048.

AL-2600: Este módulo é utilizado para derivação e terminação de uma rede RS-422/485. Para cada nó da rede, deve existir um AL-2600. Os módulos AL-2600 que estiverem nas extremidades da rede devem ser configurados como terminação, exceto quando há um dispositivo com terminação interna ativa, o restante deve ser configurado como derivação.

AL-2306: Cabo blindado de dois pares trançados, sem conectores, para ser utilizado em redes RS-485 ou CAN.

AL-1729: Cabo padrão RS-232C com um conector RJ45 e um conector DB9 macho para comunicação entre as UCPs da Série Hadron Xtorm e outros produtos Altus das Séries DUO, Piccolo e Ponto.

AL-1748: Cabo padrão RS-232C com um conector DB9 macho e um conector DB9 fêmea para comunicação entre UCPs da Série Hadron Xtorm e outros produtos Altus da Série Cimrex.

AL-1752: Cabo padrão RS-232C com dois conectores DB9 macho para comunicação entre a UCP da Série Hadron Xtorm e outros produtos Altus da Série H e IHMs da Série IX.

AL-1753: Cabo padrão RS-232C com um conector DB9 macho e um conector DB25 macho para comunicação entre as UCPs da Série Hadron Xtorm e outros produtos Altus da Série H.

AL-1754: Cabo padrão RS-232C com um conector DB9 macho e um conector DB9 fêmea para comunicação entre as UCPs da Série Hadron Xtorm e outros produtos Altus da Série Exter ou porta Serial padrão RS-232C de um microcomputador.

AL-1762: Cabo padrão RS-232C com dois conectores DB9 macho para comunicação entre as UCPs da Série Hadron Xtorm e também para comunicação entre UCPs da Série Nexto.

AL-1763: Cabo com um conector DB9 macho e terminais para comunicação entre a UCP da Série Hadron Xtorm e produtos com bornes padrão RS-232C/RS-485/RS-422.

NX9202/NX9205/NX9210: Cabos utilizados para comunicação Ethernet e para interligar módulos expansores de barramento.

NX9101: Kit contendo um cartão microSD de 32 Gbytes, um adaptador para o padrão SD e outro adaptador para o padrão miniSD.

HX9405: O conector de 4 terminais, HX9405, é de uso exclusivo do canal IRIG-B da UCP HX3040.

HX9102: O HX9102 consiste em uma tampa protetora de conectores dos bastidores da Série Hadron Xtorm. Esta tampa foi desenvolvida para fornecer uma elevada proteção aos conectores não utilizados do bastidor. É recomendado ao usuário, que todas as posições não utilizadas sejam protegidas com o produto HX9102, suporta temperaturas de -5 °C a 70 °C.

5. Características Inovadoras

A Série Hadron Xtorm traz aos usuários diversas inovações na utilização, supervisão e manutenção do sistema. Estas características foram desenvolvidas focando um novo conceito em automação de usinas hidrelétricas, subestações e demais aplicações deste segmento. A lista abaixo mostra algumas destas características que o usuário encontrará na Série Hadron Xtorm:

Battery Free Operation: A Série Hadron Xtorm não requer nenhum tipo de bateria para manutenção de memória e operação de relógio de tempo real. Esta funcionalidade é extremamente importante porque reduz a necessidade de manutenção do sistema e permite o uso em locais remotos de difícil manutenção. Além disto, esta característica é ambientalmente correta.

Multiple Block Storage: Diversos tipos de memória estão disponíveis nas UCPs da Série Hadron Xtorm, oferecendo a melhor opção para cada necessidade. Estas memórias são divididas em memórias voláteis e memórias não voláteis. Para uso de memórias voláteis, as UCPs da Série Hadron Xtorm oferecem variáveis de entrada de representação direta (%I), variáveis de saída de representação direta ((%Q)), variáveis de memória de representação direta ((%M)), memória de dados e memória de dados redundantes. Para aplicações que necessitam funcionalidades de memória não volátil, a Série Hadron Xtorm possibilita a utilização de variáveis de representação direta de memória retentiva ((%Q)), memória retentiva de dados, variáveis de representação direta de memória persistente ((%Q)), memória persistente de dados, memória de programa, memória de código fonte, sistema de arquivo na UCP (Doc, pdf, dados) e interface para cartão de memória.

