
User Manual
Nexto Series CPUs

NX3020
MU214614 Rev. F

February 27, 2025

General Supply Conditions

No part of this document may be copied or reproduced in any form without the prior written consent of Altus Sistemas de
Automação S.A. who reserves the right to carry out alterations without prior advice.

According to current legislation in Brazil, the Consumer Defense Code, we are giving the following information to clients
who use our products, regarding personal safety and premises.

The industrial automation equipment, manufactured by Altus, is strong and reliable due to the stringent quality control
it is subjected to. However, any electronic industrial control equipment (programmable controllers, numerical commands,
etc.) can damage machines or processes controlled by them when there are defective components and/or when a programming
or installation error occurs. This can even put human lives at risk. The user should consider the possible consequences of
the defects and should provide additional external installations for safety reasons. This concern is higher when in initial
commissioning and testing.

The equipment manufactured by Altus does not directly expose the environment to hazards, since they do not issue any kind
of pollutant during their use. However, concerning the disposal of equipment, it is important to point out that built-in electronics
may contain materials which are harmful to nature when improperly discarded. Therefore, it is recommended that whenever
discarding this type of product, it should be forwarded to recycling plants, which guarantee proper waste management.

It is essential to read and understand the product documentation, such as manuals and technical characteristics before its
installation or use. The examples and figures presented in this document are solely for illustrative purposes. Due to possible
upgrades and improvements that the products may present, Altus assumes no responsibility for the use of these examples and
figures in real applications. They should only be used to assist user trainings and improve experience with the products and
their features.

Altus warrants its equipment as described in General Conditions of Supply, attached to the commercial proposals.
Altus guarantees that their equipment works in accordance with the clear instructions contained in their manuals and/or

technical characteristics, not guaranteeing the success of any particular type of application of the equipment.
Altus does not acknowledge any other guarantee, directly or implied, mainly when end customers are dealing with third-

party suppliers. The requests for additional information about the supply, equipment features and/or any other Altus services
must be made in writing form. Altus is not responsible for supplying information about its equipment without formal request.
These products can use EtherCAT® technology (www.ethercat.org).

COPYRIGHTS
Nexto, MasterTool, Grano and WebPLC are the registered trademarks of Altus Sistemas de Automação S.A.
Windows, Windows NT and Windows Vista are registered trademarks of Microsoft Corporation.

OPEN SOURCE SOFTWARE NOTICE
To obtain the source code under GPL, LGPL, MPL and other open source licenses, that is contained in this product, please

contact opensource@altus.com.br. In addition to the source code, all referred license terms, warranty disclaimers and copyright
notices may be disclosed under request.

I

www.ethercat.org
opensource@altus.com.br

CONTENTS

Contents

1. Introduction . 1
1.1. Nexto Series . 1
1.2. Innovative Features . 2
1.3. Documents Related to this Manual . 3
1.4. Visual Inspection . 5
1.5. Technical Support . 5
1.6. Warning Messages Used in this Manual . 5

2. Technical Description . 6
2.1. Panels and Connections . 6
2.2. General Features . 7

2.2.1. Common General Features . 7
2.2.2. Standards and Certifications . 9
2.2.3. Memory . 10
2.2.4. Protocols . 12
2.2.5. Serial Interfaces . 13

2.2.5.1. COM 1 . 13
2.2.5.2. COM 2 . 13

2.2.6. Ethernet Interfaces . 14
2.2.6.1. NET 1 . 14
2.2.6.2. NET 2 . 14

2.2.7. Memory Card Interface . 15
2.2.8. Environmental Characteristics . 15

2.3. Compatibility with Other Products . 16
2.4. Performance . 16

2.4.1. MainTask Interval Time . 16
2.4.2. Application Times . 16
2.4.3. Time for Instructions Execution . 17
2.4.4. Initialization Times . 17

2.5. Physical Dimensions . 18
2.6. Purchase Data . 19

2.6.1. Integrant Itens . 19
2.6.2. Product code . 19

2.7. Related Products . 19
3. Installation . 21

3.1. Mechanical Installation . 21
3.2. Electrical Installation . 21
3.3. Ethernet Network Connection . 22

3.3.1. IP Address . 22

II

CONTENTS

3.3.2. Gratuitous ARP . 23
3.3.3. Network Cable Installation . 23

3.4. Serial Network Connection RS-232C . 24
3.4.1. RS-232C Communication . 25

3.5. Serial Network Connection RS-485/422 . 25
3.5.1. RS-485 Communication without termination . 25
3.5.2. RS-485 Communication with Internal Termination . 26
3.5.3. RS-485 Communication with External Termination . 27
3.5.4. RS-422 Communication without Termination . 28
3.5.5. RS-422 Communication with Internal Termination . 29
3.5.6. RS-422 Communication with External Termination . 30
3.5.7. RS-422 Network Example . 31

3.6. Memory Card Installation . 31
3.7. Architecture Installation . 33

3.7.1. Module Installation on the Main Backplane Rack . 33
3.8. Programmer Installation . 33

4. Programmer Installation . 34
4.1. Memory Organization and Access . 34
4.2. Project Profiles . 36

4.2.1. Single . 36
4.2.2. Basic . 36
4.2.3. Normal . 37
4.2.4. Expert . 37
4.2.5. Custom . 38
4.2.6. Machine Profile . 38
4.2.7. General Table . 39
4.2.8. Maximum Number of Tasks . 39

4.3. CPU Configuration . 40
4.4. Libraries . 41
4.5. Inserting a Protocol Instance . 41

4.5.1. MODBUS Ethernet . 41
4.6. Finding the Device . 43
4.7. Login . 45
4.8. Run Mode . 47
4.9. Stop Mode . 48
4.10. Writing and Forcing Variables . 48
4.11. Logout . 49
4.12. Project Upload . 49
4.13. CPU Operating States . 51

4.13.1. Run . 51
4.13.2. Stop . 51
4.13.3. Breakpoint . 51
4.13.4. Exception . 51
4.13.5. Reset Warm . 51
4.13.6. Reset Cold . 51
4.13.7. Reset Origin . 51
4.13.8. Reset Process Command (IEC 60870-5-104) . 52

4.14. Programas (POUs) e Listas de Variáveis Globais (GVLs) . 52

III

CONTENTS

4.14.1. MainPrg Program . 52
4.14.2. StartPrg Program . 52
4.14.3. UserPrg Program . 52
4.14.4. GVL System_Diagnostics . 53
4.14.5. GVL Disables . 54
4.14.6. GVL IOQualities . 54
4.14.7. GVL Module_Diagnostics . 55
4.14.8. GVL Qualities . 56
4.14.9. GVL ReqDiagnostics . 57
4.14.10. Prepare_Start Function . 59
4.14.11. Prepare_Stop Function . 59
4.14.12. Start_Done Function . 59
4.14.13. Stop_Done Function . 59

5. Configuration . 60
5.1. Device . 60

5.1.1. User Management and Access Rights . 60
5.1.2. PLC Settings . 60

5.2. CPU Configuration . 62
5.2.1. General Parameters . 62

5.2.1.1. Hot Swap . 63
5.2.1.1.1. Hot Swap Disabled, for Declared Modules Only 64
5.2.1.1.2. Hot Swap Disabled . 64
5.2.1.1.3. Hot Swap Disabled, without Startup Consistency 64
5.2.1.1.4. Hot Swap Enabled, with Startup Consistency for Declared Modules Only . 64
5.2.1.1.5. Hot Swap Enabled with Startup Consistency 65
5.2.1.1.6. Hot Swap Enabled without Startup Consistency 65
5.2.1.1.7. How to do the Hot Swap . 65

5.2.1.2. Retain and Persistent Memory Areas . 67
5.2.1.3. Project Parameters . 69

5.2.2. External Event Configuration . 69
5.2.3. SOE Configuration . 71
5.2.4. Time Synchronization . 73

5.2.4.1. IEC 60870-5-104 . 74
5.2.4.2. SNTP . 74
5.2.4.3. Daylight Saving Time (DST) . 75

5.2.5. Internal Points . 75
5.2.5.1. Quality Conversions . 77

5.2.5.1.1. Internal Quality . 77
5.2.5.1.2. IEC 60870-5-104 Conversion . 79
5.2.5.1.3. MODBUS Internal Quality . 80
5.2.5.1.4. Local Bus I/O Modules Quality . 81
5.2.5.1.5. PROFIBUS I/O Modules Quality . 81
5.2.5.1.6. PROFIBUS Digital Inputs Quality . 82
5.2.5.1.7. PROFIBUS Digital Output Quality . 82
5.2.5.1.8. PROFIBUS Analog Inputs Quality . 83
5.2.5.1.9. PROFIBUS Analog Output Quality . 85

5.3. Serial Interfaces Configuration . 87
5.3.1. COM 1 . 87

IV

CONTENTS

5.3.1.1. Advanced Configurations . 88
5.3.2. COM 2 . 89

5.3.2.1. Advanced Configurations . 90
5.4. Ethernet Interfaces Configuration . 90

5.4.1. Internal Ethernet Interfaces . 90
5.4.1.1. NET 1 . 91
5.4.1.2. NET 2 . 91
5.4.1.3. Configuration of Internal Ethernet Interfaces . 91

5.4.1.3.1. Single Mode . 91
5.4.1.3.2. Redundant Mode . 92

5.4.2. NX5000 Remote Ethernet Interface . 92
5.4.2.1. NET 1 . 92
5.4.2.2. Operation Modes of the NX5000 Remote Ethernet Interface 93

5.4.2.2.1. Redundant Mode . 93
5.4.3. Reserved TCP/UDP Ports . 94

5.5. Protocols Configuration . 94
5.5.1. Protocol Behavior x CPU State . 97
5.5.2. Double Points . 97
5.5.3. CPU’s Events Queue . 97

5.5.3.1. Consumers . 98
5.5.3.2. Queue Functioning Principles . 98

5.5.3.2.1. Overflow Sign . 99
5.5.3.3. Producers . 99

5.5.4. Interception of Commands Coming from the Control Center 99
5.5.5. MODBUS RTU Master . 103

5.5.5.1. MODBUS Master Protocol Configuration by Symbolic Mapping 104
5.5.5.1.1. MODBUS Master Protocol General Parameters – Symbolic Mapping Con-

figuration . 104
5.5.5.1.2. Devices Configuration – Symbolic Mapping configuration 106
5.5.5.1.3. Mappings Configuration – Symbolic Mapping Settings 106
5.5.5.1.4. Requests Configuration – Symbolic Mapping Settings 108

5.5.5.2. MODBUS Master Protocol Configuration for Direct Representation (%Q) 112
5.5.5.2.1. General Parameters of MODBUS Master Protocol - setting by Direct Rep-

resentation (%Q) . 112
5.5.5.2.2. Devices Configuration – Configuration for Direct Representation (%Q) . . . 113
5.5.5.2.3. Mappings Configuration – Configuration for Direct Representation (%Q) . . 114

5.5.6. MODBUS RTU Slave . 116
5.5.6.1. MODBUS Slave Protocol Configuration by Symbolic Mapping 117

5.5.6.1.1. MODBUS Slave Protocol Configuration via Symbolic Mapping 117
5.5.6.1.2. MODBUS Slave Protocol General Parameters – Configuration via Sym-

bolic Mapping . 119
5.5.6.2. MODBUS Slave Protocol Configuration via Direct Representation (%Q) 120

5.5.6.2.1. General Parameters of MODBUS Slave Protocol – Configuration via Di-
rect Representation (%Q) . 121

5.5.6.2.2. Mappings Configuration – Configuration via Direct Representation (%Q) . 122
5.5.7. MODBUS Ethernet . 124
5.5.8. MODBUS Ethernet Client . 125

5.5.8.1. MODBUS Ethernet Client Configuration via Symbolic Mapping 125

V

CONTENTS

5.5.8.1.1. MODBUS Client Protocol General Parameters – Configuration via Sym-
bolic Mapping . 126

5.5.8.1.2. Device Configuration – Configuration via Symbolic Mapping 127
5.5.8.1.3. Mappings Configuration – Configuration via Symbolic Mapping 128
5.5.8.1.4. Requests Configuration – Configuration via Symbolic Mapping 129

5.5.8.2. MODBUS Ethernet Client configuration via Direct Representation (%Q) 133
5.5.8.2.1. General parameters of MODBUS Protocol Client - configuration for Direct

Representation (%Q) . 133
5.5.8.2.2. Device Configuration – Configuration via Direct Representation (%Q) . . . 134
5.5.8.2.3. Mapping Configuration – Configuration via Direct Representation (%Q) . . 135

5.5.8.3. MODBUS Client Relation Start in Acyclic Form 138
5.5.9. MODBUS Ethernet Server . 138

5.5.9.1. MODBUS Server Ethernet Protocol Configuration for Symbolic Mapping 138
5.5.9.1.1. MODBUS Server Protocol General Parameters – Configuration via Sym-

bolic Mapping . 138
5.5.9.1.2. MODBUS Server Diagnostics – Configuration via Symbolic Mapping . . . 140
5.5.9.1.3. Mapping Configuration – Configuration via Symbolic Mapping 141

5.5.9.2. MODBUS Server Ethernet Protocol Configuration via Direct Representation (%Q) 142
5.5.9.2.1. General Parameters of MODBUS Server Protocol – Configuration via Di-

rect Representation (%Q) . 142
5.5.9.2.2. Mapping Configuration – Configuration via Direct Representation (%Q) . . 143

5.5.10. OPC DA Server . 146
5.5.10.1. Creating a Project for OPC DA Communication 148
5.5.10.2. Configuring a PLC on the OPC DA Server . 150

5.5.10.2.1. Importing a Project Configuration . 153
5.5.10.3. OPC DA Communication Status and Quality Variables 153
5.5.10.4. Limits of Communication with OPC DA Server 154
5.5.10.5. Accessing Data Through an OPC DA Client . 155

5.5.11. OPC UA Server . 156
5.5.11.1. Creating a Project for OPC UA Communication 158
5.5.11.2. Types of Supported Variables . 160
5.5.11.3. Limit Connected Clients on the OPC UA Server 160
5.5.11.4. Limit of Communication Variables on the OPC UA Server 160
5.5.11.5. Encryption Settings . 160
5.5.11.6. Main Communication Parameters Adjusted in an OPC UA Client 161

5.5.11.6.1. Endpoint URL . 161
5.5.11.6.2. Publishing Interval (ms) e Sampling Interval (ms) 161
5.5.11.6.3. Lifetime Count e Keep-Alive Count . 162
5.5.11.6.4. Queue Size e Discard Oldest . 162
5.5.11.6.5. Filter Type e Deadband Type . 162
5.5.11.6.6. PublishingEnabled, MaxNotificationsPerPublish e Priority 162

5.5.11.7. Accessing Data Through an OPC UA Client . 163
5.5.12. EtherCAT Master . 164

5.5.12.1. Installing and inserting EtherCAT Devices . 164
5.5.12.1.1. EtherCAT - Scan For Devices . 165

5.5.12.2. EtherCAT Master Settings . 166
5.5.12.2.1. EtherCAT Master Parameters . 166
5.5.12.2.2. EtherCAT Master - Sync Unit Assignment 167
5.5.12.2.3. EtherCAT Master - Overview . 168

VI

CONTENTS

5.5.12.2.4. EtherCAT Master - I/O Mapping . 168
5.5.12.2.5. EtherCAT Master - Status / Information Tabs 168

5.5.12.3. EtherCAT Slave Configuration . 168
5.5.12.3.1. EtherCAT Slave - General . 168
5.5.12.3.2. EtherCAT Slave - Process Data . 172
5.5.12.3.3. EtherCAT Slave - Edit PDO List . 174
5.5.12.3.4. EtherCAT Slave - Startup Parameters . 174
5.5.12.3.5. EtherCAT Slave - I/O Mapping . 174
5.5.12.3.6. EtherCAT Slave - Status and Information 175

5.5.13. EtherNet/IP . 175
5.5.13.1. EtherNet/IP . 176
5.5.13.2. EtherNet/IP Scanner Configuration . 178

5.5.13.2.1. General . 178
5.5.13.2.2. Connections . 179
5.5.13.2.3. Assemblies . 181
5.5.13.2.4. EtherNet/IP I/O Mapping . 182

5.5.13.3. EtherNet/IP Adapter Configuration . 182
5.5.13.3.1. General . 182
5.5.13.3.2. EtherNet/IP Adapter: I/O Mapping . 183

5.5.13.4. EtherNet/IP Module Configuration . 183
5.5.13.4.1. Assemblies . 184
5.5.13.4.2. EtherNet/IP Module: I/O Mapping . 184

5.5.14. IEC 60870-5-104 Server . 184
5.5.14.1. Type of data . 184
5.5.14.2. Double Points . 186

5.5.14.2.1. Digital Input Double Points . 186
5.5.14.2.2. Digital Output Double Points . 188

5.5.14.3. General Parameters . 193
5.5.14.4. Data Mapping . 193
5.5.14.5. Link Layer . 195
5.5.14.6. Application Layer . 197
5.5.14.7. Server Diagnostic . 199
5.5.14.8. Commands Qualifier . 200

5.5.15. PROFINET Controller . 201
5.6. Communication Performance . 201

5.6.1. MODBUS Server . 201
5.6.1.1. CPU’s Local Interfaces . 201
5.6.1.2. Remote Interfaces . 202

5.6.2. OPC DA Server . 203
5.6.3. OPC UA Server . 203
5.6.4. IEC60870-5-104 Server . 203

5.7. System Performance . 203
5.7.1. I/O Scan . 204
5.7.2. Memory Card . 204

5.8. RTC Clock . 204
5.8.1. Function Blocks for RTC Reading and Writing . 205

5.8.1.1. Function Blocks for RTC Reading . 205
5.8.1.1.1. GetDateAndTime . 205

VII

CONTENTS

5.8.1.1.2. GetTimeZone . 206
5.8.1.1.3. GetDayOfWeek . 207

5.8.1.2. Funções de Escrita do RTC . 208
5.8.1.2.1. SetDateAndTime . 208
5.8.1.2.2. SetTimeZone . 209

5.8.2. RTC Data Structures . 210
5.8.2.1. EXTENDED_DATE_AND_TIME . 210
5.8.2.2. DAYS_OF_WEEK . 211
5.8.2.3. RTC_STATUS . 211
5.8.2.4. TIMEZONESETTINGS . 211

5.9. User Files Memory . 212
5.10. Memory Card . 214

5.10.1. Project Preparation . 214
5.10.2. Project Transfer . 215
5.10.3. MasterTool Access . 216

5.11. CPU’s Informative and Configuration Menu . 216
5.12. Function Blocks and Functions . 219

5.12.1. Special Function Blocks for Serial Communication . 219
5.12.1.1. SERIAL_CFG . 223
5.12.1.2. SERIAL_GET_CFG . 225
5.12.1.3. SERIAL_GET_CTRL . 227
5.12.1.4. SERIAL_GET_RX_QUEUE_STATUS . 228
5.12.1.5. SERIAL_PURGE_RX_QUEUE . 230
5.12.1.6. SERIAL_RX . 231
5.12.1.7. SERIAL_RX_EXTENDED . 233
5.12.1.8. SERIAL_SET_CTRL . 235
5.12.1.9. SERIAL_TX . 237

5.12.2. Inputs and Outputs Update . 239
5.12.2.1. REFRESH_INPUT . 239
5.12.2.2. REFRESH_OUTPUT . 241

5.12.3. PID Function Block . 242
5.12.4. Retain Timer . 242

5.12.4.1. TOF_RET . 242
5.12.4.2. TON_RET . 244
5.12.4.3. TP_RET . 245

5.12.5. User Log . 246
5.12.5.1. UserLogAdd . 247
5.12.5.2. UserLogDeleteAll . 249

5.12.6. ClearRtuDiagnostic . 250
5.12.7. ClearEventQueue . 250

5.13. SNMP . 251
5.13.1. Introduction . 251
5.13.2. SNMP nas UCPs Nexto . 251
5.13.3. Private MIB . 252
5.13.4. Configuration SNMP . 252
5.13.5. User and SNMP Communities . 254

6. Maintenance . 255
6.1. Module Diagnostics . 255

VIII

CONTENTS

6.1.1. One Touch Diag . 255
6.1.2. Diagnostics via LED . 257

6.1.2.1. DG (Diagnostic) . 257
6.1.2.2. WD (Watchdog) . 258
6.1.2.3. RJ45 Connector LEDs . 258

6.1.3. Diagnostics via System Web Page . 258
6.1.4. Diagnostics via Variables . 260

6.1.4.1. Summarized Diagnostics . 261
6.1.4.2. Detailed Diagnostics . 263

6.1.5. Diagnostics via Function Blocks . 270
6.1.5.1. GetTaskInfo . 270

6.2. Graphic Display . 271
6.3. System Log . 273
6.4. Not Loading the Application at Startup . 273
6.5. Power Supply Failure . 273
6.6. Common Problems . 274
6.7. Troubleshooting . 274
6.8. Preventive Maintenance . 275

7. Annex. DNP3 Interoperability . 276
7.1. DNP3 Device Profile . 276
7.2. DNP V3.0 Implementation Table . 277

IX

1. INTRODUCTION

1. Introduction
Nexto Series programmable controllers are the ultimate solution for industrial automation and system control. With high

technology embedded, the products of the family are able to control, in a distributed and redundant way, complex industrial
systems, machines, high performance production lines and the most advanced processes of Industry 4.0. Modern and high-
speed, the Nexto series uses cutting-edge technology to provide reliability and connectivity, helping to increase the productivity
of different businesses.