One Touch Diag: Esta é uma característica exclusiva dos CPs da Série Hadron Xtorm. Através deste novo conceito, o usuário pode checar as informações de diagnóstico de qualquer módulo do sistema diretamente no visor gráfico da UCP, mediante apenas um pressionamento no botão de diagnóstico do respectivo módulo. A OTD é uma poderosa ferramenta de diagnóstico que pode ser usada offline (sem supervisor ou programador) e reduz os tempos de manutenção e comissionamento.

OFD – On Board Full Documentation: As UCPs da Série Hadron Xtorm têm a capacidade de armazenar a documentação completa do projeto na sua memória. Este é um recurso interessante para fins de backup e manutenção, já que a informação completa fica armazenada em um único e seguro local.

ETD – Electronic Tag on Display: Outra característica exclusiva apresentada pela Série Hadron Xtorm é o ETD. Esta nova funcionalidade possibilita a verificação da tag de qualquer ponto ou módulo de E/S usado no sistema, diretamente no visor gráfico das UCPs. Juntamente com esta informação, o usuário pode também verificar a descrição. Este é um recurso extremamente útil durante a manutenção e resolução de problemas.

Características do Produto **6.**

6.1. Características Gerais

	HX3040
	Lista de Instruções (IL)
	Texto Estruturado (ST)
	Diagrama Ladder (LD)
Linguagens de programação	Sequenciamento Gráfico de Funções (SFC)
	Diagrama de Blocos Funcionais (FBD)
	Gráfico Contínuo de Funções (CFC)
	Cíclica (periódica)
	Disparada por evento (interrupção de software)
Tipos de tarefas	Disparada por evento externo (interrupção de hardware)
	Contínua (execução livre)
	Disparada por estado (interrupção de software)
Alterações online	Sim
Suporte a troca quente	Sim
Suporte a redundância de expansão de barra-	Sim
mento	Jiii
Interfaces seriais	1 x RS-232C / RS-485 (COM 1)
interfaces serials	1 x RS-485 / RS-422 (COM 2)
Número máximo de tarefas	32
Número máximo de barramento de expansão	15
Ethernet TCP/IP interface local	6
Suporte a redundância de interfaces Ethernet TCP/IP	Sim
Firewall	Sim
Suporte a redundância de UCP (mesmo basti-	a.
dor)	Sim
Delégio de tempo veel (DTC)	Sim
Relógio de tempo real (RTC)	Resolução de 1 ms e variação máxima de 2s por dia
Sincronização do relógio (IRIG-B, SNTP e	Sim
PTP)	Oilli
Fila de eventos	
Tamanho	4.500 eventos
Política de estouro	Mantém os mais recentes
Retentividade	Sim
Cão-de-guarda	Sim
Indicação de status e diagnóstico	Visor gráfico, LED, páginas web e memória interna da UCP
One Touch Diag (OTD)	Sim
Eletronic Tag on Display (ETD)	Sim
Isolação	2500 11 11
Lógica para terra de proteção 🖨	2500 Vac/ 1 minuto
Lógica para interfaces Ethernet	1500 Vac/ 1 minuto
Lógica para porta serial (COM 2)	2000 Vac/ 1 minuto
Lógica para porta IRIG-B	2500 Vac/ 1 minuto
Interfaces Ethernet para terra de proteção	1500 Vac/ 1 minuto

	HX3040
Interfaces Ethernet para porta serial (COM 2)	2500 Vac/ 1 minuto
Interface Ethernet para interface Ethernet	1500 Vac/ 1 minuto
Porta Serial (COM 2) para terra de prote- ção ⊕	2500 Vac/ 1 minuto
Consumo de corrente do bastidor	1500 mA
Dissipação	7,5 W
Temperatura de operação	-5 a 60°C
Temperatura de armazenamento	-25 a 75°C
Umidade relativa de operação e armazena- mento	5 a 96 %, sem condensação
Revestimento de circuitos eletrônicos	Sim
Índice de proteção	IP 20
Dimensões do módulo (L x A x P)	38,0 x 235,3 x 184,2 mm
Dimensões do módulo (L x A x P)	55,0 x 308,0 x 266,0 mm
Peso	1000 g
Peso com embalagem	1300 g

Tabela 3: Características Gerais

Notas:

Tipos de tarefas: Tarefa é um objeto usado para chamar POUs. Uma tarefa pode ser disparada por período, eventos ou pode ser executada no modo contínuo. Cada tarefa pode chamar uma ou mais POUs.

Relógio de tempo real (RTC): O tempo de retenção, tempo em que o relógio de tempo real continuará a atualizar a data e hora após a desenergização da UCP, é 15 dias para operação a 25 °C. Na temperatura máxima do produto o tempo de retenção é reduzido para 10 dias.

One Touch Diag (OTD): Essa opção somente estará disponível ao usuário quando o módulo estiver em modo operacional. Isolação: Lógica é o nome para os circuitos internos como processador, memória e interfaces com barramento.

Revestimento de circuitos eletrônicos: O revestimento de circuitos eletrônicos protege as partes internas do produto contra umidade, poeira e outros elementos agressivos a circuitos eletrônicos.

6.2. Normas e Certificações

Normas e Certificações		
	61131-2: Industrial-process measurement and control - Programmable controllers - Part 2: Equipment requirements and tests	
IEC	61131-3: Programmable controllers - Part 3: Programming languages	
	61850: International standard defining communication protocols for intelligent electronic devices at electrical substations.	
CE	2014/30/EU (EMC) 2014/35/EU (LVD) 2011/65/EU and 2015/863/EU (ROHS)	
UK	S.I. 2016 No. 1091 (EMC) S.I. 2016 No. 1101 (Safety) S.I. 2012 No. 1101 (ROHS)	
EHE	TR 004/2011 (LVD) CU TR 020/2011 (EMC)	

Tabela 4: Normas e Certificações

Série Hadron Xtorm

6.3. Memória

	HX3040
Memória de variáveis de entrada de representação direta (%I)	96 Kbytes
Memória de variáveis de saída de representação direta (%Q)	96 Kbytes
Memória de variáveis simbólicas	6 Mbytes
Memória de variáveis simbólicas retentivas	8 Kbytes
Memória de variáveis simbólicas persistentes	4 Kbytes
Memória de variáveis redundantes	512 Kbytes
Memória de programa	12 Mbytes
Memória de código fonte (backup)	100 Mbytes
Memória de arquivos de usuário	32 Mbytes

Tabela 5: Memória

Notas:

Memória de variáveis de entrada de representação direta (%I): Área onde são alocadas as variáveis de representação direta para o tipo entrada. Variável de representação direta significa que a variável pode ser acessada diretamente na memória utilizando o endereço desejado. Por exemplo: A UCP HX3040 da Série Hadron Xtorm define toda área de memória de variáveis de entrada de representação direta %I como variáveis redundantes, ou seja, o usuário não precisa selecionar tal área.

Memória de variáveis de saída de representação direta (%Q): Área onde são alocadas todas as variáveis de representação direta para o tipo saída. Variável de representação direta significa que a variável pode ser acessada diretamente na memória utilizando o endereço desejado. Por exemplo: A UCP HX3040 da Série Hadron Xtorm define toda área de memória de variáveis de saída de representação direta %Q como variáveis redundantes, ou seja, o usuário não precisa selecionar tal área.

Memória de variáveis simbólicas: Área onde são alocadas as variáveis simbólicas. As variáveis simbólicas são variáveis IEC criadas em POUs e GVLs durante o desenvolvimento do aplicativo, as quais não são endereçadas diretamente na memória. Variáveis simbólicas podem ser definidas como retentivas ou persistentes, neste caso serão utilizadas as áreas de memória de variáveis simbólicas retentiva ou memória de variáveis simbólicas persistentes respectivamente. O sistema da UTR aloca variáveis de sistema nesta área, desta forma o espaço disponível para a alocação de variáveis criadas pelo usuário é inferior ao informado na tabela. A quantidade de memória ocupada por estas variáveis de sistema depende das características do projeto (quantidade de módulos, de drivers, etc...), desta forma recomenda-se observar o espaço disponível nas mensagens de compilação da ferramenta MasterTool Xtorm.

Memória de variáveis simbólicas retentivas: Área onde são alocadas as variáveis simbólicas retentivas. Os dados retentivos mantêm seus respectivos valores mesmo após um ciclo de desenergização e energização da UCP. A lista completa de quando as variáveis retentivas mantém seus valores e quando o valor é perdido, pode ser encontrada na próxima tabela.

Memória de variáveis simbólicas persistentes: Área onde são alocadas as variáveis simbólicas persistentes. Os dados persistentes mantêm seus respectivos valores mesmo após o download de uma nova aplicação na UCP.

ATENÇÃO

A declaração e utilização de variáveis persistentes deve ser realizada única e exclusivamente através do objeto Persistent Vars, o qual pode ser incluído no projeto através da treeview em Application -> Add Object -> Persistent Variables. Não deve ser utilizada a expressão VAR PERSISTENT no campo de declaração de variáveis das POUs.