Compact, robust and with high availability, the series products have excellent processing performance and rack expan-
sion possibilities. Its architecture allows easy integration with supervision, control and field networks, in addition to PLC
redundancy. The series equipment also offers advanced diagnostics and hot swapping, minimizing or eliminating maintenance
downtime and ensuring a continuous production process.

Figure 1: NX3020

1.1. Nexto Series
Nexto Series is a powerful and complete series of Programmable Controllers (PLC) with exclusive and innovative charac-

teristics. Due to its flexibility, functional design, advanced diagnostic resources and modular architecture, the Nexto PLC can
be used to control systems in small, medium and large scale applications.

Nexto Series architecture has a great variety of input and output modules. These modules combined with a powerful proces-
sor and a high speed bus based on Ethernet, fit to several application kinds as high speed control for small machines, complex
distributed processes, redundant applications and systems with a great number of I/O as building automation. Furthermore,
Nexto Series has modules for motion control, communication modules encompassing the most popular field networks among
other features.

Nexto Series uses an advanced technology in its bus, which is based on a high speed Ethernet interface, allowing input and
output information and data to be shared between several controllers inside the same system. The system can be easily divided
and distributed throughout the whole field, allowing the use of bus expansion with the same performance of a local module,
turning possible the use of every module in the local frame or in the expansion frames with no restrictions. For interconnection
between frames expansions a simple standard Ethernet cable is used.

1

1. INTRODUCTION

Figure 2: Nexto Series – Overview

1.2. Innovative Features
Nexto Series brings to the user many innovations regarding utilization, supervision and system maintenance. These features

were developed focusing a new concept in industrial automation.

Battery Free Operation: Nexto Series does not require any kind of battery for memory maintenance
and real time clock operation. This feature is extremely important because it reduces the system
maintenance needs and allows the use in remote locations where maintenance can be difficult to be
performed. Besides, this feature is environmentally friendly.

Easy Plug System: Nexto Series has an exclusive method to plug and unplug I/O terminal blocks.
The terminal blocks can be easily removed with a single movement and with no special tools. In order
to plug the terminal block back to the module, the frontal cover assists the installation procedure,
fitting the terminal block to the module.

Multiple Block Storage: Several kinds of memories are available to the user in Nexto Series CPUs,
offering the best option for any user needs. These memories are divided in volatile memories and
non-volatile memories. For volatile memories, Nexto Series CPUs offer addressable input (%I),
addressable output (%Q), addressable memory (%M), data memory and redundant data memory.
For applications that require non-volatile functionality, Nexto Series CPUs bring retain addressable
memory (%Q), retain data memory, persistent addressable memory (%Q), persistent data memory,
program memory, source code memory, CPU file system (doc, PDF, data) and memory card interface.

One Touch Diag: One Touch Diag is an exclusive feature that Nexto Series brings to PLCs. With this
new concept, the user can check diagnostic information of any module present in the system directly
on CPU’s graphic display with one single press in the diagnostic switch of the respective module.
OTD is a powerful diagnostic tool that can be used offline (without supervisor or programmer), re-
ducing maintenance and commissioning times.

OFD – On Board Full Documentation: Nexto Series CPUs are capable of storing the complete
project documentation in its own memory. This feature can be very convenient for backup purposes
and maintenance, since the complete information is stored in a single and reliable place.

ETD – Electronic Tag on Display: Another exclusive feature that Nexto Series brings to PLCs is
the Electronic Tag on Display. This new functionality brings the process of checking the tag names
of any I/O pin or module used in the system directly to the CPU’s graphic display. Along with this
information, the user can check the description, as well. This feature is extremely useful during
maintenance and troubleshooting procedures.

2

1. INTRODUCTION

DHW – Double Hardware Width: Nexto Series modules were designed to save space in user cabi-
nets or machines. For this reason, Nexto Series delivers two different module widths: Double Width
(two backplane rack slots are required) and Single Width (only one backplane rack slot is required).
This concept allows the use of compact I/O modules with a high-density of I/O points along with
complex modules, like CPUs, fieldbus masters and power supply modules.

High-speed CPU: All Nexto Series CPUs were designed to provide an outstanding performance to
the user, allowing the coverage of a large range of applications requirements.

iF Product Design Award 2012: Nexto Series was the winner of iF Product Design Award 2012
in industry + skilled trades group. This award is recognized internationally as a seal of quality and
excellence, considered the Oscars of the design in Europe..

1.3. Documents Related to this Manual
In order to obtain additional information regarding the Nexto Series, other documents (manuals and technical features)

besides this one, may be accessed. These documents are available in its last version on the site https://www.altus.com.br/en/.
Each product has a document designed by Technical Features (CE), where the product features are described. Furthermore,

the product may have Utilization Manuals (the manuals codes are listed in the CE).
For instance, the NX2020 module has the information for utilization features and purchasing on its CE. On another hand,

the NX5001 has, besides the CE, a User Manual (MU).
It is advised the following documents as additional information source:

Code Description Language
CE114000 Nexto Series – Technical Characteristics English
CT114000 Série Nexto – Características Técnicas Portuguese
CE114101 NX3020 Technical Characteristics English
CT114101 Características Técnicas NX3020 Portuguese
CE114200 NX8000 Power Supply Module Technical Characteristics English
CT114200 Características Técnicas Fonte de Alimentação NX8000 Portuguese
CE114700 Nexto Series Backplane Racks Technical Characteristic English
CT114700 Características Técnicas dos Bastidores da Série Nexto Portuguese

CE114810 Nexto Series Accessories for Backplane Rack Technical Char-
acteristics English

CT114810 Características Técnicas Acessórios para Bastidor Série Nexto Portuguese
CE114902 Nexto Series PROFIBUS-DP Master Technical Characteristics English

CT114902 Características Técnicas do Mestre PROFIBUS-DP da Série
Nexto Portuguese

CE114903 Nexto Series Ethernet Module Technical Characteristics English
CT114903 Características Técnicas Módulo Ethernet Série Nexto Portuguese

CE114908 NX5110 and NX5210 PROFIBUS-DP Heads Technical Charac-
teristics English

CT114908 Características Técnicas Interfaces Cabeça PROFIBUSDP
NX5110 e NX5210 Portuguese

MU214600 Nexto Series User Manual English
MU214000 Manual de Utilização Série Nexto Portuguese
MU214614 NX3020 CPU User Manual English
MU214102 Manual de Utilização UCP NX3020 Portuguese
MU299609 MasterTool IEC XE User Manual English
MU299048 Manual de Utilização MasterTool IEC XE Portuguese
MP399609 MasterTool IEC XE Programming Manual English
MP399048 Manual de Programação MasterTool IEC XE Portuguese
MU214601 NX5001 PROFIBUS DP Master User Manual English
MU214001 Manual de Utilização Mestre PROFIBUS-DP NX5001 Portuguese

3

https://www.altus.com.br/en/

1. INTRODUCTION

Code Description Language
MU214608 Nexto PROFIBUS-DP Head Utilization Manual English
MU214108 Manual de Utilização da Cabeça PROFIBUS-DP Nexto Portuguese
MU223603 IEC 60870-5-104 Server Device Profile Document English
MU214603 Nexto Series HART Manual English
MU214606 MQTT User Manual English
MU214609 OPC UA Server for Altus Controllers User Manual English
MU214610 PID - Advanced Control Functions User Manual English
MU214621 Nexto Series PROFINET Manual English
NAP151 Utilização do Tunneller OPC Portuguese

Table 1: Related Documents

4

1. INTRODUCTION

1.4. Visual Inspection
Before resuming the installation process, it is advised to carefully visually inspect the equipment, verifying the existence

of transport damage. Verify if all parts requested are in perfect shape. In case of damages, inform the transport company or
Altus distributor closest to you.

CAUTION

Before taking the modules off the case, it is important to discharge any possible static energy
accumulated in the body. For that, touch (with bare hands) on any metallic grounded surface
before handling the modules. Such procedure guaranties that the module static energy limits
are not exceeded.

It’s important to register each received equipment serial number, as well as software revisions, in case they exist. This
information is necessary, in case the Altus Technical Support is contacted.

1.5. Technical Support
For Altus Technical Support contact in São Leopoldo, RS, call +55 51 3589-9500. For further information regarding the

Altus Technical Support existent on other places, see https://www.altus.com.br/en/ or send an email to altus@altus.com.br.
If the equipment is already installed, you must have the following information at the moment of support requesting:

The model from the used equipments and the installed system configuration
The product serial number
The equipment revision and the executive software version, written on the tag fixed on the product’s side
CPU operation mode information, acquired through MasterTool IEC XE
The application software content, acquired through MasterTool IEC XE
Used programmer version

1.6. Warning Messages Used in this Manual
In this manual, the warning messages will be presented in the following formats and meanings:

DANGER

Reports potential hazard that, if not detected, may be harmful to people, materials, environ-
ment and production.

CAUTION

Reports configuration, application or installation details that must be taken into consideration
to avoid any instance that may cause system failure and consequent impact.

ATTENTION

Identifies configuration, application and installation details aimed at achieving maximum
operational performance of the system.

5

https://www.altus.com.br/en/
altus@altus.com.br

2. TECHNICAL DESCRIPTION

2. Technical Description
This chapter presents all technical features from Nexto Series CPU NX3020.

2.1. Panels and Connections
The following figure shows the CPU front panel.

Figure 3: NX3020

As it can be seen on the figure, on the front panel upper part is placed the graphic display used to show the whole system
status and diagnostics, including the specific diagnostics of each module. The graphic display also offers an easy-to-use menu
which brings to the user a quick mode for parameters reading or defining, such as: inner temperature (reading only) and local
time (reading only).

Just below the graphic display, there are 2 LEDs used to indicate alarm diagnostics and watchdog circuit. The table below
shows the LEDs description. For further information regarding the LEDs status and meaning, see Diagnostics via LED section.

LED Description
DG Diagnostics LED
WD Watchdog LED

Table 2: LEDs Description

Nexto Series CPUs has two switches available to the user. The table below shows the description of these switches. For
further information regarding the diagnostics switch, see sections One Touch Diag and CPU’s Informative and Configuration
Menu. For further information regarding the MS switch, see section Memory Card.

6

2. TECHNICAL DESCRIPTION

Keys Description

Diagnostics Switch
Switch placed on the module upper part. Used for diagnostics vi-
sualization on the graphic display or for navigation through the in-
formative menu and CPU configuration.

MS Switch placed on the frontal panel. Used to securely remove the
memory card.

Table 3: Keys Description

On the frontal panel the connection interfaces of Nexto Series CPUs are available. The table below presents a brief
description of these interfaces.

Interfaces Description

NET 1

RJ45 communication connector 10/100Base-TX stan-
dard. Allows the point to point or network communi-
cation. For further utilization information, see Ethernet
Interfaces Configuration section.

NET 2

RJ45 communication connector 10/100Base-TX stan-
dard. Allows the point to point or network. For further
utilization information, see Ethernet Interfaces Configu-
ration section.

COM 1

DB9 female connector for RS-232 communication stan-
dard. Allows the point to point or network. For further
utilization information, see Serial Interfaces Configura-
tion section.

COM 2 For further utilization information, see Serial Interfaces
Configuration section.

MEMORY
SLOT

Memory card slot. Allows the use of a memory card for
different types of data storage such as: user logs, project
documentation and files. For further utilization informa-
tion, see Memory Card section.

Table 4: Connection Interfaces

2.2. General Features
2.2.1. Common General Features

NX3020
Backplane rack occupation 2 sequential slots
Power supply integrated Yes
Ethernet TCP/IP local interface 2
Serial Interface 2
CAN Interface No
USB Port Host No
Memory Card Interface Yes

Real time clock (RTC) Yes
Resolution of 1 ms and maximum variance of 2 s per day.

Watchdog Yes

7

2. TECHNICAL DESCRIPTION

NX3020

Status and diagnostic Indication

Graphic display
LEDs
System Web Page
CPU internal memory

Programming languages

Structured Text (ST)
Ladder Diagram (LD)
Sequential Function Chart (SFC)
Function Block Diagram (FBD)
Continuous Function Chart (CFC)

Tasks

Cyclic (periodic)
Triggered by event (software interruption)
Triggered by external event (hardware interruption)
Freewheeling (continuous)
Triggered by status (software interruption)

Online changes Yes
Maximum number of tasks 24
Maximum number of expansion bus 24
Bus expansion redundancy support Yes
Maximum number of I/O modules on the bus 128
Maximum number of additional Ethernet
TCP/IP interface modules 2

Ethernet TCP/IP interface redundancy sup-
port Yes

Maximum number of PROFIBUS-DP network
(using master modules PROFIBUS-DP) 4

PROFIBUS-DP network redundancy support Yes
Redundancy support (half-clusters) No
Hot Swap support Yes
Event oriented data reporting (SOE) Yes

Protocol DNP3
Maximum Event Queue Size 1000

Web pages development (available through the
HTTP protocol) No

One Touch Diag (OTD) Yes
Electronic Tag on Display (ETD) Yes

Table 5: Common Features

Notes:
Real Time Clock (RTC): The retention time, time that the real time clock will continue to update the date and time after

a CPU power down, is 15 days for operation at 25 ◦C. At the maximum product temperature, the retention time is reduced to
10 days.

Maximum number of I/O modules on bus: The maximum number of I/O modules refers to the sum of all modules on
the local bus and expansions.

Event Log (SOE): Data types are found in the DNP3 Device Profile.

8

2. TECHNICAL DESCRIPTION

2.2.2. Standards and Certifications

Standards and Certifications

61131-2: Industrial-process measurement and control -
Programmable controllers - Part 2: Equipment requirements

and testsIEC

61131-3: Programmable controllers - Part 3: Programming
languages

DNV Type Approval – DNV-CG-0339 (TAA000013D)

2014/30/EU (EMC)
2014/35/EU (LVD)

2011/65/EU and 2015/863/EU (ROHS)

S.I. 2016 No. 1091 (EMC)
S.I. 2016 No. 1101 (Safety)
S.I. 2012 No. 3032 (ROHS)

UL/cUL Listed – UL 61010-1
UL 61010-2-201 (file E473496)

TR 004/2011 (LVD)
CU TR 020/2011 (EMC)

Table 6: Standards and Certifications

9

2. TECHNICAL DESCRIPTION

2.2.3. Memory

NX3020
Addressable input variables memory (%I) 64 Kbytes
Addressable output variables memory (%Q) 64 Kbytes
Direct representation variable memory (%M) 32 Kbytes
Symbolic variable memory 5 Mbytes
Persistent or Retain symbolic variables mem-
ory 112 Kbytes

Full Redundant Data Memory -
Direct representation input variable mem-

ory (%I) -

Direct representation output variable mem-
ory (%Q) -

Direct representation variable memory
(%M) -

Symbolic variable memory -
Program memory 6 Mbytes
Source code memory (backup) 80 Mbytes
User files memory 32 Mbytes

Table 7: Memory

Notes:
Addressable input variables memory (%I): Area where the addressable input variables are stored. Addressable variables

means that the variables can be accessed directly using the desired address. For instance: %IB0, %IW100. Addressable input
variables can be used for mapping digital or analog input points. As reference, 8 digital inputs can be represented per byte and
one analog input point can be represented per two bytes.

Total addressable output variables memory (%Q): Area where the addressable output variables are stored. Address-
able variables means that the variables can be accessed directly using the desired address. For instance: %QB0, %QW100.
Addressable output variables can be used for mapping digital or analog output points. As reference, 8 digital outputs can be
represented per byte and one analog output point can be represented per two bytes. The addressable output variables can be
configured as retain, persistent or redundant variables, but the total size is not modified due to configuration.

Addressable variables memory (%M): Area where the addressable marker variables are stored. Addressable variables
means that the variables can be accessed directly using the desired address. For instance: %MB0, %MW100.

Symbolic variables memory: Area where the symbolic variables are allocated. Symbolic variables are IEC variables
created in POUs and GVLs during application development, which are not addressed directly in memory. Symbolic variables
can be defined as retentive or persistent, in which case the memory areas of retentive symbolic variables or memory of persistent
symbolic variables respectively will be used. The PLC system allocates variables in this area, so the space available for the
allocation of variables created by the user is lower than that reported in the table. The occupation of the system variables
depends on the characteristics of the project (number of modules, drivers, etc...), so it is recommended to observe the space
available in the compilation messages of the MasterTool IEC XE tool.

Persistent or Retain symbolic variables memory: Area where are allocated the retentive symbolic variables. The re-
tentive data keep its respective values even after a CPU’s cycle of power down and power up. The persistent data keep its
respective values even after the download of a new application in the CPU.

ATTENTION

The declaration and use of symbolic persistent variables should be performed exclusively
through the Persistent Vars object, which may be included in the project through the tree
view in Application -> Add Object -> Persistent Variables. It should not be used to VAR
PERSISTENT expression in the declaration of field variables of POUs.

The full list of when the symbolic persistent variables keep their values and when the value is lost can be found in the table
below. Besides the persistent area size declared in the table above, are reserved these 44 bytes to store information about the
persistent variables (not available for use).

10

2. TECHNICAL DESCRIPTION

The table below shows the behavior of retentive and persistent variables for different situations in which “-“ means the
value is lost and “X” means the value is kept.

Command/Operation VAR VAR RETAIN VAR PERSISTENT
Power cycle - X X
Reset warm - X X
Reset cold - - X

Reset origin - - -
Remove CPU with integrated power supply
from the rack while powered on - X X

Remove the power supply or a CPU without
integrated power supply from the rack while
powered on

- - -

Download - - X
Online change X X X

Clean All - - X
Reset Process (IEC 60870-5-104) - X X

Table 8: Variables Behavior after the Event

In lower or equal versions 1.5.1.0 for NX3010, NX3020 and NX3030, the retentive and persistent symbolic memories and
addressable output variables memory (%Q) used to have a fixed maximum size. On table below it’s possible to consult the
maximum sizes allowed in these older versions.

In versions above the ones mentioned, the CPUs allow flexible retentive and persistent memory sizes. For further informa-
tion, refer to the section Retain and Persistent Memory Areas.

NX3020
Retentive addressable output variables mem-
ory (%Q) 16 Kbytes

Persistent addressable output variables mem-
ory (%Q) 16 Kbytes

Retentive symbolic variables memory 48 Kbytes
Persistent symbolic variables memory 32 Kbytes

Table 9: Retentive and Persistent memories in older versions

In the case of Clean All command, if the application has been modified so that persistent variables have been removed,
inserted into the top of the list or otherwise have had its modified type, the value of these variables is lost (when prompted by
the tool MasterTool to download). Thus it is recommended that changes to the persistent variables GVL only include adding
new variables on the list.

Total redundant data memory: Redundant data memory is the maximum memory area that can be used as redundant
memory between two redundant CPUs. This value is not a different memory, note that the sum of all redundant variables
(addressable input variable, addressable output variable, addressable variable, symbolic variable, retain symbolic variable,
persistent symbolic variable) must be less than or equal to the available redundant data memory.

Program memory: Program memory is the maximum size that can be used to store the user application. This area is
shared with source code memory, being the total area the sum of “program memory” and “source code memory”.

Source code memory (backup): This memory area is used as project backup. If the user wants to import the project,
MasterTool IEC XE will get the information required in this area. Care must be taken to ensure that the project saved as a
backup is up to date to avoid the loss of critical information. This area is shared with source code memory, being the total area
the sum of “program memory” and “source code memory”.

User files memory: This memory area offers another way for the user to store files such as doc, pdf, images, and other
files. This function allows data recording as in a memory card. For further information check User Files Memory.

11

2. TECHNICAL DESCRIPTION

2.2.4. Protocols

NX3020 Interface
Open Protocol Yes COM1 / COM2
MODBUS RTU Master Yes COM1 / COM2
MODBUS RTU Slave Yes COM1 / COM2
MODBUS TCP Client Yes NET1 / NET2
MODBUS TCP Server Yes NET1 / NET2
MODBUS RTU over TCP
Client Yes NET1 / NET2

MODBUS RTU over TCP
Server Yes NET1 / NET2

CANopen Master No -
CANopen Slave No -
CAN low level No -
SAE J-1939 No -
OPC DA Server Yes NET1 / NET2
OPC UA Server Yes NET1 / NET2
EtherCAT Master Yes NET1 / NET2
SNMP Agent Yes NET1 / NET2
SOE (Event-oriented data) Yes NET1 / NET2
IEC 60870-5-104 Server Yes NET1 / NET2
EtherNet/IP Scanner Yes NET1 / NET2
EtherNet/IP Adapter Yes NET1 / NET2
MQTT Client Yes NET1 / NET2
SNTP Client (for clock syn-
chronism) Yes NET1 / NET2

PROFINET Controller Yes NET1 / NET2
PROFINET Device No -

Table 10: Protocols

Note:
PROFINET Controller: Enabled for use on a simple (not ring) network with up to 8 devices. For larger applications,

consult technical support.

12

2. TECHNICAL DESCRIPTION

2.2.5. Serial Interfaces

2.2.5.1. COM 1

COM 1
Connector Shielded female DB9
Physical interface RS-232C
Modem signals RTS, CTS, DCD

Baud rate 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400,
57600, 115200 bps

Isolation
Logic to Serial Port Not isolated
Serial Port to protection

earth 1000 Vac / 1 minute

Table 11: COM 1 Serial Interface Features

2.2.5.2. COM 2

COM 2
Connector Shielded female DB9
Physical interface RS-422 or RS-485 (depending on the selected cable)
Communication direction RS-422: full duplex

RS-485: half duplex
RS-422 max. transceivers 11 (1 transmitter and 10 receivers)
RS-485 max. transceivers 32
Termination Yes (optional via cable selection)

Baud rate 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400,
57600, 115200 bps

Isolation
Logic to Serial Port 1000 Vac / 1 minute
Serial Port to protection

earth 1000 Vac / 1 minute

Table 12: COM 2 Serial Interface Features

Notes:
Physical interface: Depending on the configuration of the used cable, it’s possible to choose the kind of physical interface:

RS-422 or RS-485. The list of cables can be found at Related Products section.
RS-422 maximum transceivers: It’s the maximum number of RS-422 interfaces that can be used on the same bus.
RS-485 maximum transceivers: It’s the maximum number of RS-485 interfaces that can be used on the same bus.

13

2. TECHNICAL DESCRIPTION

2.2.6. Ethernet Interfaces

2.2.6.1. NET 1

NET 1
Connector Shielded female RJ45
Auto crossover Yes
Maximum cable length 100 m
Cable type UTP or ScTP, category 5
Baud rate 10/100 Mbps
Physical layer 10/100 BASE-TX (Full Duplex)
Data link layer LLC (Logical Link Control)
Network layer IP (Internet Protocol))
Transport layer TCP (Transmission Control Protocol)

UDP (User Datagram Protocol)
Diagnostic LEDs - green (speed), yellow (link/activity)
Isolation

Ethernet interface to Se-
rial Port 1500 Vac / 1 minute

Table 13: Ethernet NET 1 Interface Features

The NET 1 Interface is the interface used for programming using the MasterTool IEC XE tool.

2.2.6.2. NET 2

NET 2
Connector Shielded female RJ45
Auto crossover Yes
Maximum cable length 100 m
Cable type UTP or ScTP, category 5
Baud rate 10/100 Mbps
Physical layer 10/100 BASE-TX (Full Duplex)
Data link layer LLC (Logical Link Control)
Network layer IP (Internet Protocol)
Transport layer TCP (Transmission Control Protocol)

UDP (User Datagram Protocol)
Diagnostic LEDs - green (speed), yellow (link/activity)
Isolation

Ethernet interface to Se-
rial Port 1500 Vac / 1 minute

Ethernet interface to Eth-
ernet interface 1500 Vac / 1 minute

Table 14: Ethernet NET 2 Interface Features

14

2. TECHNICAL DESCRIPTION

2.2.7. Memory Card Interface

The memory card can be used for different data to be stored such as user logs, project documentation and source files.

Memory Card
Maximum Capacity 32 Gbytes
Minimum Capacity 2 Gbytes
Type MiniSD
File System FAT32
Remove card safely Yes, by pressing MS switch

Table 15: Memory Card Interface Features

Notes:
Maximum Capacity: The memory card capacity must be less than or equal to this limit for correct operation on Nexto

CPU, otherwise the Nexto CPU may not detect the memory card or even present problems during data transfer.
Minimum Capacity: The memory card capacity must be greater than or equal to this limit for correct operation on Nexto

CPU, otherwise the Nexto CPU may not detect the memory card or even present problems during data transfer.
File System: It is recommended to format the memory card using the Nexto CPU, otherwise it may result in performance

loss in the memory card interface.

2.2.8. Environmental Characteristics

NX3020
Current consumption on the power supply rail 1000 mA
Dissipation 5 W
Operating temperature 0 to 60 ◦C
Storage temperature -25 to 75 ◦C
Relative humidity 5% to 96%, non-condensing
Conformal coating Yes
IP Level IP 20
Module dimensions (W x H x D) 36.00 x 114.63 x 115.30 mm
Package dimensions (W x H x D) 44.00 x 122.00 x 147.00 mm
Weight 350 g
Weight with package 400 g

Table 16: Environmental Characteristics

Notes:
Conformal coating of electronic circuits: The covering of electronic circuits protects internal parts of the product against

moisture, dust and other harsh elements to electronic circuits.

15

2. TECHNICAL DESCRIPTION

2.3. Compatibility with Other Products
To develop an application for Nexto Series CPUs, it is necessary to check the version of MasterTool IEC XE. The following

table shows the minimum version required (where the controllers were introduced) and the respective firmware version at that
time:

Nexto Series CPUs MasterTool IEC XE Firmware version
NX3010, NX3020, NX3030 1.00 to 2.09 1.2.0.9 to 1.7.0.14
NX3010, NX3020, NX3030 3.00 or above 1.8.3.0 or above

Table 17: Compatibility with other products

Additionally, along the development roadmap of MasterTool IEC XE some features may be included (like special Function
Blocks, etc...), which can introduce a requirement of minimum firmware version. During the download of the application,
MasterTool IEC XE checks the firmware version installed on the controller and, if it does not meets the minimum requirement,
will show a message requesting to update. The latest firmware version can be downloaded from Altus website, and it is fully
compatible with previous applications.

2.4. Performance
The Nexto Series CPUs performance relies on:

User Application Time
Application Interval
Operational System Time
Module quantity (process data, input/output, among others)

2.4.1. MainTask Interval Time

The MainTask interval time setting depends on the selected project profile. For the profiles Simple, Normal, Experienced,
and Custom profiles, the interval can be set with values from 1 ms to 750 ms. For the Machine Machine Profile, the interval
can be configured with values from 1 ms to 100 ms.

2.4.2. Application Times

The execution time of Nexto CPUs application depends on the following variables:

Input read time (local and remote)
Tasks execution time
Output write time (local and remote)

It is important to stress that the execution time of the “MainTask” will be directly influenced by the “Configuration” system
task, a task of high priority, executed periodically by the system. The “Configuration” task may interrupt the “MainTask” and,
when using the communication modules, as the Ethernet NX5000 module, for instance, the time addition to the “MainTask”
may be up to 25% of the execution average time.

16

2. TECHNICAL DESCRIPTION

2.4.3. Time for Instructions Execution

The table below presents the necessary execution time for different instructions.

Instruction Language Variables Instruction Times (µs)
1000 Contacts LD BOOL 6

ST INT 43
REAL 81

LD INT 43
1000 Divisions

REAL 81

ST INT 15
REAL 23

LD INT 15
1000 Multiplications

REAL 23

ST INT 15
REAL 23

LD INT 15
1000 Sums

REAL 23
1000 PID ST REAL < 5000

Table 18: Instruction Times

2.4.4. Initialization Times

Nexto Series CPUs have initialization times of 50 s, and the initial screen with the NEXTO logo (Splash) is presented after
20 s from the power switched on.

17

2. TECHNICAL DESCRIPTION

2.5. Physical Dimensions
Dimensions in mm.

Figure 4: CPU Physical Dimensions

18

2. TECHNICAL DESCRIPTION

2.6. Purchase Data
2.6.1. Integrant Itens

The product package contains the following items:

NX3020 module

2.6.2. Product code

The following code should be used to purchase the product:

Code Description

NX3020 High-speed CPU, 2 Ethernet ports, 2 serial channels, memory card in-
terface and remote rack expansion support

Table 19: Código do Produto

2.7. Related Products
The following products must be purchased separately when necessary:

Code Description
MT8500 MasterTool IEC XE
AL-2600 RS-485 network branch and terminator
AL-2306 RS-485 cable for MODBUS or CAN network
AL-1729 RJ45-CMDB9 Cable
AL-1748 CMDB9-CFDB9 Cable
AL-1752 CMDB9-CMDB9 Cable
AL-1753 CMDB9-CMDB25 Cable
AL-1754 CMDB9-CFDB9 Cable
AL-1761 CMDB9-CMDB9 Cable
AL-1762 CMDB9-CMDB9 Cable
AL-1763 CMDB9-Terminal Block Cable
AL-1766 CFDB9-Terminal Block Cable
NX9101 32 GB microSD memory card with miniSD and SD adapters
NX9202 RJ45-RJ45 2 m Cable
NX9205 RJ45-RJ45 5 m Cable
NX9210 RJ45-RJ45 10 m Cable
NX9000 8-Slot Backplane Rack
NX9001 12-Slot Backplane Rack
NX9002 16-Slot Backplane Rack
NX9003 24-Slot Backplane Rack
NX8000 30 W 24 Vdc Power Supply Module

Table 20: Related Products

19

2. TECHNICAL DESCRIPTION

Notes:
MT8500: MasterTool IEC XE is available in four different versions: LITE, BASIC, PROFESSIONAL and ADVANCED.

For more details, please check MasterTool IEC XE User Manual - MU299609.
AL-2600: This module is used for branch and termination of RS-422/485 networks. For each network node, an AL-2600

is required. The AL-2600 that is at the ends of network must be configured with termination, except when there is a device
with active internal termination, the rest must be configured without termination.

AL-2306: Two shielded twisted pairs cable without connectors, used for networks based on RS-485 or CAN.
AL-1729: RS-232C standard cable with one RJ45 connector and one DB9 male connector for communication between

CPUs of the Nexto Series and other Altus products of the DUO Series, Piccolo Series and Ponto Series.
AL-1748: RS-232C standard cable with one DB9 male connector and one DB9 female connector for communication

between CPUs of the Nexto Series and Altus products of the Cimrex Series.
AL-1752: RS-232C standard cable with two DB9 male connectors for communication between CPUs of the Nexto Series

and Altus products of the H Series and iX series.
AL-1753: RS-232C standard cable with one DB9 male connector and one DB25 male connector for communication

between CPUs of the Nexto Series and Altus products of the H Series.
AL-1754: RS-232C standard cable with one DB9 male connector and one DB9 female connector for communication

between CPUs of the Nexto Series and Altus products of the Exter Series or Serial port, RS-232C standard, of a microcomputer.
AL-1761: RS-232C standard cable with two DB9 male connectors for communication between Nexto Series CPUs and

Altus products of the AL Series.
AL-1762: RS-232C standard cable with two DB9 male connectors for communication between Nexto Series CPUs.
AL-1763: Cable with one DB9 male connector and terminal block for communication between CPUs of the Nexto Series

and products with RS-485/RS-422 standard terminal block.
AL-1766: Cable with a female DB9 connector and terminals for communication between HMI P2 and Nexto Xpress/NX3003

controllers.
NX9202/NX9205/NX9210: Cables used for Ethernet communication and to interconnect the bus expansion modules.

20

3. INSTALLATION

3. Installation
This chapter presents the necessary proceedings for the Nexto Series CPUs physical installation, as well as the care that

should be taken with other installation within the panel where the CPU is been installed.

CAUTION

If the equipment is used in a manner not specified by in this manual, the protection provided
by the equipment may be impaired.

3.1. Mechanical Installation
Nexto Series CPUs must be inserted in the backplane rack position 2, just beside the Power Supply Module. All information

regarding mechanical installation and module insertion can be found at MU214600 - Nexto Series User Manual .

3.2. Electrical Installation
DANGER

When executing any installation in an electric panel, certify that the main energy supply is
OFF.

The CPUs energy supply come from the Power Supply Module which supplies the CPUs power through the backplane
rack connection. It does not need any external connection. The module grounding is given through the contact between the
module grounding spring and the backplane rack.

The figure below shows the Nexto Series CPUs electric diagram installed in a Nexto Series backplane rack.
The connectors placement depicted are merely illustrative.

Figure 5: NX3010, NX3020 and NX3030 CPUs Electric Diagram

21

3. INSTALLATION

Diagram Notes:

Memory card interface.

Ethernet interface 10/100Base-TX standard for programming, debugging and MODBUS TCP network connec-
tion or other protocols.

Ethernet interface 10/100Base-TX standard for MODBUS TCP network connection or other protocols (only for
NX3020 and NX3030).

Serial interface RS-232C standard for MODBUS RTU network connection or other protocols.

Serial interface RS-485/RS-422 standard for MODBUS RTU network connection or other protocols. The physi-
cal interface choice depends on the cable used.

The module is grounded through Nexto Series backplane rack.

The power supply comes from the backplane rack connection. There is no need for external connections.

Protection earth terminal.

3.3. Ethernet Network Connection
The NET 1 and NET 2 isolated communication interface allows the connection with an Ethernet network, however, the

NET 1 interface is the most suitable to be used for communication with MasterTool IEC XE.
The Ethernet network connection uses twisted pair cables (10/100Base-TX) and the speed detection is automatically made

by the Nexto CPU. This cable must have one of its endings connected to the interface that is likely to be used and another one
to the HUB, switch, microcomputer or other Ethernet network point.

3.3.1. IP Address

The NET 1 Ethernet interface is used for Ethernet communication and for CPU configuration which comes with the
following default parameters configuration:

NET 1
IP Address 192.168.15.1
Subnetwork Mask 255.255.255.0
Gateway Address 192.168.15.253

Table 21: Default Parameters Configuration for Ethernet NET 1 Interface

The IP Address and Subnet Mask parameters can be seen on the CPU graphic display via parameters menu, as described
in CPU’s Informative and Configuration Menu section.

Initially, the NET 1 interface must be connected to a PC network with the same subnet mask to communicate with Master-
Tool IEC XE, where the network parameters can be modified. For further information regarding configuration and parameters
modifications, see Ethernet Interfaces Configuration section.

The NET 2 Ethernet interface is used only for Ethernet communication and comes with the following default parameters
configuration:

22

3. INSTALLATION

NET 2
IP Address 192.168.16.1
Subnetwork Mask 255.255.255.0
Gateway Address 192.168.16.253

Table 22: Default Parameters Configuration for Ethernet NET 2 Interface

The IP Address and Subnet Mask parameters can be seen on the CPU graphic display via parameters menu, as described
in CPU’s Informative and Configuration Menu section.

The NET 2 interface network parameters can be changed through MasterTool IEC XE. For further information regarding
configuration and parameters modifications, see Ethernet Interfaces Configuration section.

3.3.2. Gratuitous ARP

The NETx Ethernet interface promptly sends ARP packets type in broadcast informing its IP and MAC address for all
devices connected to the network. These packets are sent during a new application download by the MasterTool IEC XE
software and in the CPU startup when the application goes into Run mode.

Five ARP commands are triggered within a 200 ms initial interval, doubling the interval every new triggered command,
totalizing 3 s. Example: first trigger occurs at time 0, the second one at 200 ms and the third one at 600 ms and so on until the
fifth trigger at time 3 s.

3.3.3. Network Cable Installation

Nexto Series CPUs Ethernet ports, identified on the panel by NET, have standard pinout which are the same used in PCs.
The connector type, cable type, physical level, among other details regarding the CPU and the Ethernet network device are
defined in the Ethernet Interfaces.

The table below present the RJ-45 Nexto CPU female connector, with the identification and description of the valid pinout
for 10BASE-TE and 100BASE-TX physical levels.

Figure 6: RJ45 Female Connector

Pin Signal Description
1 TXD + Data transmission, positive
2 TXD - Data transmission, negative
3 RXD + Data reception, positive
4 NU Not used
5 NU Not used
6 RXD - Data reception, negative

23

3. INSTALLATION

Pin Signal Description
7 NU Not used
8 NU Not used

Table 23: RJ45 Female Connector Pinout - 10BASE-TE and 100BASE-TX

The interface can be connected in a communication network through a hub or switch, or straight from the communication
equipment. In this last case, due to Nexto CPUs Auto Crossover feature, there is no need for a cross-over network cable, the
one used to connect two PCs point to point via Ethernet port.