Além do tamanho de área persistente informado na tabela acima, estão reservados estes 44 bytes para armazenar informações sobre as variáveis persistentes (não disponível para uso). A lista completa de quando as variáveis persistentes mantém seus valores e quando o valor é perdido, pode ser encontrada na tabela a seguir.

A tabela mostra o comportamento das variáveis simbólicas, retentivas e persistentes para diferentes situações, onde "-" significa que o valor é perdido e "X" significa que o valor é mantido.

Comando	Variável Simbólica	Variável Retentiva	Variável Persistente
Reset a Quente / Ciclo de energização	-	X	X
Reset a Frio	-	-	X
Reset Origem	-	-	-
Remover UCP ou Fonte de Alimentação do Bastidor enquanto energizado	-	-	-
Download	-	-	X
Alteração online	X	X	X
Reiniciar CP	-	X	X
Limpa tudo	-	-	X
Reset Process (IEC 60870-5-104	-	X	X

Tabela 6: Comportamento das Variáveis Não Voláteis

No caso do comando de Clean All, caso a aplicação tenha sido modificada de tal forma que variáveis persistentes tenham sido removidas, inseridas no início da lista ou então tenham tido o seu tipo modificado, o valor destas variáveis será perdido (alertado pela ferramenta MasterTool ao realizar o download). Desta forma recomenda-se que alterações na GVL de variáveis persistentes envolvam somente a inclusão de novas variáveis no final da lista.

Memória de variáveis redundantes: Apenas aplicado para projetos com redundância de UCP. São as variáveis sincronizadas entre as UCPs redundantes, o que contempla as variáveis de representação direta (%I e %Q), utilizadas por módulos de E/S, e variáveis simbólicas do programa do usuário, declaradas em GVLs ou POUs redundantes.

Memória de programa: Área da memória que corresponde ao tamanho máximo permitido para a aplicação de usuário. Essa área é compartilhada com a memória de código fonte, sendo a área total a soma de "memória de programa" e "memória de código fonte".

Memória de código fonte (backup): Área da memória utilizada como backup do projeto, ou seja, caso o usuário deseje importar o seu projeto, o software MasterTool Xtorm irá buscar as informações necessárias nessa área. É importante garantir que o projeto salvo como backup está atualizado para evitar perda de informações críticas. Essa área é compartilhada com a memória de programa sendo a área total a soma de "memória de programa" e "memória de código fonte".

Memória de arquivos de usuário: Essa área da memória é destinada ao armazenamento de arquivos, como: doc, pdf, imagens, entre outros, ou seja, permite a gravação de dados como se fosse um cartão de memória.

Suporte a redundância (mesmo bastidor): A UCP HX3040 suporta redundância de UCP localizadas no mesmo bastidor.

Protocolos 6.4.

	HX3040	Interface
Comunicação com o software de programação	Sim	NET 1 NET 2
Protocolo aberto	Sim	COM 1 / COM 2
MODBUS RTU Mestre	Sim	COM 1 / COM 2
MODBUS RTU Escravo	Sim	COM 1 / COM 2
MODBUS TCP Cliente	Sim	NET 1 NET 6
MODBUS TCP Servidor	Sim	NET 1 NET 6
MODBUS RTU via TCP Cliente	Sim	NET 1 NET 6
MODBUS RTU via TCP Servidor	Sim	NET 1 NET 6
IEC 60870-5-104 Cliente	Sim	NET 1 NET 6
IEC 60870-5-104 Servidor	Sim	NET 1 NET 6
DNP3 Cliente	Sim	NET 1 NET 6
DNP3 Servidor	Sim	NET 1 NET 6
IEC 61850 MMS Servidor	Sim	NET 1 NET 6
IEC 61850 GOOSE Publisher	Sim	NET 1 NET 6
IEC 61850 GOOSE Subscriber	Sim	NET 1 NET 6
OPC DA Servidor	Sim	NET 1 NET 6
OPC UA Servidor	Sim	NET 1 NET 6
EtherCAT Mestre	Não	-
SNMP Agente	Não	-
EtherNet/IP Scanner	Não	-
EtherNet/IP Adapter	Não	-
MQTT Cliente	Sim	NET 1 NET 6
SNTP Cliente (para sincronismo do relógio)	Sim	NET 1 NET 6
PTP (Precision Time Protocol) Escravo	Sim	NET 1 NET 6
PROFINET Controller	Sim	NET 1 NET 6
PROFINET Device	Não	-
OpenVPN Client	Não	
OpenVPN Server	Não	-
FTP Server	Sim	NET 1 NET 6
Firewall	Sim	NET 1 NET 6
MRP	Não	-

Tabela 7: Protocolos

Notas:

PROFINET Controller: Habilitado para uso sem redundância de UCP e em rede simples (sem anel) com até 50 dispositivos. Para aplicações maiores, consultar o suporte técnico.

OPC UA Servidor: Habilitado para uso sem redundância de UCP e em rede simples (sem anel).

6.5. Interfaces Seriais

6.5.1. COM 1

	COM 1	
Conector	DB9 fêmea blindado	
Meio físico	RS-232C ou RS-485 (dependendo do cabo concetado)	
Direção da comunicação	RS-232C: full duplex RS-485: half duplex	
Número máximo de transceivers RS-485	vers 32	
Terminação RS-485	Não (possibilita o uso de terminação ativa externa)	
Sinais de modem	RTS, CTS, DCD	
Baud rate	600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600, 115200 bps	

Tabela 8: Interface Serial COM 1

6.5.2. COM 2

	HX3040	
Conector	DB9 fêmea blindado	
Meio físico	RS-422 ou RS-485 (dependendo do cabo conectado)	
Direção da comunicação	RS-422: full duplex	
Direção da comunicação	RS-485: half duplex	
Número máximo de transceivers RS-422	11 (1 transmissor e 10 receptores)	
Número máximo de transceivers RS-485	rs 32	
Terminação	Sim (opcional via seleção de cabo)	
Baud rate	600, 1.200, 1.800, 2.400, 4.800, 9.600, 19.200, 38.400, 57.600, 115.200 bps	

Tabela 9: Interface Serial COM 2

Notas:

Meio físico: Dependendo da configuração do cabo usado, é possível escolher o tipo de interface física: RS-232C ou RS-485 para a COM1, e RS-422 ou RS-485 para a COM2.

Número máximo de transceivers RS-422: Referem-se ao número máximo de interfaces RS-422 que podem ser usadas no mesmo barramento.

Número máximo de transceivers RS-485: Refere-se ao número máximo de interfaces RS-485 que podem ser usadas no mesmo barramento.

6.6. Interfaces Ethernet

6.6.1. NET 1 .. NET 6

	NET 1 NET 6
Conector	RJ45 fêmea blindado
Auto negociação (auto crossover)	Sim
Comprimento máximo do cabo	100 m
Tipo de cabo	UTP ou ScTP, categoria 5
Baud rate	10/100 Mbps
Camada física	10/100 Base-TX
Camada de enlace de dados	LLC (controle de enlace lógico)
Camada de rede	IP (protocolo de internet)
Camada de transporte	TCP (protocolo de controle de transmissão) UDP (protocolo de datagrama de usuário)

Tabela 10: Interfaces Ethernet NET 1 .. NET 6

6.7. IRIG-B

	IRIG-B
Tipo de Conector	Conector borne extraível com 4 terminais (HX9405)
Comprimento máximo do cabo	5 m
Seção do fio	0,5 mm ²
Nível de entrada e saída	TTL
Impedância de entrada	>100 kΩ
Atraso entre entrada e saída	< 10 ns
Corrente máxima na saída	10 mA
Carga máxima na saída	500 Ω
Proteção contra curto circuito	Sim
Níveis de tensão	0 a 1,5 Vdc para nível lógico 0
Trivels de tensau	3,5 a 5 Vdc para nível lógico 1

Tabela 11: Interface IRIG-B

Notas:

Carga Máxima na Saída: A carga total resultante de todos os dispositivos conectados à saída não deve ultrapassar este valor. Não há um limite máximo de dispositivos pré-definido. O mesmo deve ser calculado a partir da impedância de entrada mínima de cada um dos dispositivos conectados à saída IRIG-B da Xtorm.

6.8. Visor Gráfico

As UCPs da Série Hadron Xtorm possuem um visor gráfico usado para mostrar o status e diagnóstico do sistema inteiro, inclusive os diagnósticos específicos de cada módulo adicional. O visor também oferece um menu de fácil utilização que dá ao usuário um rápido caminho para ler ou definir alguns parâmetros como: temperatura interna (somente leitura); contraste do visor gráfico e endereço IP para cada interface NET (somente leitura).

6.9. Interface do Cartão de Memória

Os cartões de memória podem ser usados para diferentes tipos de armazenamento de dados como: logs de usuários, páginas web, documentação de projeto e arquivos fontes.

	Cartão de Memória
Capacidade máxima	32 Gbytes
Capacidade mínima	2 Gbytes
Tipo	SD
Sistema de arquivos	FAT32
Remover cartão de forma segura	Sim, através de menu específico para essa função.