It is important to stress that it is understood by network cable a pair of RJ45 male connectors connected by a UTP or ScTP
cable, category 5 whether straight connecting or cross-over. It is used to communicate two devices through the Ethernet port.

These cables normally have a connection lock which guarantees a perfect connection between the interface female con-
nector and the cable male connector. At the installation moment, the male connector must be inserted in the module female
connector until a click is heard, assuring the lock action. To disconnect the cable from the module, the lock lever must be used
to unlock one from the other.

3.4. Serial Network Connection RS-232C
The COM 1 non isolated communication interface allows the connection to a RS-232C network. As follows it’s presented

the DB9 female connector to Nexto CPU, with identification and sign description.

Figure 7: DB9 Female Connector

Pin Sign Description
1 DCD Data Carrier Detect
2 TXD Data Transmission
3 RXD Data Reception
4 - Not used
5 GND Ground
6 - Not used
7 CTS Clear to Send
8 RTS Request to Send
9 - Not used

Table 24: COM 1 DB9 Female Connector Pin Layout

24

3. INSTALLATION

3.4.1. RS-232C Communication

For connection to a RS-232C device, use the appropriate cable as the section Related Products.

3.5. Serial Network Connection RS-485/422
The COM 2 isolated communication interface allow the connection to a RS-485/422 network. As follows it’s presented

the DB9 female connector to Nexto CPU, with identification and sign description.

Figure 8: DB9 Female Connector

Pin Sign Description
1 - Not used
2 Term+ Internal Termination, positive
3 TXD+ Data Transmission, positive
4 RXD+ Data Reception, positive
5 GND Negative Reference for External Termination
6 +5V Positive Reference for External Termination
7 Term- Internal Termination, negative
8 TXD- Data Transmission, negative
9 RXD- Data Reception, negative

Table 25: COM 1 and COM 2 DB9 Female Connector Pin Layout

3.5.1. RS-485 Communication without termination

In order to connect in a RS-485 network with no termination, the cable AL-1763 identified terminals must be connected in
the respective device terminals, as shown on table below.

25

3. INSTALLATION

AL-1763 terminals Device terminal signals
0 Shield
1 Not connected
2 D+
3 D+
4 Not connected
5 Not connected
6 Not connected
7 D-
8 D-

Table 26: RS-485 Connections without Termination

The figure diagram below indicates how the AL-1763 connection terminals should be connected in the device terminals.

Figure 9: RS-485 Connections without Termination Diagram

Diagram Note:

1. The not connected terminals must be insulated so they do not make contact with each other.

3.5.2. RS-485 Communication with Internal Termination

In order to connect in a RS-485 network using the internal termination, the cable AL-1763 identified terminals must be
connected in the respective device terminals, as shown on table below.

AL-1763 terminals CPU terminal signals
0 Shield
1 D+
2 D+
3 D+
4 Not connected
5 Not connected
6 D-
7 D-
8 D-

Table 27: RS-485 Connections with Internal Termination

26

3. INSTALLATION

PS.: The internal termination available is a safe state type in open mode.
The figure diagram below indicates how the AL-1763 connection terminals should be connected in the device terminals.

Figure 10: RS-485 Connections with Internal Termination Diagram

Diagram Note:

1. The not connected terminals must be insulated so they do not make contact with each other.

3.5.3. RS-485 Communication with External Termination

In order to connect to a RS-485 network wih external termination, the AL-1763 cable identified terminals must be con-
nected in the respective device terminals according to the table below.

AL-1763 terminals CPU terminal signals
0 Shield
1 Not connected
2 D+
3 D+
4 0 V
5 +5 V
6 Not connected
7 D-
8 D-

Table 28: RS-485 Connections with External Termination

The figure diagram below indicates how the AL-1763 connection terminals should be connected in the device terminals.

27

3. INSTALLATION

Figure 11: RS-485 Connections with External Termination Diagram

Diagram Note:

1. The not connected terminals must be insulated so they do not make contact with each other.

3.5.4. RS-422 Communication without Termination

In order to connect in a RS-422 network with no termination, the cable AL-1763 identified terminals must be connected in
the respective device terminals, as shown on table below.

AL-1763 terminals CPU terminal signals
0 Shield
1 Not connected
2 TX+
3 RX+
4 Not connected
5 Not connected
6 Not connected
7 TX-
8 RX-

Table 29: RS-422 Connections without Termination

The figure diagram below indicates how the AL-1763 connection terminals should be connected in the device terminals.

Figure 12: Connections without Termination Diagram

Diagram Note:

28

3. INSTALLATION

1. The not connected terminals must be insulated so they do not make contact with each other.

3.5.5. RS-422 Communication with Internal Termination

In order to connect in a RS-422 network using the internal termination, the cable AL-1763 identified terminals must be
connected in the respective device terminals, as shown on table below.

AL-1763 terminals CPU terminal signals
0 Shield
1 TERM+
2 TX+
3 RX+
4 Not connected
5 Not connected
6 TERM-
7 TX-
8 RX-

Table 30: RS-422 Connections with Internal Termination

PS.: The internal terminations available are secure state in open mode.
The figure diagram below indicates how the AL-1763 connection terminals should be connected in the device terminals.

Figure 13: RS-422 Connections with Termination Diagram

Diagram Note:

1. The not connected terminals must be insulated so they do not make contact with each other.

29

3. INSTALLATION

3.5.6. RS-422 Communication with External Termination

In order to connect in a RS-422 network using interface external termination, the cable AL-1763 identified terminals must
be connected in the respective device terminals, as shown on table below.

AL-1763 Terminals CPU terminal signals
0 Shield
1 Not connected
2 TX+
3 RX+
4 0 V
5 +5 V
6 Not connected
7 TX-
8 RX-

Table 31: RS-422 Connections with External Termination

The figure diagram below indicates how the AL-1763 connection terminals should be connected in the device terminals.

Figure 14: RS-422 Connections with External Termination Diagram

Diagram Note:

1. The not connected terminals must be insulated so they do not make contact with each other.

30

3. INSTALLATION

3.5.7. RS-422 Network Example

The figure below shows an example of RS-422 network utilization, using the Nexto CPU as master, slave devices with
RS-422 Interface, and Altus solutions for terminators and connections.

Figure 15: RS-422 Network Example

Diagram Note:
The AL-2600 modules which are in the network endings perform the terminators function. In this case the AL-2600 keys

must be configured in PROFIBUS Termination.

3.6. Memory Card Installation
This section presents how to insert the memory card into the models Nexto Series CPUs. For further information see

Memory Card section.
Initially, care must be taken with the correct position the memory card must be inserted. One corner of it is different from

the other three and this one must be used as reference for the card correct insertion. Therefore, the memory card must be
inserted following the depiction on the CPU frontal part or the way showed on figure below.

31

3. INSTALLATION

Figure 16: Memory Card Insertion in the CPU

When the card is correctly installed, a symbol will appear on the CPU graphic display. For card secure removing the MS
key must be pressed then there is a little delay and the card symbol will disappear from the graphic display. The card is now
ready to be taken off. For that, the card must be pressed against the CPU until a click is heard, then release it and withdraw it
from the compartment as showed on figure below. At this moment the card will be loose.

Figure 17: Memory Card Withdrawal

32

3. INSTALLATION

3.7. Architecture Installation
3.7.1. Module Installation on the Main Backplane Rack

Nexto Series has an exclusive method for connecting and disconnecting modules on the bus which does not require much
effort from the operator and guarantee the connection integrity. For further information regarding Nexto Series products
fixation, please see Nexto Series User Manual – MU214600.

3.8. Programmer Installation
To execute the MasterTool IEC XE development software installation, it is necessary to have the distribution CD-ROM

or download the installation file from the site https://www.altus.com.br/en/. For further information about the step by step to
installation, consult MasterTool IEC XE User Manual MT8500 – MU299609.

33

https://www.altus.com.br/en/

4. PROGRAMMER INSTALLATION

4. Programmer Installation
The main goal of this chapter is to help the programming and configuration of Nexto Series CPUs, allowing the user to

take the first steps before starting to program the device.
Nexto Series CPU uses the standard IEC 61131-3 for language programming, which are: IL, ST, LD, SFC and FBD, and

besides these, an extra language, CFC. These languages can be separated in text and graphic. IL and ST are text languages
and are similar to Assembly and C, respectively. LD, SFC, FBD and CFC are graphic languages. LD uses the relay block
representation and it is similar to relay diagrams. SFC uses the sequence diagram representation, allowing an easy way to see
the event sequence. FBD and CFC use a group of function blocks, allowing a clear vision of the functions executed by each
action.

The programming is made through the MasterTool IEC XE (IDE) development interface. The MasterTool IEC XE allows
the use of the six languages in the same project, so the user can apply the best features offered by each language, resulting in
more efficient applications development, for easy documentation and future maintenance.

For further information regarding programming, see MasterTool IEC XE User Manual - MU299609, MasterTool IEC XE
Programming Manual - MP399609 or IEC 61131-3 standard.

4.1. Memory Organization and Access
Nexto Series uses an innovative memory organization and access feature called big-endian, where the most significant byte

is stored first and will always be the smallest address (e.g. %QB0 will always be more significant than %QB1, as in table
below, where, for CPUNEXTO string, the letter C is byte 0 and the letter O is the byte 7).

Besides this, the memory access must be done carefully as the variables with higher number of bits (WORD, DWORD,
LONG), use as index the most significant byte, in other words, the %QD4 will always have as most significant byte the %QB4.
Therefore it will not be necessary to make calculus to discover which DWORD correspond to defined bytes. The table below,
shows little and big endian organization.

MSB← Little-endian→ LSB
BYTE %QB7 %QB6 %QB5 %QB4 %QB3 %QB2 %QB1 %QB0

C P U N E X T O
WORD %QW6 %QW4 %QW2 %QW0

CP UN EX TO
DWORD %QD4 %QD0

CPUN EXTO
LWORD %QL0

CPUNEXTO
MSB← Big-endian→ LSB

BYTE %QB0 %QB1 %QB2 %QB3 %QB4 %QB5 %QB6 %QB7
C P U N E X T O

WORD %QW0 %QW2 %QW4 %QW6
CP UN EX TO

DWORD %QD0 %QD4
CPUN EXTO

LWORD %QL0
CPUNEXTO

Table 32: Memory Organization and Access Example

34

4. PROGRAMMER INSTALLATION

SIGNIFICANCE OVERLAPPING

Bit Byte Word DWord LWord Byte Word DWord

%QX0.7

%QX0.6

%QX0.5

%QX0.4 %QB %QB00

%QX0.3 00

%QX0.2

%QX0.1

%QX0.0 %QW %QW

%QX1.7 00 00

%QX1.6

%QX1.5

%QX1.4 %QB %QB01

%QX1.3 01

MSB %QX1.2

%QX1.1

⇑ %QX1.0 %QD %QW %QD

%QX2.7 00 01 00

LSB %QX2.6

%QX2.5

%QX2.4 %QB %QB02

%QX2.3 02

%QX2.2

%QX2.1

%QX2.0 %QW %QW %QD

%QX3.7 02 02 01

%QX3.6

%QX3.5

%QX3.4 %QB %QB03

%QX3.3 03

%QX3.2

%QX3.1

%QX3.0 %QL %QW %QD

%QX4.7 00 03 02

%QX4.6

%QX4.5

%QX4.4 %QB %QB04

%QX4.3 04

%QX4.2

%QX4.1

%QX4.0 %QW %QW %QD

%QX5.7 04 04 03

%QX5.6

%QX5.5

%QX5.4 %QB %QB05

%QX5.3 05

MSB %QX5.2

%QX5.1

⇑ %QX5.0 %QD %QW %QD

%QX6.7 04 05 04

LSB %QX6.6

%QX6.5

%QX6.4 %QB %QB06

%QX6.3 06

%QX6.2

%QX6.1

%QX6.0 %QW %QW

%QX7.7 06 06

%QX7.6

%QX7.5

%QX7.4 %QB %QB07

%QX7.3 07

%QX7.2

%QX7.1

%QX7.0

Table 33: Memory Organization and Access

35

4. PROGRAMMER INSTALLATION

The table above shows the organization and memory access, illustrating the significance of bytes and the disposition of other
variable types, including overlapping.

4.2. Project Profiles
A project profile in the MasterTool IEC XE consists in an application template together with a group of verification rules

which guides the development of the application, reducing the programming complexity. The applications can be created
according the following profiles:

Single
Basic
Normal
Expert
Custom
Machine Profile

The Project Profile is selected on the project creation wizard. Each project profile defines a template of standard names for
the tasks and programs, which are pre-created according to the selected Project Profile. Also, during the project compilation
(generate code), MasterTool IEC XE verify all the rules defined by the selected profile.

The following sections details the characteristics of each profile, which follow a gradual complexity slope. Based in these
definitions, it’s recommended that the user always use the simplest profile that meets his application needs, migrating to a more
sophisticated profile only when the corresponding rules are being more barriers to development than didactic simplifications.
It is important to note that the programming tool allows the profile change from an existent project (see project update section
in the MasterTool IEC XE User Manual – MU299609), but it’s up to the developer to make any necessary adjustments so that
the project becomes compatible with the rules of the new selected profile.

ATTENTION

Through the description of the Project profiles some tasks types are mentioned, which are
described in the section ‘Task Configuration’, of the MasterTool IEC XE User Manual –
MU299609.

4.2.1. Single

In the Single Project Profile, the application has only one user task, MainTask. This task is responsible for the execution
of a single Program type programming unit called MainPrg. This single program can call other programming unit, of the
Program, Function or Function Block types, but the whole code will be executed exclusively by the MainTask.

In this profile, the MainTask will be of the cyclical type (Cyclic) with priority fixed as 13 (thirteen) and runs exclusively the
MainPrg program in a continuous loop. The MainTask is already fully defined and the developer needs to create the MainPrg
program, using any of the languages of the IEC 61131-3 standard. It is not always possible to convert a program to another
language, but it’s always possible to create a new program, built in a different language, with the same name and replace it.
The MasterTool IEC XE standard option is to use the MasterTool Standard Project associated with the Single profile, which
also include the MainPrg created in the language selected during the project creation.

This type of application never needs to consider issues as data consistence, resource sharing or mutual exclusion mecha-
nisms.

Task POU Priority Type Interval Event
MainTask MainPrg 13 Cyclic 100 ms -

Table 34: Single Profile Task

4.2.2. Basic

In the Basic Project Profile, the application has one user task of the Continuous type called MainTask, which executes the
program in a continuous loop (with no definition of cycle time) with priority fixed in 13 (thirteen). This task is responsible
for the execution of a single programming unit POU called MainPrg. It’s important to notice that the cycle time may vary
according to the quantity of communication tasks used, as in this mode, the main task is interrupted by communication tasks.

36

4. PROGRAMMER INSTALLATION

This profile also allows the inclusion of two event tasks with higher priority, that can interrupt (preempt) the MainTask at
any given moment: the task named ExternInterruptTask00 is an event task of the External type with priority fixed in 02 (two);
the task named TimeInterruptTask00 is an event task of the Cyclic type with priority fixed as 01 (one).

The Basic project template model includes three tasks already completely defined as presented in table below. The devel-
oper need only to create the associated programs.

Tasks POU Priority Type Interval Event
MainTask MainPrg 13 Continuous - -

ExternInterruptTask00 ExternInterruptPrg00 02 External - IO_EVT_0
TimeInterruptTask00 TimeInterruptPrg00 01 Cyclic 20 ms -

Table 35: Basic Profile Tasks

4.2.3. Normal

In the Normal Project Profile, the application has one user task of the Cyclic type, called MainTask. This task is responsible
for the execution of a single programming unit POU called MainPrg. This program and this task are similar to the only task
and only program of the Single profile, but here the application can integrate additional user tasks. These other tasks, named
CyclicTask00 and CyclicTask01, each one responsible for the exclusive execution of its respective CyclicPrg<nn> program.
The CyclicTask<nn> tasks are always of the cyclic type and with priority fixed in 13 (thirteen), same priority as MainTask.
These two types form a group called basic tasks, which associated programs can call other POUs of the Program, Function and
Function Block types.

Furthermore, this profile can include event tasks with higher priority than the basic tasks, which can interrupt (preempt)
these tasks execution at any time.

The task called ExternInterruptTask00 is an event task of the External type which execution is triggered by some external
event, such as the variation of a control signal on a serial port or the variation of a digital input on the NEXTO bus. This
task priority is fixed in 02 (two), being responsible exclusively for the execution of the ExternInterruptPrg00 program. The
task called TimeInterruptTask00 is an event task of the Cyclic type with a priority fixed as 01 (one), being responsible for the
execution exclusively of TimeInterruptPrg00 program.

In the Normal project model, there are five tasks, and its POUs, already fully defines as shown in table below. The developer
needs only to implement the programs content, opting, on the wizard, for any of the languages in IEC 61131-3 standard. The
tasks interval and trigger events can be configured by the developer and the unnecessary tasks can be eliminated.

Tasks POU Priority Type Interval Event
MainTask MainPrg 13 Cyclic 100 ms -

CyclicTask00 CyclicPrg00 13 Cyclic 200 ms -
CyclicTask01 CyclicPrg01 13 Cyclic 500 ms -

ExternInterruptTask00 ExternInterruptPrg00 02 External - IO_EVT_0
TimeInterruptTask00 TimeInterruptPrg00 01 Cyclic 20 ms -

Table 36: Normal Profile Tasks

4.2.4. Expert

The Expert Project Profile includes the same basic tasks, CyclicTask<nn>, ExternInterruptTask00 and TimeInterruptTask00
with the same priorities (13, 02 and 01 respectively), but it’s an expansion from the previous ones, due to accept multiple events
tasks. That is, the application can include various ExternInterruptTask<nn> or TimeInterruptTask<nn> tasks that execute the
ExternInterruptPrg<nn> and TimeInterruptPrg<nn> programs. The additional event tasks priorities can be freely selected from
08 to 12. In this profile, besides the standard programs, each task can execute additional programs.

In this project profile, the application may also include the user task FreeTask of the Freewheeling type with priority 31,
responsible for the FreePrg program execution. As this task is low priority it can be interrupted by all others so it can execute
codes that might be blocked.

There are eight tasks already fully defined, as shown in table below, as well as their associated programs in the chosen
language. Intervals and trigger events of any task, as well as the priorities of the event tasks can be configured by the user.

When developing the application using Expert project’s profile, a special care is needed with the event tasks scaling. If

37

4. PROGRAMMER INSTALLATION

there is information and resource sharing between these tasks or between them and the basic tasks, it is strongly recommended
to adopt strategies to ensure data consistency.

Tasks POU Priority Type Interval Event
MainTask MainPrg 13 Cyclic 100 ms -

CyclicTask00 CyclicPrg00 13 Cyclic 200 ms -
CyclicTask01 CyclicPrg01 13 Cyclic 500 ms -

ExternInterruptTask00 ExternInterruptPrg00 02 External - IO_EVT_0
TimeInterruptTask00 TimeInterruptPrg00 01 Cyclic 20 ms -

ExternInterruptTask01 ExternInterruptPrg01 11 External - IO_EVT_1
TimeInterruptTask01 TimeInterruptPrg01 09 Cyclic 30 ms -

FreeTask FreePrg 31 Continuous - -

Table 37: Expert Profile Tasks

4.2.5. Custom

The Custom project profile allows the developer to explore all the potential of the Runtime System implemented in the
CPUs. No functionality is disabled; no priority, task and programs association or nomenclatures are imposed. The only
exception is for MainTask, which must always exist with this name in this Profile.

Beyond the real time tasks, with priority between 00 and 15, which are scheduled by priority, in this profile it is also
possible to define tasks with lower priorities in the range 16 to 31. In this range, it’s used the Completely Fair Scheduler (time
sharing), which is necessary to run codes that can be locked (for example, use of sockets).

The developer is free to partially follow or not the organization defined in other project profiles, according to the charac-
teristics of the application. On the other hand, the Custom model associated with this profile needs no pre-defining elements
such as task, program or parameter, leaving the developer to create all the elements that make up the application.

Tasks POU Priority Type Interval Event
MainTask MainPrg 13 Cyclic 100 ms -

CyclicTask00 CyclicPrg00 13 Cyclic 200 ms -
CyclicTask01 CyclicPrg01 13 Cyclic 500 ms -

ExternInterruptTask00 ExternInterruptPrg00 02 External - IO_EVT_0
TimeInterruptTask00 TimeInterruptPrg00 01 Cyclic 20 ms -

ExternInterruptTask01 ExternInterruptPrg01 11 External - IO_EVT_1
TimeInterruptTask01 TimeInterruptPrg01 09 Cyclic 30 ms -

FreeTask FreePrg 31 Continuous - -

Table 38: Custom Profile Tasks

4.2.6. Machine Profile

In the Machine Profile, by default, the application has a user task of the Cyclic type called MainTask. This task is respon-
sible for implementing a single Program type POU called MainPrg. This program can call other programming units of the
Program, Function or Function Block types, but any user code will run exclusively by MainTask.

This profile is characterized by allowing shorter intervals in the MainTask, allowing faster execution of user code. This
optimization is possible because MainTask also performs the processing of the bus. This way, different from other profiles, the
machine profile requires no context switch for the bus treatment, which reduces the overall processing time.

This profile may further include an interruption task, called TimeInterruptTask00, with a higher priority than the MainTask,
and hence, can interrupt its execution at any time.

Tasks POU Priority Type Interval Event
MainTask MainPrg 13 Cyclic 100 ms -

38

4. PROGRAMMER INSTALLATION

Tasks POU Priority Type Interval Event
TimeInterruptTask00 TimeInterruptPrg00 01 Cyclic 4 ms -

Table 39: Machine Profile Tasks

Also, this profile supports the inclusion of additional tasks associated to the external interruptions.

4.2.7. General Table

Project Profiles
Single Machine Basic Normal Expert Custom

Total tasks 01 04 [01..03] [01..32] [01..32] [01..32]
Tasks per program 01 01 01 <n> <n>

Type Cyclic Cyclic Continuous Cyclic Cyclic Cyclic
Main Task Priority 13 13 13 13 13 13

Quantity 01 01 01 01 01 01
Time Type Cyclic Cyclic Cyclic Cyclic Cyclic

Interrupt Priority 01 01 01 01 or [08..12] 01 or [08..12]
Task Quantity [00..01] [00..01] [00..01] [00..31] [00..31]

Extern Type External External External External External
Interrupt Priority 02 02 02 02 or [08..12] 02 or [08..12]

Task Quantity [00..01] [00..01] [00..01] [00..31] [00..31]
Type Cyclic Cyclic Cyclic

Ciclic Task Priority 13 13 13
Quantity [00..31] [00..31] [00..31]

Type Continuous Continuous
Free Task Priority 31 31

Quantity [00..01] [00..01]
Type Event

Event Task Priority <n>
Quantity [00..31]

Table 40: General Profile x Tasks Table

ATTENTION

The suggested POU names associated with the tasks are not consisted. They can be changed,
as long as they are also changed in the tasks configurations.

4.2.8. Maximum Number of Tasks

The maximum number of tasks that the user can create is only defined for the Custom profile, the only one which has
this permission. The others already have their tasks created and configured. However, the tasks that will be created must use
the following prefixes, according to the type of each of the tasks: CyclicTaskxx, TimeInterruptTaskxx, ExternInterruptTaskxx,
where xx represents the number of the task that being created.

The table below describes the maximum IEC task quantity per CPU and project profile, where the protocol instances are
also considered communication tasks by the CPU.

Task Type NX3020
S B N E P M

Configuration Task (WHSB Task) Cyclic 1 1 1 1 1 0

39

4. PROGRAMMER INSTALLATION

Task Type NX3020
User Tasks Cyclic 1 1 23 23 23 2

Triggered by Event 0 0 0 0 23 0
Disp. External Event 0 1 1 22 23 0
Freewheeling 0 1 0 1 23 0
State-triggered 0 0 0 0 23 0

NETs - Client or Server Instances Cyclic 8
COM (n) - Master or Slave Instances Cyclic 1

TOTAL 24

Table 41: NX3020 IEC Tasks Maximum Number

Notes:
Profile Legend: The S, B, N, E, C and M letters correspond to the Single, Basic, Normal, Expert, Custom and Machine

profiles respectively.
Values: The number defined for each task type represents the maximum values allowed.
Task WHSB: The WHSB is a system task that must be considered so the total value is not surpassed.
NETs - Client or Server Instances: The maximum value defined considers all system Ethernet interfaces, including the

expansion modules when these are applied. E.g. MODBUS protocol instances.
COM (n) - Master or Slave Instances: The "n" represents the number of the serial interface. Even with expansion

modules, the table value will be the maximum per interface. E.g. MODBUS protocol instances.
Total: The total value does not represent the sum of all profile tasks, but the maximum value allowed per CPU. Therefore,

the user can create several task types, while the established numbers for each one and the total value are not surpassed.

4.3. CPU Configuration
The Nexto CPU configuration is located in the device tree, as shown on figure below, and can be accessed by a double-click

on the corresponding object. In this tab it’s possible to configure the diagnostics area, the retentive and persistent memory area
and hot swap mode, among other parameters, as described in the CPU Configuration.

Figure 18: CPU Configuration

Besides that, by double-clicking on CPU’s NET 1 icon, it’s possible to configure the Ethernet interface that will be used
for communication between the controller and the software MasterTool IEC XE.

40

4. PROGRAMMER INSTALLATION

Figure 19: Configuring the CPU Communication Port

The configuration defined on this tab will be applied to the device only when sending the application to the device (down-
load), which is described further on sections Finding the Device and Login.

4.4. Libraries
There are several programming tool resources which are available through libraries. Therefore, these libraries must be

inserted in the project so its utilization becomes possible. The insertion procedure and more information about available
libraries must be found in the MasterTool Programming Manual – MP399609.

4.5. Inserting a Protocol Instance
The Nexto Series CPUs, as described in the Protocols section, offers several communication protocols. Except for the

OPC DA and OPC UA communication, which have a different configuration procedure, the insertion of a protocol can be
done by simply right-clicking on the desired communication interface, selecting to add the device and finally performing the
configuration as shown in the Protocols Configuration section. Below is presented an examples.

4.5.1. MODBUS Ethernet

The first step to configure the MODBUS Ethernet (Client in this example), is to include the instance in the desired NET
(in this case, NET 1, as the CPU NX3010 has only one Ethernet interface). Click on the NET with the mouse right button and
select Add Device..., as shown on figure below.

41

4. PROGRAMMER INSTALLATION

Figure 20: Adding the Instance

After that, the available protocols for the user will appear on the screen. In this menu is defined the configuration mode
of the protocol. Selecting the option MODBUS Symbol Client, for Symbolic Mapping setting or MODBUS Client, for Direct
Addressing (%Q). Then, click Add Device, as shown in the figure below.

42

4. PROGRAMMER INSTALLATION

Figure 21: Selecting the Protocol

4.6. Finding the Device
To establish the communication between the CPU and MasterTool IEC XE, first it’s necessary to find and select the desired

device. The configuration of this communication is located on the object Device on device tree, on Communication Settings
tab. On this tab, after selecting the Gateway and clicking on button Scan network, the software MasterTool IEC XE performs a
search for devices and shows the CPUs found on the network of the Ethernet interface of the station where the tool is running.

Figure 22: Finding the CPU

If there is no gateway previously configured, it can be included by the button Add gateway, using the default IP address
localhost to use the gateway resident on the station or changing the IP address to use the device internal gateway.

Next, the desired controller must be selected by clicking on Set active path. This action selects the controller and informs
the configuration software which controller shall be used to communicate and send the project.

43

4. PROGRAMMER INSTALLATION

Figure 23: Selecting the CPU

Additionally, the user can change the default name of the device that is displayed. For that, you must click the right mouse
button on the desired device and select Change Device Name. After a name change, the device will not return to the default
name under any circumstances.

In case the Ethernet configuration of the CPU to be connected is in a different network from the Ethernet interface of the
station, the software MasterTool IEC XE will not be able to find the device. In this case, it’s recommended to use the command
Easy Connection located on Online menu.

Figure 24: Easy Connection

This command performs a MAC level communication with the NET 1 interface of the device, allowing to permanently
change the configuration of the CPU’s Ethernet interface, independently of the IP configuration of the station and from the
one previously configured on the device. So, with this command, it’s possible to change the device configuration to put it on
the same network of the Ethernet interface of the station where MasterTool IEC XE is running, allowing to find and select
the device for the communication. The complete description of Easy Connection command can be found on User Manual of
MasterTool IEC XE code MU299609.

44

4. PROGRAMMER INSTALLATION

4.7. Login
After compiling the application and fixing errors that might be found, it’s time to send the project to the CPU. To do

this, simply click on Login command located on Online menu of MasterTool IEC XE as shown on the following figure. This
operation may take a few seconds, depending on the size of the generated file.

Figure 25: Sending the Project to the CPU

After the command execution, some user interface messages may appear, which are presented due to differences between
an old project and the new project been sent, or simply because there was a variation in some variable.

If the Ethernet configuration of the project is different from the device, the communication may be interrupted at the end of
download process when the new configuration is applied on the device. So, the following warning message will be presented,
asking the user to proceed or not with this operation.

Figure 26: IP Configuration Warning

If there is no application on the CPU, the following message will be presented.

45

4. PROGRAMMER INSTALLATION

Figure 27: No application on the device

If there is already an application on the CPU, depending on the differences between the projects, the following options will
be presented:

Login with online change: execute the login and send the new project without stopping the current CPU application
(see Run Mode item), updating the changes when a new cycle is executed.
Login with download: execute the login and send the new project with the CPU stopped (see Stop Mode). When the
application is initiated, the update will have been done already.
Login without any change: executes the login without sending the new project.

Figure 28: Project Update at the CPU

ATTENTION

In the online changes is not permitted to associate symbolic variables mapping from a global
variable list (GVL) and use these variables in another global variable list (GVL).

If the new application contains changes on the configuration, the online change will not be possible. In this case, the
MasterTool IEC XE requests whether the login must be executed as download (stopping the application) or if the operation
must be cancelled.

PS.: The button Details... shows the changes made in the application.

Figure 29: Configuration Changes

Finally, at the end of this process the MasterTool IEC XE offers the option to transfer (download) the source code to the
internal memory of the device, as shown on the following figure:

46

4. PROGRAMMER INSTALLATION

Figure 30: Source code download

Transferring the source code is fundamental to ensure the future restoration of the project and to perform modifications on
the application that is loaded into the device.

4.8. Run Mode
Right after the project has been sent to the CPU, the application will not be immediately executed (except for the case of

an online change). For that to happen, the command Start must be executed. This way, the user can control the execution of
the application sent to the CPU, allowing pre-configuring initial values which will be used by the CPU on the first execution
cycle.

To execute this command, simply go to the Debug menu and select the option Start, as shown on figure below.

Figure 31: Starting the Application

The figure below shows the application in execution. In case the POU tab is selected, the created variables are listed on a
monitoring window, in which the values can be visualized and forced by the user.

47

4. PROGRAMMER INSTALLATION

Figure 32: Program running

If the CPU already have a boot application internally stored, it goes automatically to Run Mode when the device is powered
on, with no need for an online command through MasterTool IEC XE.

4.9. Stop Mode
To stop the execution of the application, the user must execute the Stop command, available at the menu Debug, as shown

on figure below.

Figure 33: Stopping the Application

In case the CPU is initialized without the stored application, it automatically goes to Stop Mode, as it happens when a
software exception occurs.

4.10. Writing and Forcing Variables
After Logging into a PLC, the user can write or force values to a variable of the project.
The writing command (CTRL + F7) writes a value into a variable and this value could be overwritten by instructions

executed in the application.

48

4. PROGRAMMER INSTALLATION

Moreover, the forced writing command (F7) writes a value into a variable without allowing this value to be changed until
the forced variables are released.

It is important to highlight that, when used the MODBUS RTU Slave and the MODBUS Ethernet Server, and the Read-only
option from the configured relations is not selected, the forced writing command (F7) must be done over the available variables
in the monitoring window as the writing command (CTRL + F7) leaves the variables to be overwritten when new readings are
done.

ATTENTION

The variables forcing can be done in Online mode.
Diagnostic variables cannot be forced, only written, because diagnostics are provided by the
CPU and will be overwritten by it.

ATTENTION

When a CPU is with forced variables and it is de-energized, the variables will lose the forc-
ing in the next initialization.
The limit of forcing for the Nexto CPUs is 128 variables, regardless of model or configura-
tion of CPU used.

4.11. Logout
To finalize the online communication with the CPU, the command Logout must be executed, located in the Online menu,

as shown on figure below.

Figure 34: Finalizing the online communication with the CPU

4.12. Project Upload
Nexto Series CPUs are capable to store the source code of the application on the internal memory of the device, allowing

future retrieval (upload) of the complete project and to modify the application.
To recover a project previously stored on the internal memory of the CPU, the command located on File menu must be

executed as shown on the following figure.

49

4. PROGRAMMER INSTALLATION

Figure 35: Project Upload Option

Next, just select the desired CPU and click OK, as shown on figure below.

Figure 36: Selecting the CPU

To ensure that the project loaded in the CPU is identical and can be accessed in other workstations, consult the chapter
Projects Download/Login Method without Project Differences at the MasterTool IEC XE User Manual MT8500 - MU299609.

ATTENTION

The memory size area to store a project in the Nexto CPUs is defined on section Memory.

50

4. PROGRAMMER INSTALLATION

ATTENTION

The upload recovers the last project stored in the controller as described in the previous
paragraphs. In case only the application was downloaded, without transferring its source
code, it will not be possible to be recovered by the Upload procedure.

4.13. CPU Operating States
4.13.1. Run

When a CPU is in Run mode, all application tasks are executed.

4.13.2. Stop

When a CPU is in Stop mode, all application tasks are stopped. The variable values in the tasks are kept with the current
value and output points go to the safe state.

When a CPU goes to the Stop mode due to the download of an application, the variables in the application tasks will be
lost except the persistent variables type.

4.13.3. Breakpoint

When a debugging mark is reached in a task, it is interrupted. All the active tasks in the application will not be interrupted,
continuing their execution. With this feature, it’s possible to go through and investigate the program flow step by step in Online
mode according to the positions of the interruptions included through the editor.

For further information about the use of breakpoints, please consult the MasterTool IEC XE Utilization Manual - MU299609.

4.13.4. Exception

When a CPU is in Exception it indicates that some improper operation occurred in one of the application active tasks. The
task which caused the Exception will be suspended and the other tasks will pass for the Stop mode. It is only possible to take
off the tasks from this state and set them in execution again after a new CPU start condition. Therefore, only with a Reset
Warm, Reset Cold, Reset Origin or a CPU restart puts the application again in Run mode.

4.13.5. Reset Warm

This command puts the CPU in Stop mode and initializes all the application tasks variables, except the persistent and
retentive type variables. The variables initialized with a specific value will assume exactly this value, the other variables will
assume the standard initialization value (zero).

4.13.6. Reset Cold

This command puts the CPU in Stop mode and initializes all the application tasks variables, except the persistent type
variables. The variables initialized with a specific value will assume exactly this value, the other variables will assume the
standard initialization value (zero).

4.13.7. Reset Origin

This command removes all application task variables, including persistent type variables, deletes the application CPU and
puts the CPU in Stop mode.

Notes:
Reset: When a Reset is executed, the breakpoints defined in the application are disabled.
Command: To execute the commands Reset Warm, Cold or Origin, it’s necessary to have MasterTool IEC XE in Online

mode with the CPU.

51

4. PROGRAMMER INSTALLATION

4.13.8. Reset Process Command (IEC 60870-5-104)

This process reset command can be solicited by IEC 60870-5-104 clients. After answer the client, the CPU start a rebooting
process, as if being done an energizing cycle.

In case of redundant PLCs, the process reset command is synchronized with the non-active PLC, resulting the reboot of
both PLCs.

The standard IEC 60870-5-104 foresee a qualification value pass (0..255) with the process reset command, but this “pa-
rameter” is not considered by the CPU.

4.14. Programas (POUs) e Listas de Variáveis Globais (GVLs)
The project created by MasterTool IEC XE contains a set of program modules (POUs) and global variables lists that aims

to facilitate the programming and utilization of the controller. The following sections describe the main elements that are part
of this standard project structure.

4.14.1. MainPrg Program

The MainTask is associated to one unique POU of program type, named MainPrg. The MainPrg program is created
automatically and cannot be edited by user.

The MainPrg program code is the following, in ST language:

(*Main POU associated with MainTask that calls StartPrg,
UserPrg/ActivePrg and NonSkippedPrg.
This POU is blocked to edit.*)

PROGRAM MainPrg
VAR

isFirstCycle : BOOL := TRUE;
END_VAR

SpecialVariablesPrg();
IF isFirstCycle THEN

StartPrg();
isFirstCycle := FALSE;

ELSE
UserPrg();

END_IF;

MainPrg call other two POUs of program type, named StartPrg and UserPrg. While the UserPrg is always called, the
StartPrg is only called once in the PLC application start.

To the opposite of MainPrg program, that must not be modified, the user can change the StartPrg and UserPrg programs.
Initially, when the project is created from the wizard, these two programs are created empty, but the user might insert code in
them.

4.14.2. StartPrg Program

In this POU the user might create logics, loops, start variables, etc. that will be executed only one time in the first PLC’s
cycle, before execute UserPrg POU by the first time. And not being called again during the project execution.

In case the user load a new application, or if the PLC gets powered off, as well as in Reset Origin, Reset Cold and Reset
Warm conditions, this POU is going to be executed again.

4.14.3. UserPrg Program

In this POU the user must create the main application, responsible by its own process control. This POU is called by the
main POU (MainPrg).

52

4. PROGRAMMER INSTALLATION

The user can also create additional POUs (programs, functions or function blocks), and called them or instance them inside
UserPrg POU, to ends of its program instruction. Also it is possible to call functions and instance function blocks defined in
libraries.

4.14.4. GVL System_Diagnostics

The System_Diagnostics GVL contains the diagnostic variables of the CPU, of the communication interface (Ethernet and
PROFIBUS) and of all communication drivers. This GVL isn’t editable and the variables are declared automatically with type
specified by the device to which it belongs when it is added to the project.

ATTENTION

In System_Diagnostics GVL, are also declared the diagnostic variables of the direct repre-
sentation MODBUS Client/Master Requests.