Tabela 12: Características da Interface com Cartão de Memória

Notas:

Capacidade máxima: A capacidade do cartão de memória deve ser igual ou inferior a este limite para o correto funcionamento na UCP Hadron Xtorm, podendo a UCP não reconhecer o cartão ou ocorrer perdas de dados durante transferências.

Capacidade mínima: A capacidade do cartão de memória deve ser igual ou superior a este limite para o seu correto funcionamento na UCP Hadron Xtorm, podendo a UCP não reconhecer o cartão ou ocorrer perdas de dados durante transferências.

Sistema de arquivos: É recomendado formatar a memória utilizando a própria UCP Hadron Xtorm, caso contrário poderá ocorrer perda de desempenho no acesso a interface do cartão de memória.

12

7. Redundância de UCP

A Série Hadron Xtorm oferece redundância de UCP. As UCPs redundantes devem estar localizadas no mesmo bastidor. Na arquitetura redundante, o sistema terá uma UCP em execução (UCP ativa) e outra UCP em reserva. Em caso de falha no controlador principal, a UCP em reserva é capaz de assumir o controle da aplicação automaticamente. Isso significa que os processos críticos não são afetados por falhas de hardware no sistema de controle. O resultado é o aumento de produtividade e minimização do tempo de inatividade.

A comunicação entre as UCPs é feita no final de cada ciclo, através de dois links de redundância de alta velocidade localizados na posição 2 e 3 do bastidor.

O exemplo abaixo demonstra o modo redundante fornecido pela Série Hadron Xtorm. Mais informações sobre configuração e uso dos recursos de redundância das UCPs são encontradas no Manual de Utilização Hadron Xtorm — MU223000.

7.1. Redundância de UCP no mesmo Bastidor

Esta Série disponibiliza o recurso de redundância utilizando duas UCPs conectadas no mesmo bastidor. Cada UCP pode ter um ou mais protocolos de rede configurados para a comunicação com o centro de controle. Quando ocorre um erro com uma UCP, a UCP reserva assume o controle das conexões ativas com o centro de controle. Esta aplicação é de fácil configuração e dispensa o usuário de realizar uma programação especial ou parametrização. Neste modo redundante, a UCP principal e a UCP reserva devem estar posicionados lado a lado. A figura abaixo ilustra um exemplo de bastidor com uma topologia de redundância.

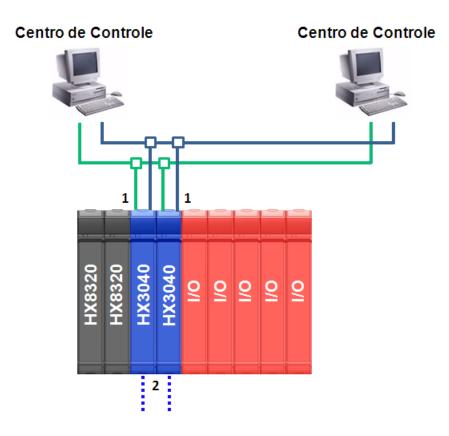


Figura 1: Redundância de UCP no mesmo Bastidor

Notas:

- 1- Topologia de rede Ethernet
- 2- A configuração de cada UCP deve ser idêntica.

Dimensões Fisicas 8.

Dimensões em mm.

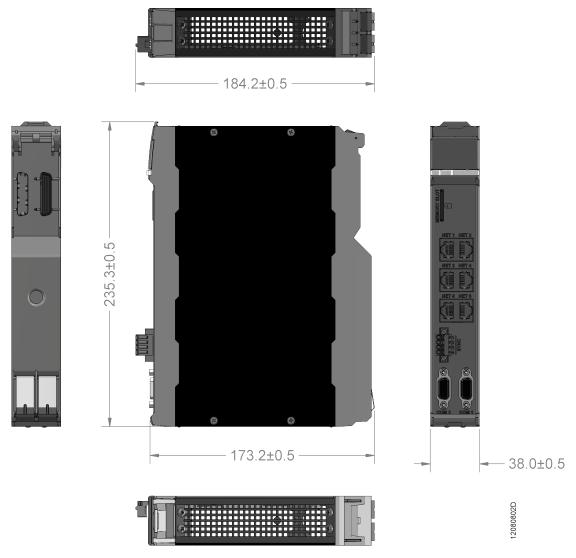


Figura 2: Dimensões Físicas

9. Instalação

Para correta instalação deste produto se faz necessária a utilização de um bastidor e a mesma deve ser realizada conforme instruções de instalação mecânica e elétrica que seguem.