Some devices, like the MODBUS Symbol communication driver, doesn’t have its diagnostics allocated at %Q variables
with the AT directive. The same occurs with newest communication drivers, as Server IEC 60870-5-104.

The following picture shows an example of the presentation of this GVL when in Online mode.

Figure 37: System_Diagnostics GVL in Online Mode

53

4. PROGRAMMER INSTALLATION

4.14.5. GVL Disables

The Disables GVL contains the MODBUS Master/Client by symbolic mapping requisition disabling variables. It is not
mandatory, but it is recommended to use the automatic generation of these variables, which is done clicking in the button
Generate Disabling Variables in device requisition tab. These variables are declared as type BOOL and follow the following
structure:

Requisition disabling variables declaration:

[Device Name]_DISABLE_[Requisition Number] : BOOL;

Where:
Device name: Name that shows on Tree View to the MODBUS device.
Requisition Number: Requisition number that was declared on the MODBUS device requisition table following the

sequence from up to down, starting on 0001.
Example:
Device.Application.Disables

VAR_GLOBAL
MODBUS_Device_DISABLE_0001 : BOOL;
MODBUS_Device_DISABLE_0002 : BOOL;
MODBUS_Device_DISABLE_0003 : BOOL;
MODBUS_Device_1_DISABLE_0001 : BOOL;
MODBUS_Device_1_DISABLE_0002 : BOOL;

END_VAR

The automatic generation through button Generate Disabling Variables only create variables, and don’t remove automati-
cally. This way, in case any relation is removed, its respective disabling variable must be removed manually.

The Disables GVL is editable, therefore the requisition disabling variables can be created manually without need of fol-
lowing the model created by the automatic declaration and can be used both ways at same time, but must always be of BOOL
type. And it is need to take care to do not delete or change the automatic declared variables, cause them can being used for
some MODBUS device. If the variable be deleted or changed then an error is going to be generated while the project is being
compiled. To correct the automatically declared variable name, it must be followed the model exemplified above according to
the device and the requisition to which they belong.

The following picture shows an example of the presentation of this GVL when in Online mode. If the variable values are
TRUE it means that the requisition to which the variables belong is disabled and the opposite is valid when the variable value
is FALSE.

Figure 38: Disable GVL in Online Mode

4.14.6. GVL IOQualities

The IOQualities GVL contains the quality variables of I/O modules declared on CPU’s bus. This GVL is not editable and
the variables are automatically declared as LibDataTypes.QUALITY type arrays, and dimensions according to I/Os quantities
of the module to which it belongs when that is added to the project.

54

4. PROGRAMMER INSTALLATION

Example: Device.Application.IOQualities

VAR_GLOBAL
QUALITY_NX1001: ARRAY[0..15] OF LibDataTypes.QUALITY;
QUALITY_NX2020: ARRAY[0..15] OF LibDataTypes.QUALITY;
QUALITY_NX6000: ARRAY[0..7] OF LibDataTypes.QUALITY;
QUALITY_NX6100: ARRAY[0..3] OF LibDataTypes.QUALITY;

END_VAR

Once the application is in RUN it is possible to watch the I/O modules quality variables values that were added to the
project through IOQualities GVL.

4.14.7. GVL Module_Diagnostics

The Module_Diagnostics GVL contains the diagnostics variables of the I/O modules used in the project, except by the
CPU and communication drivers. This GVL isn’t editable and the variables are automatically declared with type specified by
the module, to which it belongs, when that is added to the project.

The following picture shows an example of the presentation of this GVL when in Online mode.

Figure 39: Module_Diagnostics GVL in Online Mode

55

4. PROGRAMMER INSTALLATION

4.14.8. GVL Qualities

The Qualities GVL contains the quality variable of the internal variables MODBUS Master/Client of symbolic mapping.
It is not mandatory but is recommended to use these variables’ automatic generation, what is done clicking on button Generate
Quality Variables in the device mapping tab. These variables are declared as LibDataTypes.QUALITY type and follow the
following structure:

Quality mapping variable declaration:

[Device Name]_QUALITY_[Mapping Number]: LibDataTypes.QUALITY;

Where:
Device Name: Name that appear at the Tree View to the device.
Mapping Number: Number of the mapping that was declared on the device mapping table, following the up to down

sequence, starting with 0001.

ATTENTION

It is not possible to associate quality variables to the direct representation MODBUS Mas-
ter/Client drivers’ mappings. Therefore it is recommended the use of symbolic mapping
MODBUS drivers.

Example: Device.Application.Qualities

VAR_GLOBAL
MODBUS_Device_QUALITY_0001: LibDataTypes.QUALITY;
MODBUS_Device_QUALITY_0002: LibDataTypes.QUALITY;
MODBUS_Device_QUALITY_0003: LibDataTypes.QUALITY;

END_VAR

The Qualities GVL is editable, therefore the mapping quality variables can be created manually without need to follow the
automatic declaration model, and can be used both ways at same time. But must always be of LibDataTypes.QUALITY type
and take care to don’t delete or change a variable automatically declared, because they might being used by some device. If the
variable be deleted or changed an error is going to be generated while the project is being compiled. To correct the automatically
declared variable name, it must be followed the model exemplified above according to the device and the requisition to which
they belong.

To the MODBUS communication devices the quality variables behave on the way showed at Table 55.
The following picture shows an example of the presentation of this GVL when in Online mode.

ATTENTION

If a symbolic mapping MODBUS Client/Master driver’s variable be mapped in IEC 60870-
5-104 Server driver, it is necessary that the MODBUS mapping quality variables had been
created to generate valid quality events to such IEC 60870-5-104 Server points. Case op-
posite, aren’t going to be generated “bad” quality events to IEC 60870-5-104 Server clients
in the situations that MODBUS Master/Client can’t communicate with its slaves/servers, by
example.

56

4. PROGRAMMER INSTALLATION

Figure 40: Qualities GVL in Online Mode

4.14.9. GVL ReqDiagnostics

The ReqDiagnostics GVL contains the requisition diagnostics variables of symbolic mapping MODBUS Master/Client. It
is not mandatory, but recommended the use of these variables’ automatic generation, what is done by clicking in the button
Generate Diagnostics Variables in device requests tab. These variables declaration follow the following structure:

Requisition diagnostic variable declaration:

[Device Name]_REQDG_[Requisition Number]: [Variable Type];

Where:
Device Name: Name that appear at the Tree View to the device.
Mapping Number: Number of the mapping that was declared on the device mapping table, following the up to down

sequence, starting with 0001.
Variable Type: NXMODBUS_DIAGNOSTIC_STRUCTS.T_DIAG_MODBUS_RTU_MAPPING_1 to MODBUS Mas-

ter and NXMODBUS_DIAGNOSTIC_STRUCTS.T_DIAG_MODBUS_ETH_MAPPING_1 to MODBUS Client.

57

4. PROGRAMMER INSTALLATION

ATTENTION

The requisition diagnostics variables of direct mapping MODBUS Master/Client are de-
clared at System_Diagnostics GVL.

Example:
Device.Application.ReqDiagnostics

VAR_GLOBAL
MODBUS_Device_REQDG_0001 : NXMODBUS_DIAGNOSTIC_STRUCTS.

T_DIAG_MODBUS_RTU_MAPPING_1;
MODBUS_Device_REQDG_0002 : NXMODBUS_DIAGNOSTIC_STRUCTS.

T_DIAG_MODBUS_RTU_MAPPING_1;
MODBUS_Device_REQDG_0003 : NXMODBUS_DIAGNOSTIC_STRUCTS.

T_DIAG_MODBUS_RTU_MAPPING_1;
MODBUS_Device_1_REQDG_0001 : NXMODBUS_DIAGNOSTIC_STRUCTS.

T_DIAG_MODBUS_ETH_MAPPING_1;
MODBUS_Device_1_REQDG_0002 : NXMODBUS_DIAGNOSTIC_STRUCTS.

T_DIAG_MODBUS_ETH_MAPPING_1;
END_VAR

The ReqDiagnostics GVL is editable, therefore the requisitions diagnostic variables can be manually created without need
to follow the model created by the automatic declaration. Both ways can be used at same time, but the variables must always
be of type referring to the device. And take care to don’t delete or change a variable automatically declared, because they might
being used by some device. If the variable be deleted or changed an error is going to be generated while the project is being
compiled. To correct the automatically declared variable name, it must be followed the model exemplified above according to
the device and the requisition to which they belong.

The following picture shows an example of the presentation of this GVL when in Online mode.

Figure 41: ReqDiagnostics GVL in Online Mode

58

4. PROGRAMMER INSTALLATION

4.14.10. Prepare_Start Function

In this POU, the PrepareStart system event function is defined. It belongs to the communication task and is called before
starting the application. When there is active communication with the PLC, it is possible to observe the event status and the
call count in the System Events tab in the Task Configuration object. Every time the user starts the application, the count is
incremented.

4.14.11. Prepare_Stop Function

In this POU, the PrepareStop system event function is defined. It belongs to the communication task and is called before
stopping the application. When there is active communication with the PLC, it is possible to observe the event status and the
call count in the System Events tab in the Task Configuration object. Every time the user stops the application, the count is
incremented.

4.14.12. Start_Done Function

In this POU, the StartDone system event function is defined. It belongs to the communication task and is called when the
application is successfully started. When there is active communication with the PLC, it is possible to observe the event status
and the call count in the System Events tab in the Task Configuration object. Every time the user successfully launches the
application, the count is incremented.

4.14.13. Stop_Done Function

In this POU, the StopDone system event function is defined. It belongs to the communication task and is called when
the application is successfully stopped. When there is active communication with the PLC, it is possible to observe the event
status and the call count in the System Events tab in the Task Configuration object. Every time the user successfully stops the
application, the count is incremented.

59

5. CONFIGURATION

5. Configuration
The Nexto Series CPUs are configured and programmed through the MasterTool IEC XE software. The configuration made

defines the behavior and utilization modes for peripherals use and the CPUs special features. The programming represents the
Application developed by the user.

5.1. Device
5.1.1. User Management and Access Rights

It provides functions to define users accounts and to configure the access rights to the project and to the CPU. Using the
software MasterTool IEC XE, it’s possible to create and manage users and groups, setting, different access right levels to the
project.

Simultaneously, the Nexto CPUs have an user permissions management system that blocks or allows certain actions for
each user group in the CPU. For more information, consult the MasterTool IEC XE User Manual MT8500 – MU299609, in
the User Management and Access Rights section.

5.1.2. PLC Settings

On this tab of the generic device editor, you make the basic settings for the configuration of the PLC, for example the
handling of inputs and outputs and the bus cycle task.

Figure 42: PLC Settings

Parameter Description
Application for I/O handling Application that is responsible for the I/O handling.

Refresh I/Os in stop
TRUE: The values of the input and output channels are also
refreshed when the PLC is in STOP mode. If the watchdog de-
tects a malfunction, the outputs are set to the predefined default
values.
FALSE: The values of the input and output channels in STOP
mode are not refreshed.

60

5. CONFIGURATION

Parameter Description

Behavior of the outputs at
stop

Handling of the output channels when the controller enters
STOP mode:
Retain values: The current values are retained.
All outputs to default value: The default values resulting from
the I/O mapping are assigned.
Execute program: The handling of the output values is con-
trolled by a program contained in the project which is executed
in STOP mode. Enter the name of the program in the field on
the right.

Always update variables

Globally defines whether or not the I/O variables are updated in
the bus cycle task.
This setting is effective for the I/O variables of the slaves and
modules only if "deactivated" is defined in their update settings.
Deactivated (update only if used in a task): The I/O variables
are updated only if they are used in a task.
Enabled 1 (use bus cycle task if not used in any task): The
I/O variables in the bus cycle task are updated if they are not
used in any other task.
Enabled 2 (always in bus cycle task): All variables in each
cycle of the bus cycle task are updated, regardless of whether
they are used and whether they are mapped to an input or output
channel.

Bus cycle task
Task that controls the bus cycle. By default the task defined by
the device description is entered.
By default, the bus cycle setting of the superordinate bus de-
vice applies (use cycle settings of the superordinate bus). This
means that the device tree is searched upwards for the next valid
definition of the bus cycle task.

Force variables for the I/O
mapping

TRUE: When compiling the application, two global variables
are created for each I/O channel which is mapped to a variable
in the I/O Mapping dialog.

Activate diagnostics for de-
vices

TRUE: The CAA Device Diagnosis library is integrated in the
project. An implicit function block is generated for each device.
If there is already a function block for the device, then either an
extended function block is generated (example: EtherCAT) or
another function block instance is added. This then contains a
general implementation of the device diagnostics.

Display I/O warnings as er-
rors

Warnings concerning the I/O configuration are displayed as er-
rors.

Enable symbolic access for
I/Os

TRUE: It allows access to I/O points from the internal symbolic
name generated in the device declaration. The symbolic name
can be consulted in the Channel column on the Bus I/O Mapping
tab of each device.

Table 42: PLC Settings

ATTENTION

The Nexto (NX), Nexto Jet (NJ) and Xtorm (HX) products do not support the Enable sym-
bolic access for I/O parameter.

61

5. CONFIGURATION

5.2. CPU Configuration

5.2.1. General Parameters

The parameters related below are part of the CPU configuration included in the application. Each item must be properly
verified for the correct project execution.

Besides these parameters, it is possible to change the name of each module inserted in the application by clicking the right
button on the module. In the Properties item from the Common sheet, change the name, what is limited to 24 characters.

Settings Description Standard Options
Diagnostics Area (%Q)

%Q Start Address Starting address of the UCP
diagnostics (%Q)

Automatically
allocated on
project cre-
ation.

0 to 64843

Size Size of diagnostics area in
bytes 693

It is not possible to change
the size of the CPU diagnos-
tics area

Retaining Area (%Q)

%Q Start Address Starting address of the reten-
tive data memory (%Q) 4096 0 to 65535

Size Retain data memory size in
bytes 65536 0 to 65536

Persistent Area (%Q)

%Q Start Address Persistent data memory start
address (%Q) 20480 0 to 65534

Size Persistent data memory size
in bytes 65536 0 to 65536

CPU Parameters

Start User Application af-
ter Reset by Watchdog

When enabled, starts the
user application after reset-
ting the hardware watchdog
or restarting Runtime, but
maintaining the diagnostic
indication via WD LED and
via variables.

Disabled Enabled
Disabled

Hot Swap Mode Module hot swap mode

Enabled,
no match
consistency.
(may vary
according to
CPU model)

- Disabled, only for declared
modules
- Disabled (with match con-
sistency)
- Disabled, no match consis-
tency
- Enabled, with match con-
sistency only for declared
modules
- Enabled, with match con-
sistency
- Enabled, no match consis-
tency

62

5. CONFIGURATION

Settings Description Standard Options
Project Parameters

Enable I/O update per task
Setting to update inputs and
outputs in the tasks in which
they are used.

Unmarked
- Marked: Inputs and out-
puts are updated by the tasks
in which they are used.
- Unmarked: Inputs and out-
puts are only updated by
MainTask

Enable retain and persis-
tent variables in Function
Blocks

Setting that allows the use of
retentive and persistent vari-
ables in Function Blocks

Unmarked
- Marked: allows the use of
retentive and persistent vari-
ables in Function Blocks.
- Unmarked: Exception er-
ror may occur at startup.

Table 43: CPU settings

Notes:
Generate error on tasks watchdog consistency: This parameter was discontinued as of MasterTool IEC XE version 1.32.
Enable I/O update per task: This parameter was added as of MasterTool IEC XE version 2.01.

ATTENTION

When the initial address or the retentive or persistent data memory size are changed in the
user application, the memory is totally reallocated, what makes the retentive and persistent
variable area be clean. So the user has to be careful so as not to lose the saved data in the
memory.

ATTENTION

In situations where the symbolic persistent memory area is modified, a message will be
displayed by MasterTool IEC XE programmer, to choose the behavior for this area after
charging the modified program. The choice of this behavior does not affect the persistent
area of direct representation, which is always clean.

ATTENTION

The option Enable I/O update per task is not supported for fieldbus masters such as NX5001
module. This feature is applicable only for input and output modules present on the con-
troller local bus (main rack and expansion racks).

ATTENTION

Even when an I/O point is used in other tasks, with the Enable I/O update per task marked, it
will continue to be updated in the MainTask as well; except when all the points of the module
are used in some other task, in this case they will not be updated on MainTask anymore.

5.2.1.1. Hot Swap

Nexto Series CPUs have the possibility of I/O modules change in the bus with no need for system turn off and without
information loss. This feature is known as hot swap.

CAUTION

Nexto Series CPUs do not guarantee the persistent and retentive variables retentivity in case
the power supply or even the CPU is removed from the energized backplane rack.

63

5. CONFIGURATION

On the hot swap, the related system behavior modifies itself following the configuration table defined by the user which
represents the options below:

Disable, for declared modules only
Disabled (with startup consistency)
Disabled, without startup consistency
Enabled, with startup consistency for declared modules only
Enabled, with startup consistency
Enabled, without startup consistency

Therefore, the user can choose the behavior that the system must assume in abnormal bus situations and when the CPU is
in Run Mode. The table below presents the possible abnormal bus situations.

Situation Possible causes

Incompatible configuration - Some module connected to the bus is different from the
model that is declared in configuration.

Absent module - The module was removed from the bus.
- Some malfunctioning module is not responding to CPU
- Some bus position is malfunctioning.

Table 44: Bus Abnormal Situations

For further information regarding the diagnostics correspondent to the above described situations, see Diagnostics via
Variables.

If a module is present in a specific position in which should not exist according to the configuration modules, this module
is considered as non-declared. The options of hot swap Disabled, for Declared Modules Only and Enabled, with Startup
Consistency for Declared Modules Only do not take into consideration the modules that are in this condition.

5.2.1.1.1. Hot Swap Disabled, for Declared Modules Only

In this configuration, the CPU is immediately in Stop Mode when an abnormal bus situation (as described on Table 44)
happens. The LED DG starts to blink 4x (according to Table 45). In this case, in order to make the CPU to return to the normal
state Run, in addition to undo what caused the abnormal situation, it is necessary to execute a Reset Warm or a Reset Cold. If a
Reset Origin is carried out, it will be necessary to perform the download so that the CPU can return to the normal state (Run).
The Reset Warm, Reset Cold and Reset Origin commands can be done by MasterTool IEC XE in the Online menu.

The CPU will remain in normal Run even if find a module not declared on the bus.

5.2.1.1.2. Hot Swap Disabled

This setting does not allow any abnormal situation in the bus (as shown in Table 44) modules including undeclared and
present on the bus. The CPU enters in Stop mode, and the DG LED begins to blink 4x (as in Table 45). For these cases, to
turn the CPU back to normal Run, in addition to undo what caused the abnormal situation it is necessary to perform a Reset
Warm or Reset Cold. If a Reset Origin is done, you need to download the project so that the CPU can return to normal Run.
The Reset Warm, Reset Cold and Reset Origin commands can be done by MasterTool IEC XE in the Online menu.

5.2.1.1.3. Hot Swap Disabled, without Startup Consistency

Allows the system to start up even when some module is in an abnormal bus situation (as shown in Table 44). Abnormal
situations are reported via diagnosis.

Any modification to the bus will cause the CPU to enter Stop Mode, and the DG LED will start blinking 2x (as in Table
45). In order for the CPU to return to the normal Run state in these cases, it is necessary to perform a Reset Warm or Reset
Cold. If a Reset Origin is performed, it will be necessary to download the CPU so that the CPU can return to the normal Run
state. The Reset Warm, Reset Cold and Reset Origin commands can be done by MasterTool IEC XE in the Online menu.

5.2.1.1.4. Hot Swap Enabled, with Startup Consistency for Declared Modules Only

“Startup” is the interval between the CPU energization (or reset command or application download) until the first time
the CPU gets in Run Mode after been switched on. This configuration verifies if any abnormal bus situation has occurred (as

64

5. CONFIGURATION

described on Table 44) during the start. In affirmative case, the CPU gets in Stop Mode and the LED DG starts to blink 4x
(according to Table 45). Afterwards, in order to set the CPU in Run mode, further to fix what caused the abnormal situation, it
is necessary to execute a Reset Warm or Reset Cold command, which can be done by the MasterTool IEC XE (Online menu).
If a Reset Origin is carried out, it will be necessary to perform the download so that the CPU can return to the normal state
(Run).

After the start, if any module present any situation described in the previous table, the system will continue to work
normally and will signalize the problem via diagnostics.

If there is no other abnormality for the declared modules, the CPU will go to the normal state (Run) even if a non-declared
module is present on the bus.

ATTENTION

In this configuration when a power fault occurs (even temporally), Reset Warm Com-
mand,Reset Cold Command or a new application Download has been executed, and if any
module is in an abnormal bus situation, the CPU will get into Stop Mode and the LED DG
will start to blink 4x (according to Table 45). This is considered a startup situation.
This is the most advised option because guarantee the system integrity on its initialization
and allows the modules change with a working system.

5.2.1.1.5. Hot Swap Enabled with Startup Consistency

This setting checks whether there has been any abnormal situation in the bus (as shown in Table 44) during the startup,
even if there is no declared modules and present on the bus; if so, the CPU goes into Stop mode and the LED DG starts to blink
4x (as shown in Table 45). For these cases, to turn the CPU back to normal Run, in addition to undo what caused the abnormal
situation it is necessary to perform a Reset Warm or Reset Cold. If a Reset Origin is done, you need to download the project so
that the CPU can return to normal Run. The Reset Warm, Reset Cold and Reset Origin commands can be done by MasterTool
IEC XE in the Online menu.

5.2.1.1.6. Hot Swap Enabled without Startup Consistency

Allows the system to start working even if a module is in an abnormal bus situation (as described on Table 44). The
abnormal situations are reported via diagnostics during and after the startup.

ATTENTION

This option is advised for the system implementation phase as it allows the loading of new
applications and the power off without the presence of all configured modules.

5.2.1.1.7. How to do the Hot Swap

CAUTION

Before performing the Hot Swap it is important to discharge any possible static energy ac-
cumulated in the body. To do that, touch (with bare hands) on any metallic grounded surface
before handling the modules. Such procedure guaranties that the module static energy limits
are not exceeded.

ATTENTION

It is recommended the hot swapping diagnostics monitoring in the application control devel-
oped by the user in order to guarantee the value returned by the module is validated before
being used.

The hot swap proceeding is described below:

Unlock the module from the backplane rack, using the safety lock.
Take off the module, pulling firmly.
Insert the new module in the backplane rack.
Certify the safety lock is completely connected. If necessary, push the module harder towards to the backplane rack.

65

5. CONFIGURATION

In case of output modules is convenient the points to be disconnected when in the changing process, in order to reduce the
generation of arcs in module connector. This must be done by switching off the power supply or by forcing the output points
using the software tools. If the load is small, there is no need for disconnecting.

It is important to note that in the cases the CPU gets in Stop Mode and the DG LED starts to blink 4x (according to Table
45, due to any abnormal bus situation (as described on Table 44, the output modules have its points operation according to the
module configuration when CPU toggles from Run Mode to Stop Mode. In case of application startup, when the CPU enters
Stop Mode without having passed to the Run Mode, the output modules put their points in failure secure mode, in other words,
turn it off (0 Vdc).

Regarding the input modules, if one module is removed from energized backplane rack, the logic point’s state will remain
in the last value. In the case a connector is removed, the logic point’s state will be put in a safe state, it means zero or high
impedance.

ATTENTION

Always proceed to the substitution of one module at a time for the CPU to update the mod-
ules state.

Below, Table 45 presents the bus conditions and the Nexto CPU DG LED operation state. For further information regarding
the diagnostics LEDs states, see Diagnostics via LED section.

Condition
Enabled,
with Startup
Consistency

Enabled,
with Startup
Consistency
for Declared
Modules
Only

Enabled,
without
Startup
Consistency

Disabled

Disabled,
for declared
modules
only

Disabled,
without
Startup
Consistency

Non de-
clared
module

LED DG:
Blinks 2x
Application:
Run

LED DG:
Blinks 2x
Application:
Run

LED DG:
Blinks 2x
Application:
Run

LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 2x
Application:
Run

LED DG:
Blinks 2x
Application:
Stop

Non de-
clared
module
(startup
condition)

LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 2x
Application:
Run

LED DG:
Blinks 2x
Application:
Run

LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 2x
Application:
Run

LED DG:
Blinks 2x
Application:
Run

Absent
module

LED DG:
Blinks 2x
Application:
Run

LED DG:
Blinks 2x
Application:
Run

LED DG:
Blinks 2x
Application:
Run

LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 2x
Application:
Stop

Absent
module
(startup
condition)

LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 2x
Application:
Run

LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 2x
Application:
Run

Incompatible
configura-
tion

LED DG:
Blinks 2x
Application:
Run

LED DG:
Blinks 2x
Application:
Run

LED DG:
Blinks 2x
Application:
Run

LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 2x
Application:
Stop

66

5. CONFIGURATION

Condition
Enabled,
with Startup
Consistency

Enabled,
with Startup
Consistency
for Declared
Modules
Only

Enabled,
without
Startup
Consistency

Disabled

Disabled,
for declared
modules
only

Disabled,
without
Startup
Consistency

Incompatible
configura-
tion(startup
condition)

LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 2x
Application:
Run
or
LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 2x
Application:
Run

Duplicated
slot address

LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 2x
Application:
Stop

Non-
operational
module

LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 4x
Application:
Stop

LED DG:
Blinks 2x
Application:
Stop

Table 45: Hot Swap and Conditions Relations

Note:
Enabled, without startup consistency: When this hot-swap mode is configured, in normal situations when there’s an

incompatible module on the system’s startup, the application will go from Stop to Run. However, if that module is configured
as a NX5000 or a NX5001 and there’s a different module in that position, the application will stay in Stop.

5.2.1.2. Retain and Persistent Memory Areas

The Nexto CPU allows the use of symbolic variables and output variables of direct representation as retentive or persistent
variables.

The output variables of direct representation which will be retentive or persistent must be declared in the CPU General
Parameters, as described at CPU Configuration. Symbolic names also can be attributed to these output variables of direct
representation using the AT directive, plus using the key word RETAIN or PERSISTENT on its declaration. For example,
being %QB4096 and %QB20480 within the retentive and persistent memory, respectively:

PROGRAM UserPrg
VAR RETAIN
byRetentiveVariable_01 AT %QB4096 : BYTE;
END_VAR
VAR PERSISTENT
byPersistentVariable_01 AT %QB20480 : BYTE;
END_VAR

In case the symbolic variables declared with the AT directive are not inside the respective retentive and/or persistent
memory, errors during the code generation in MasterTool can be presented, informing that there are non-retentive or non-
persistent variables defined in the retentive or persistent memory spaces.

Regarding the symbolic variables which will be retentive or persistent, only the retentive variables may be local or global,
as the persistent symbolic variables shall always be global. For the declaration of retentive symbolic variables, it must be used
the key word RETAIN. For example, for local variables:

67

5. CONFIGURATION

PROGRAM UserPrg
VAR RETAIN

wLocalSymbolicRetentiveVariable_01 : WORD;
END_VAR

Or, for global variables, declared within a list of global variables:

VAR_GLOBAL RETAIN
wGlobalSymbolicRetentiveVariable_01 : WORD;

END_VAR

On the other hand, the persistent symbolic variables shall be declared in a Persistent Variables object, being added to the
application. These variables will be global and will be declared in the following way within the object:

VAR_GLOBAL PERSISTENT RETAIN
wGlobalSymbolicPersistentVariable_01 : WORD;

END_VAR

As of versions 1.5.1.1 the Nexto Series CPUs allow flexibility on the usage of retentive and persistent memories. This
means that the user will be able to choose the size that will be used for each type of memory, as long as the retentive and
persistent memory sum don’t exceed the total limit available in each CPU model. The total of retentive and persistent memory
available is described in the Table 7 in Memory.

If the retentive symbolic, persistent symbolic, retentive %Q and persistent %Q memory sum exceed the total available,
MasterTool will show an error during the code generation.

VAR_GLOBAL PERSISTENT RETAIN
wGlobalSymbolicPersistentVariable_01 : WORD;

END_VAR

VAR_GLOBAL RETAIN
wGlobalSymbolicRetentiveVariable_01 : WORD;

END_VAR

ATTENTION

To use the retentive and persistent memory flexibly, it’s necessary to use MasterTool IEC XE
2.03 or higher.

68

5. CONFIGURATION

5.2.1.3. Project Parameters

The CPU project parameters are related to the configuration for input/output refreshing at the task that they are used of the
project tasks and the options for reading and writing on the memory card.

Configuration Description Default Options

Enable I/O update per task
Updates the input and output
in the tasks where they are
used

Unmarked - Marked
- Unmarked

Enable retain and persis-
tent variables in Function
Blocks

Setting to allow the use of
retentive and persistent vari-
ables in function blocks

Unmarked - Marked
- Unmarked

Memory Card

Copy Project from CPU to
Memory Card

Copy the project from the
CPU internal memory to the
memory card

Disabled
- Enabled: Configuration en-
abled
- Disabled: Configuration
disabled

Password to Copy Project
from CPU to Memory
Card

Password for coping the
project from the CPU inter-
nal memory to memory card

- 6 digits password (0 to
999999)

Copy Project from Mem-
ory Card to CPU

Copy the project from the
memory card to the CPU in-
ternal memory

Disabled
- Enabled: Configuration en-
abled
- Disabled: Configuration
disabled

Password to Copy Project
from Memory Card to
CPU

Password for coping the
project from the memory
card to the CPU internal
memory

- 6 digits password (0 to
999999)

Table 46: CPU Project Parameters

ATTENTION

After setting the project copy possibilities and having created the boot application, it must
be found the “Application.crc” file in order the configurations concerning the memory card
have effect. The search can be done at Select the Application.crc through the Find File... key,
as can be seen on Figure 132.

5.2.2. External Event Configuration

The external event is a feature available in the CPU which enables a digital input, configured by the user, when activated,
triggers the execution of a specific task with user-defined code. Thus, it is possible that through this input, when triggered,
interrupt the execution of the main application and run the set application in the task ExternInterruptTask00, which has higher
priority than other application tasks. Because the inputs and outputs are updated in the context of the MainTask task, the
External Event task does not have the input and output data updated at the time of its call. If necessary, use the I/O update
functions.

It is also important to note that, to avoid the generation of several events in a very short space of time, that was limited
the treatment of this type of event in every 10 ms, i.e., if two or more events occurs during 10 ms after the first event, the
second and subsequent events are discarded. This limitation is imposed to prevent an external event that is generated in an
uncontrolled way, do not block the CPU, since the task has a higher priority over the others.

To configure an external event is necessary to insert a digital input module and perform the configurations described below,
in the CPU, through the MT8500 programming tool software.

69

5. CONFIGURATION

Figure 43: Configuration Screen for External Event in CPU

In the configuration external event tab, within the CPU settings, it is necessary to select which module will be the interrup-
tion source, in the field Module Address: Name. Then it must be selected which input of this module will be responsible for
the event generation (IO_EVT_0). In this selection the options described in the figure below can be chosen.

Figure 44: NX1001 Module External Event Source Options

In addition to configuring the CPU it is required to configure the task responsible for executing user-defined actions. In
this case the user must use a project profile that supports external events. For further information see the section Project
Profiles. In the configuration screen of the ExternInterruptTask00 (figure below), it is necessary to select the event source in
the corresponding field. In this case, IO_EVT_0 should be selected since the other origin sources (IO_EVT_1 to IO_EVT_7)
are not available. In the sequence, the field POU should be checked if the right POU is selected, because it will be used by the
user to define the actions to be performed when an external event occurs.

70

5. CONFIGURATION

Figure 45: ExternInterruptTask00 Configuration Screen

5.2.3. SOE Configuration

The SOE (Sequence of Events) is responsible for the generation of a sequence of digital events. Through the SOE it is
possible to analyze the historic behavior of the system variables mapped in its monitoring area. The SOE is an exclusive
service available for the NX3020 and NX3030 models.

Once the SOE service has been enabled, the CPU starts to behave as a DNP3 server, thus it is necessary the support to
the DNP3 protocol by the client for the use of this resource. The supported object types as well as the function codes and the
qualifiers can be found at Annex. DNP3 Interoperability.

The SOE service uses the %Q addresses in order to form its base of static data. For it, it has to be set a continuous area of
%Q memory where the user will inform its beginning and size. For redundant projects the %Q area also has to be redundant
so that in the switchover moment the DNP3 server data base is kept.

The DNP3 first object address will always be 0, corresponding to %QBxxxx’s bit 0, where xxxx is the %Q initial address.
Thus, once defined the static data base, the user must copy each digital point which should generate events within the %Q

continuous area. The maximum number of points which can be copied is 8000.
For the events configuration, it is necessary to inform only the size of the events queue. The SOE uses a special and

dedicated queue (not the one described on Protocols Configuration section), which is persistent and redundant, so the events
will not be lost in the switchover moment neither in case of a power supply failure. In case an overflow occurs in the events
queue, the oldest events will be overwritten. In case in one single cycle are generated more events than what is supported by
the queue, its generation is interrupted and the overflow diagnostic is turned on (SOE[x].bOverflowStatus). For example, if
100+n bits vary in a 100 events configuration, causing a dispose of n events.

The SOE will run in the MainTask context, starting already at the first cycle. The SOE will run at the end of each MainTask
cycle, comparing the mapped bits in order to detect transitions occurred in the cycle. In this way, every cycle in which the events
are generated, an increase of time in this cycle of the MainTask will occur. In the worst case (1000 events, being generated
only 1000 and discarded the remaining ones), this influence will be approximately of 5 ms. Therefore, for an application with
the SOE enabled, the user will have to take into account this time when setting the parameters of watchdog time and interval
of the MainTask.

For the use of it the user must set the following parameters in the SOE Configuration tab:

71

5. CONFIGURATION

Figure 46: Events Sequence Configuration

Configuration Description Default Value Options
General Configuration

SOE Service Enables the SOE Disabled Enabled
Disabled

Ethernet Interface Selects the used interface NET 1 NET 1
NET 2

Keep Alive Interval (ms) Keep alive (ms) interval
messages 10000 0 to 4294967295

Events Queue Size Events queue size 1000 100 to 1000
Communication Points

Offset of %Q Start Ad-
dress Initial address for static data 20480 Any %Q area address can be

used

Size of Area %Q Memory size to be used by
the static data (%Q) 1000 1 to 1000

Client Configuration

Number of Clients Defines the number of
clients 2 1, 2

TCP Port for Client 1 Selects the communication
port for the first client 20000 1 to 65535

TCP Port for Client 2 Selects the communication
port for the second client 20001 1 to 65535

Table 47: SOE Configuration

72

5. CONFIGURATION

Notes:
Data Memory Size: The data memory size reserved to be used by the static data will always be twice the value set as the

second half of the memory area is used to store the previous variables values of the first half.
Keep Alive: While it is connected to a client, keep alive messages will be sent in intervals according to what has been set.

If the client does not respond to these messages, the connection is closed. That is, a connection between client and server may
take a time equal to the interval set to be closed in case of error.

In the advanced options (Advanced... key) it is possible to set the communication addresses regarding to the DNP3 protocol.

Configuration Description Default
Value Options

DNP3 Source Address Origin Address (PLC) 4 0 to 65519
DNP3 Destination Address
of Client 1 Address of the first client 3 0 to 65519

DNP3 Destination Address
of Client 2 Address of the second client 3 0 to 65519

Table 48: SOE Advanced Configurations

Note:
DNP3 Address: The DNP3 addresses from the range 65520 to 65535 cannot be set at the origin or at a destiny as they are

used for messages in broadcast.

ATTENTION

The DNP3 Data Link messages are not used by the Nexto Series CPUs as the standard does
not recommend its use them in TCP/IP communications.

5.2.4. Time Synchronization

For the time synchronization, Nexto Series CPUs use the SNTP (Simple Network Time Protocol) or the synchronism
through IEC 60870-5-104.

To use the time sync protocols, the user must set the following parameters at Synchronism tab, accessed through the CPU,
in the device tree:

Figure 47: SNTP Configuration

73

5. CONFIGURATION

Configuration Description Default Options

Time Zone (hh:mm)
Time zone of the user loca-
tion. Hours and minutes can
be inserted.

-3:00 12:59 to +13:59

SNTP Service Enables the SNTP service. Disabled Disabled
Enabled

Period for SNTP Synchro-
nization (x1 s)

Time interval of the syn-
chronization requests (sec-
onds).

60 1 to 255

Minimum Error Before
Clock Update (x1 ms)

Offset value acceptable be-
tween the server and client
(milliseconds).

100 1 to 65519

IP Address of First SNTP
Server

IP Address of the primary
SNTP server. 192.168.15.10 1.0.0.1 to 223.255.255.254

IP Address of Second Sec-
ond SNTP Server

IP Address of the secondary
SNTP server. 192.168.15.11 1.0.0.1 to 223.255.255.254

Table 49: SNTP Configurations

Notes:
SNTP Server: It is possible to define a preferential address and another secondary one in order to access a SNTP server

and, therefore, to obtain a synchronism of time. If both fields are empty, the SNTP service will remain disabled.
Time zone: The time zone configuration is used to convert the local time into UTC and vice versa. While some sync

sources use the local time (IEC 60870-5-104 protocol, SetDateAndTime Function), others use the UTC time (SNTP). The
UTC time is usually used to stamp events (DNP3, IEC 60870-5-104 and MasterTool Device Log), while the local time is used
by an others CPU’s features (GetDateAndTime function, OTD date and time info).

It is allowed to enable more than one sync source on the project, however the device doesn’t supports the synchronism from
more than one sync source during operation. Therefore there are implicitly defined a priority mechanism. The synchronism
through SNTP is more prioritary than through IEC 60870-5-104 protocol. So, when both sources are enabled and SNTP server
is present, it is going to be responsible for the CPU’s clock sync, and any sync command from IEC 60870-5-104 is going to be
denied.

5.2.4.1. IEC 60870-5-104

In case the synchronism is through IEC 60870-5-104 protocol, the user must enable the time sync at the protocol con-
figuration screen to receive the clock synchronization. To set this option on the device, check the parameter Enable Time
Synchronization available at the Application Layer section.

ATTENTION

If the PLC receives a time sync command from the control center, and this option is disabled,
an error answer will be returned to that command. But if this option is enabled then a success
message will be returned to the control center, even that the sync command be discarded for
there is another synchronism method active with higher priority.