9.1. Identificação do Produto

Este produto possui algumas partes que devem ser observadas antes de sua instalação e utilização. A figura a seguir identifica cada uma dessas partes.

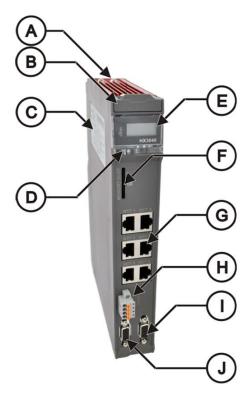


Figura 3: HX3040

- A Trava de fixação.
- B Cursor de fixação do módulo.
- © Etiqueta para identificação do módulo.
- D Botão e LED de diagnóstico.
- E Visor de estado e diagnóstico.
- © Conector para cartão microSD.
- © Conectores RJ45 para comunicação Ethernet.
- ① Conector de 4 terminais para IRIG-B.
- Onector DB9 fêmea RS-232C/RS-485.
- Onector DB9 fêmea RS-485/RS-422.

O produto possui em sua mecânica uma etiqueta que o identifica e na mesma estão apresentados alguns símbolos cujo significado está descrito a seguir:

Atenção! Antes de utilizar o equipamento e realizar a instalação, leia a documentação.

Corrente contínua.

9.2. Instalação Elétrica

PERIGO

Ao realizar qualquer instalação em um painel elétrico, certifique-se de que a alimentação geral do armário esteja DESLIGADA.

A alimentação da UCP da Série Hadron Xtorm é proveniente do Módulo Fonte de Alimentação, o qual fornece tensão às UCPs através da conexão ao bastidor, não necessitando de conexões externas. O aterramento do módulo é realizado através do contato entre a mola de aterramento do módulo e o bastidor.

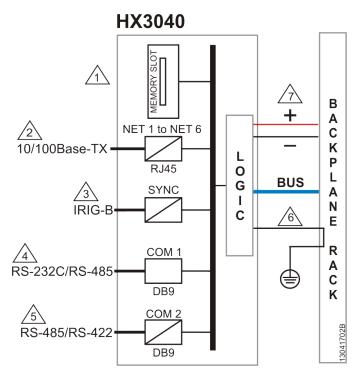


Figura 4: Diagrama Elétrico

Notas do Diagrama:

/1 Interface para cartão de memória.

Interface Ethernet padrão 10/100Base-TX.

Interface IRIG-B padrão para conexão ao sinal de sincronismo de tempo. Recomenda-se a utilização de cabos de seção de 1,5mm².

Interface serial padrão RS-232C/RS-485.

/5\ Interface serial padrão RS-485/RS-422.

Ó O HX3040 está conectado ao terra de proteção ⊕ através dos bastidores da Série Hadron Xtorm.

A alimentação do módulo é proveniente da conexão ao bastidor, não necessitando de conexões externas.

9.3. Montagem Mecânica

Informações e orientações sobre a instalação mecânica correta podem ser encontradas no Manual de Utilização Hadron Xtorm - MU223000.

ATENÇÃO

Produtos com selo de garantia violado não serão cobertos pela garantia.

CUIDADO

Dispositivo sensível à eletricidade estática. Sempre toque em um objeto metálico aterrado antes de manuseá-lo.

PERIGO

A Série Hadron Xtorm pode operar com tensões de até 250 Vac. Cuidados especiais devem ser tomados durante a instalação, que só deve ser feita por técnicos habilitados. Não tocar na ligação da fiação de campo quando em operação.

10. Configuração

As UCPs da Série Hadron Xtorm foram desenvolvidas para serem usadas com os produtos da Série Hadron Xtorm. Todos os produtos da Série são configurados com o MasterTool Xtorm. Informações sobre o procedimento correto para adicionar/remover módulos do sistema são encontradas no Manual de Utilização Hadron Xtorm - MU223000.

11. Programação

As UCPs da Série Hadron Xtorm usam as linguagens padrão IEC 61131-3, IL, ST, LD, SFC e FBD. IL e ST são linguagens textuais similares a Assembly e linguagem C respectivamente. LD, SFC e FBD são linguagens gráficas. O LD usa a representação de relés e blocos e é similar a diagramas de relé. O SFC usa a representação de um diagrama sequencial e permite uma visualização clara das funções executadas em cada ação. As UCPs desta Série oferecem também uma sexta linguagem chamada CFC.

A programação é feita na interface MasterTool Xtorm, que possibilita o uso de seis linguagens no mesmo projeto, fornecendo, assim, os melhores recursos que cada linguagem pode oferecer. Como resultado disto, o usuário tem eficientes desenvolvimentos de aplicações e facilidade na documentação e em futuras manutenções.

Para mais informações sobre programação, consulte o Manual de Utilização Hadron Xtorm - MU223000.

12. Manutenção

A Altus recomenda que todas as conexões dos módulos sejam verificadas e que poeira ou qualquer tipo de sujeira no exterior do módulo seja removida a cada 6 meses.

Este módulo oferece cinco importantes funcionalidades para auxiliar o usuário durante a manutenção: Electronic Tag on Display, One Touch Diag, Indicadores de Status e Diagnósticos, Página Web com Lista Completa de Status e Diagnósticos, e Diagnósticos através de Variáveis.

13. Electronic Tag on Display e One Touch Diag

Electronic Tag on Display e One Touch Diag são funcionalidades importantes que dão ao usuário a opção de verificar a tag, descrição e diagnósticos relacionados a um módulo diretamente no visor gráfico da UCP.

Electronic Tag on Display e One Touch Diag são funcionalidades de fácil utilização. Para verificar o tag e diagnóstico de um módulo, basta um pressionamento curto (menor que 1 segundo) no botão de diagnóstico. Depois de um pressionamento a UCP irá mostrar a tag e os diagnósticos do módulo. Para acessar a respectiva descrição, basta um pressionamento longo (maior que 1 segundo) no botão de diagnóstico do respectivo módulo.

Mais informações sobre Electronic Tag on Display podem ser encontradas no Manual de Utilização Hadron Xtorm - MU223000.

14. Indicadores de Status e Diagnóstico

A UCP da Série Hadron Xtorm apresenta um visor gráfico contendo o status e informações úteis para o usuário, tais como: estados da aplicação (em execução e parado), status do cartão SD, atividade nas interfaces seriais (RX e TX) entre outras. Adicionalmente, as UCPs da Série Hadron Xtorm também fornecem um LED bicolor usado para indicar os status e diagnósticos. A tabela abaixo mostra o significado de cada estado do LED.

DL (Cor)	Descrição	Causa	Prioridade
Desligado	Módulo desligado ou falha no visor	Sem fonte de alimentação ou Problema de hardware	-
Ligado (Azul)	Todas as aplicações em execução (Modo Run)	-	4 (Mais baixo)
Piscando 2x (Azul)	Módulos do barramento ou UCP com diagnóstico	No mínimo um módulo do barramento, incluindo a UCP, está com algum diagnóstico ativo	2
Piscando 3x (Azul)	Forçamento de dados	Alguma área de memória está sendo forçada pelo usuário via MasterTool Xtorm	3
Ligado (Vermelho)	Todas as aplicações paradas (Modo Stop)	-	4 (Mais baixo)
Piscando 1x (Vermelho)	Cão-de-guarda de Software	Cão-de-guarda da aplicação de usuário	1
Piscando 4x (Vermelho)	Erro de Configuração ou de Hardware no barramento.	O barramento está danificado ou não está configurado corretamente	0 (Mais Alta)

Tabela 13: Estado do LED de Diagnósticos (DL)

Nota:

Cão-de-guarda de software: Para remover a indicação de cão-de-guarda, deve-se efetuar um reset da aplicação ou desligar e ligar novamente a UCP. Esse cão-de-guarda ocorre quando o tempo de execução da aplicação de usuário for maior que o tempo de cão-de-guarda configurado.

15. Página da Web com Status Completo e Lista de Diagnóstico

Outra forma de acessar as informações de diagnóstico na Série Hadron Xtorm é via página web. As UCPs da Série apresentam um servidor de páginas web embarcado que fornece todos os status e informações de diagnóstico que podem ser acessados usando um simples navegador em um computador, tablet ou smartphone.

16. Diagnósticos via Variáveis

A lista de todos os status e diagnósticos das UCPs é encontrada no Manual de Utilização Hadron Xtorm - MU223000.

Manuais **17.**

Para mais detalhes técnicos, configuração, instalação e programação, a tabela a seguir deve ser consultada.

Esta tabela é apenas um guia de alguns documentos relevantes que podem ser úteis durante o uso, manutenção e programação deste produto.

Código	Descrição	Idioma
CE123000	Hadron Xtorm Series Technical Characteristics	Inglês
CT123000	Características Técnicas Série Hadron Xtorm	Português
MU223600	Hadron Xtorm Utilization Manual	Inglês
MU223000	Manual de Utilização Hadron Xtorm	Português

Tabela 14: Documentos Relacionados