This synchronism method should be used only as an auxiliary synchronism method, once the precision of the clock sync
process depends a lot on delays and traffic on the network, as well as the processor load on the CPU, as this mechanism is
treated by a low priority task.

5.2.4.2. SNTP

When enabled, the CPU will behave as a SNTP client, which is, it will send requests of time synchronization to a SNT-
P/NTP server which can be in the local net or in the internet. SNTP client works with a resolution of 1 ms, but with an
accuracy of 100 ms. The precision of the time sync through SNTP depends on the protocol configurations (minimum error to
clock update) and the features of the Ethernet network where it is, if both client and server are in the same network (local) or
in different networks (remote). Typically the precision is in tens of milliseconds order.

The CPU sends the cyclic synchronization requests according to the time set in the Period for SNTP Synchronization field.
In the first synchronization attempt, just after the service start up, the request is for the first server set in the first server IP

74

5. CONFIGURATION

address. In case it does not respond, the requests are directed to the second server set in the second server IP address providing
a redundancy of SNTP servers. In case the second server does not respond either, the same process of synchronization attempt
is performed again but only after the Period of Synchronization having been passed. In other words, at every synchronization
period the CPU tries to connect once in each server, it tries the second server in case the first one does not respond. The waiting
time for a response from the SNTP server is defined by default in 5 s and it cannot be modified.

If, after a synchronization, the difference between the current time of the CPU and the one received by the server is higher
than the value set in the Minimum Error Before Clock Update parameter, the CPU time is updated. SNTP uses the time in the
UTC (Universal Time Coordinated) format, so the Time Zone parameter needs to be set correctly so the time read by the SNTP
will be properly converted to a local time.

The execution process of the SNTP client can be exemplified with the following steps:

1. Attempt of synchronization through the first server. In case the synchronization occurs successfully, the CPU waits the
time for a new synchronization (Period for SNTP Synchronization) and will synchronize again with this server, using it
as a primary server. In case of failure (the server does not respond in less than 5 s) step 2 is performed.

2. Attempt of synchronization through the second server. In case the synchronization occurs successfully, the CPU waits
the time for a new synchronization (Period for SNTP Synchronization) and will try to synchronize with this server using
the primary server. In case of failure (the server does not respond in less than 5 s) the time relative to the Synchronization
Period is waited and step 1 is performed again.

As the waiting time for the response of the SNTP server is 5 s, the user must pay attention to lower than 10 s values for the
Synchronization Period. In case the primary server does not respond, the time for the synchronization will be the minimum
of 5 s (waiting for the primary server response and the synchronization attempt with secondary server). In case neither the
primary server nor the secondary one responds, the synchronization time will be 10 s minimum (waiting for the two servers
response and the new connection with first server attempt).

Depending on the SNTP server’s subnet, the client will use the Ethernet interface that is in the corresponding subnet to
make the synchronization requests. If there is no interface configured on the same subnet as the server, the request can be made
by any interface that can find a route to the server.

ATTENTION

The SNTP Service depends on the user application only for its configuration. Therefore, this
service will be executed even when the CPU is in STOP or BREAKPOINT modes, as long
as there is an application in the CPU with the SNTP client enabled and correctly configured.

5.2.4.3. Daylight Saving Time (DST)

The DST configuration must be done indirectly through the function SetTimeZone, which changes the time zone applied to
the RTC. In the beginning of the DST, it has to be used a function to increase the time zone in one hour. At the end of the DST,
it is used to decrease it in one hour.

For further information, see the section RTC Clock.

5.2.5. Internal Points

A communication point is storage on the CPU memory under form of two distinct variables. One represents the point’s
value (type BOOL, BYTE, WORD, etc. . .), while another, represents its quality (type QUALITY). Internal Points are those
which the value and the quality are calculated internally by the user application, that is, they don’t have an external origin like
occur with points linked to IEDs (Communication drivers of type Master/Client) or to local I/O modules.

ATTENTION

Different from what happen with I/O modules declared on local bus, which have its own
quality variables created by MasterTool (IOQualities GVL) and auto updated by the CPU,
I/O modules declared on PROFIBUS remotes don’t have.
It is user responsibility to declare PROFIBUS point’s quality variables, the association of
these quality variables with the value variables at Internal Points tab, as well as genera-
tion and update of the quality variables value, from the existents PROFIBUS diagnostics:
PROFIBUS I/O modules, PROFIBUS head and PROFIBUS Master.

This Internal Points configuration tab’s function is to relate the variable which represents a point’s value with the one
which represents its quality. It must be used to relate value and quality variables internally created on the PLC program (as in
a GVL), which ones typically will be posteriorly mapped to a communication driver, of type Server, for communication with
the control center.

75

5. CONFIGURATION

ATTENTION

If a value variable doesn’t own a related quality variable, it will be reported as default a
constant good quality (no significant indication) when the value variable is reported to a
client or control center.

In this way, this tab purpose isn’t to create or declare internal points. To do that, just declare value and/or quality variables
in a GVL and map it on the communication driver.

The internal points configuration, viewed on the figure below, follow the parameters described on table below. It’s possible
to configure up to 5120 entries on Internal Points table.

Figure 48: Internal Points Configuration Screen

Configuration Description Default Options

Variable Name Symbol variable which stor-
age the internal point value -

Accept variables of type
BOOL, WORD, DWORD,
LWORD, INT, DINT, LINT,
UINT, UDINT, ULINT,
REAL, LREAL or DBP.
The variable can be simple,
array or array’s element and
can be part of a struct.

Quality Symbol variable which stor-
age the internal point quality -

QUALITY type variables
(LibRtuStandard), which
can be simple, array or
array’s element and can be
part of a struct.

Table 50: Internal Points Configuration

The figure below show an example of two internal points configuration:

76

5. CONFIGURATION

Figure 49: Internal Points Configuration Example

5.2.5.1. Quality Conversions

The internal point’s quality is a trust level information about the value stored on that point. The quality may inform, for
example, that the value stored is out of range, or yet that it is valid, but low trusted.

The Standards IEC 61850, DNP3 and IEC104 have their own formats to representation of point’s quality information. The
Nexto Series, by its turn, have its own quality format (but quite similar to IEC 61850) called Internal Quality. This format is
defined by type QUALITY (library LibRtuStandard) and it is used internally to quality storage, allowing to be done conversion
between protocols without information loss.

When it is done a mapping of a same communication point between two drivers, the quality conversion is automatically
realized in two steps. For example: in case a communication point is mapped from a DNP3 Client driver to a IEC104 Server
driver, first the quality will be converted from DNP3 format to internal format (and stored internally in the CPU), after that it
will be converted from the internal format to IEC104 format.

The following tables define the protocols own formats conversion to internal format. Case it is necessary to consult the
conversion between protocols, it is needed to analyze in two steps, looking each of the tables to internal format and after
correlating them.

ATTENTION

In case of internal points mapped to communication drivers, it is not recommended to modify
the value of quality flags that dont have a correspondent on the given protocol (i.e, flags that
are not described on the following tables). This will result on generation of events equal
to the previous one (but with a more recent timestamp) and, this way, depending on the
configuration selected for the transmission mode of analog inputs events, it could overwrite
the previous event if this one was not delivered to the control center yet.

5.2.5.1.1. Internal Quality

This is the QUALITY structure. The table shows detailed each of its components.

Bit Name Type Description

0 FLAG_RESTART BOOL
The RESTART flag indicates that the data
haven’t been updated by the field since the
device’s reset.

1 FLAG_COMM_FAIL BOOL
Indicates there is a communication failure
on the way between the data origin device
and the reports device.

77

5. CONFIGURATION

Bit Name Type Description

2 FLAG_REMOTE_SUBSTITUTED BOOL If TRUE the data values are overwritten in
the remote communication devices.

3 FLAG_LOCAL_SUBSTITUTED BOOL

If TRUE the data value is overwritten by
the device which generated this flag. This
behavior might occur due to a working in
diagnostic or temporary due to human in-
tervention.

4 FLAG_FILTER BOOL

Flag used to signalize and prevent the event
communication channel overload, as oscil-
lations (rapid changes) on the digital in-
puts.

5 FLAG_OVERFLOW BOOL

This flag should indicates a quality prob-
lem, that the value, of the attribute to which
the quality has been associated, is beyond
representation.

6 FLAG_REFERENCE_ERROR BOOL
This flag should identify that the value can-
not be correct due to out of calibration ref-
erence.

7 FLAG_INCONSISTENT BOOL This flag should identify that an evaluation
function has found an inconsistency.

8 FLAG_OUT_OF_RANGE BOOL

This flag should indicates a quality prob-
lem that the attribute to which the quality
has been associated is beyond the prede-
fined values capacity.

9 FLAG_INACCURATE BOOL
This flag should indicates that the value
doesn’t attend the declared precision of the
source.

10 FLAG_OLD_DATA BOOL
A value seems to be outdated. In case an
update doesn’t occur during a specific time
period.

11 FLAG_FAILURE BOOL
This flag should indicates that a watch
function detected an internal or external
failure.

12 FLAG_OPERATOR_BLOCKED BOOL Update blocked by operator.

13 FLAG_TEST BOOL

This must be an additional identifier which
can be used to classify a value being that
a test value which won’t be used to opera-
tional ends.

14-15 RESERVED - Reserved

16-17 VALIDITY QUALITY_VALIDITY

0 – Good (Trustfull value, means that
there is no abnormal conditions)
1 – Invalid (Value doesn’t match the IED’s
value)
2 – Reserved (Reserved)
3 – Questionable (Present value might be
not the same from the IED)

Table 51: QUALITY Structure

78

5. CONFIGURATION

5.2.5.1.2. IEC 60870-5-104 Conversion

The tables below presents the digital, analog, Step Position, Bitstring and counters internal point’s conversion to IEC
60870-5-104 of Nexto Series available to MT8500.

Internal Points -> IEC 60870-5-104 Digital
Internal Quality

Flags VALIDITY IEC 60870-5-104 Quality
FLAG_RESTART ANY NOT TOPICAL

FLAG_COMM_FAIL ANY NOT TOPICAL
FLAG_REMOTE_SUBSTITUTED ANY SUBSTITUTED
FLAG_LOCAL_SUBSTITUTED ANY SUBSTITUTED

FLAG_FILTER ANY -
FLAG_OVERFLOW ANY -

FLAG_REFERENCE_ERROR ANY -
FLAG_INCONSISTENT ANY -

FLAG_OUT_OF_RANGE ANY -
FLAG_INACCURATE ANY -

FLAG_OLD_DATA ANY NOT TOPICAL
FLAG_FAILURE ANY INVALID

FLAG_OPERATOR_BLOCKED ANY BLOCKED
FLAG_TEST ANY -

ANY VALIDITY_INVALID INVALID

Table 52: Digital Points Conversion Internal to IEC 60870-5-104

Internal Points -> IEC 60870-5-104 Analog, Step Position and Bitstring
Internal Quality

Flags VALIDITY IEC 60870-5-104 Quality
FLAG_RESTART ANY NOT TOPICAL

FLAG_COMM_FAIL ANY NOT TOPICAL
FLAG_REMOTE_SUBSTITUTED ANY SUBSTITUTED
FLAG_LOCAL_SUBSTITUTED ANY SUBSTITUTED

FLAG_FILTER ANY -
FLAG_OVERFLOW ANY OVERFLOW

FLAG_REFERENCE_ERROR ANY INVALID
FLAG_INCONSISTENT ANY INVALID

FLAG_OUT_OF_RANGE ANY OVERFLOW
FLAG_INACCURATE ANY INVALID

FLAG_OLD_DATA ANY NOT TOPICAL
FLAG_FAILURE ANY INVALID

FLAG_OPERATOR_BLOCKED ANY BLOCKED
FLAG_TEST ANY -

ANY VALIDITY_INVALID INVALID

Table 53: Analog, Step Position and Bitstring Points Conversion Internal to IEC 60870-5-104

79

5. CONFIGURATION

Internal Points -> IEC 60870-5-104 Counters
Internal Quality

Flags VALIDITY IEC 60870-5-104 Quality
FLAG_RESTART ANY -

FLAG_COMM_FAIL ANY -
FLAG_REMOTE_SUBSTITUTED ANY -
FLAG_LOCAL_SUBSTITUTED ANY -

FLAG_FILTER ANY -
FLAG_OVERFLOW ANY OVERFLOW

FLAG_REFERENCE_ERROR ANY -
FLAG_INCONSISTENT ANY -

FLAG_OUT_OF_RANGE ANY -
FLAG_INACCURATE ANY -

FLAG_OLD_DATA ANY -
FLAG_FAILURE ANY INVALID

FLAG_OPERATOR_BLOCKED ANY -
FLAG_TEST ANY -

ANY VALIDITY_INVALID INVALID

Table 54: Counters Conversion Internal to IEC 60870-5-104

5.2.5.1.3. MODBUS Internal Quality

As the MODBUS standard don’t specify quality types to each point, but for help on use of each point’s communication
diagnostic, MasterTool allows the quality variables mapping, through an internal own structure, to each MODBUS point. The
table below describes the quality types that each MODBUS point can assume.

Resulting Quality Resulting VALIDITY Description

FLAG_RESTART VALIDITY_INVALID Initial value. The point was
never updated.

- VALIDITY_GOOD Communication OK. The
point is updated.

FLAG_COMM_FAIL AND
FLAG_RESTART VALIDITY_INVALID Communication error. The

point never was updated.

FLAG_COMM_FAIL AND
FLAG_OLD_DATA VALIDITY_QUESTIONABLE

An error has occurred but
the point was updated and
now has an old value.

FLAG_FAILURE AND
FLAG_RESTART VALIDITY_INVALID

It has received an exception
response and the point kept
its initial value.

FLAG_FAILURE AND
FLAG_OLD_DATA VALIDITY_QUESTIONABLE

It has received an exception
response, but the point has a
valid old value.

FLAG_RESTART AND
FLAG_OLD_DATA VALIDITY_QUESTIONABLE Device stopped. The point

has an old value.

Table 55: MODBUS Quality

80

5. CONFIGURATION

5.2.5.1.4. Local Bus I/O Modules Quality

To help in the use of each I/O point’s diagnostic, MasterTool automatically creates a quality structure to each local bus
module used on the PLC project, through an own internal structure accessible by structure QUALITY, available in GVL
IOQualities.

The table below describes the quality types to each input and output point.
For further information look at GVL IOQualities.

Diagnostics Resulting Quality Resulting VALIDITY Description

Don’t care FLAG_RESTART VALIDITY_INVALID
The quality has this value be-
fore have been read or written
for the first time.

None - VALIDITY_GOOD Communication OK. The point
is updated.

None FLAG_OLD_DATA AND
FLAG_FAILURE VALIDITY_QUESTIONABLE

Non-operational module. How-
ever, the data have been read or
written at least once.

bOverRange OR bUnder-
Range FLAG_OUT_OF_RANGE VALIDITY_INVALID The value is above or below the

module’s input allowed range.
bInputNotEnable OR bOut-
putNotEnable FLAG_OPERATOR_BLOCKED VALIDITY_INVALID Input/Output not enable.

bOpenLoop FLAG_FAILURE VALIDITY_INVALID Open loop in input module.
bFatalError FLAG_FAILURE VALIDITY_INVALID Hardware fatal failure.

bNoExternalSupply FLAG_FAILURE VALIDITY_INVALID External power supply is under
operational minimum limit.

bShortCircuit OR bOutput-
ShortCircuit FLAG_FAILURE VALIDITY_INVALID Output short-circuit.

bCalibrationError FLAG_INACCURATE VALIDITY_INVALID Calibration error.
bColdJunctionSensorError FLAG_INACCURATE VALIDITY_INVALID Cold junction sensor error.

Table 56: I/O Modules Quality

5.2.5.1.5. PROFIBUS I/O Modules Quality

Different from local bus, MasterTool doesn’t automatically create the PROFIBUS modules quality structures, and neither
the PLC update such structures. Therefore the creation and cyclic update of PROFIBUS modules quality is user responsibility.

To help on the development of such applications, there are following practical examples, in ST language, for the main
PROFIBUS modules (DI, DO, AI, AO), based on Nexto Serie’s PROFIBUS slaves (NX5110). The user should feel encouraged
to make any needed adaptation and change to fit to its application.

ATTENTION

For the routines, presented in sequence, correct functioning it is necessary to enable Status
in Diagnose in the PROFIBUS slaves.

The development of PROFIBUS I/O modules quality points update routine must began from quality variables declaration
and initialization, from a GVL:

VAR_GLOBAL
QUALITY_PB_NX1005_I: LibDataTypes.QUALITY:= (VALIDITY:= VALIDITY_INVALID,

FLAGS:= (FLAG_RESTART:= TRUE));
QUALITY_PB_NX1005_O: LibDataTypes.QUALITY:= (VALIDITY:= VALIDITY_INVALID,

FLAGS:= (FLAG_RESTART:= TRUE));
QUALITY_PB_NX6000: LibDataTypes.QUALITY:= (VALIDITY:= VALIDITY_INVALID,

FLAGS:= (FLAG_RESTART:= TRUE));
QUALITY_PB_NX6100: LibDataTypes.QUALITY:= (VALIDITY:= VALIDITY_INVALID,

FLAGS:= (FLAG_RESTART:= TRUE));
END_VAR

81

5. CONFIGURATION

5.2.5.1.6. PROFIBUS Digital Inputs Quality

// PROFIBUS digital input quality update, module NX1005

// In communication success case with PROFIBUS slave (address = 99) ...
IF DG_NX5001.tMstStatus.abySlv_State.bSlave_99 = TRUE THEN

// Waits the PROFIBUS slave become apt to exchange data and diagnostics
// (It is necessary to wait, avoiding invalid quality generation)
IF DG_NX5110.tPbusHeadA.tStatus1.bStation_Non_Existent = FALSE AND

DG_NX5110.tPbusHeadA.tStatus1.bStation_Not_Ready = FALSE AND
DG_NX5110.tPbusHeadA.wIdentNumber > 0 THEN
QUALITY_PB_NX1005_I.FLAGS.FLAG_COMM_FAIL:= FALSE;
// If there is a module present on the bus (slot = 2) and
// if there is no modules config problem (general) and
// if there is no config problem in that module (specific) and
// if there is no fatal error identification by the module ...
IF (DG_NX5110.tPbusHeadA.dwModuleNotPresent AND SHL(1, 2)) = 0 AND

DG_NX5110.tPbusHeadA.tSummarized.bConfigMismatch = FALSE AND
DG_NX1005_24_Vdc_8_DO_Trans_8_DI.tGeneral.bConfigMismatch = FALSE AND
DG_NX1005_24_Vdc_8_DO_Trans_8_DI.tGeneral.bFatalError = FALSE THEN
QUALITY_PB_NX1005_I.VALIDITY:= VALIDITY_GOOD;
QUALITY_PB_NX1005_I.FLAGS.FLAG_RESTART:= FALSE;
QUALITY_PB_NX1005_I.FLAGS.FLAG_FAILURE:= FALSE;
QUALITY_PB_NX1005_I.FLAGS.FLAG_OLD_DATA:= FALSE;

ELSE
QUALITY_PB_NX1005_I.VALIDITY:= VALIDITY_INVALID;
QUALITY_PB_NX1005_I.FLAGS.FLAG_FAILURE:= TRUE;
// If the point have ever been updated once ...
IF NOT QUALITY_PB_NX1005_I.FLAGS.FLAG_RESTART THEN

QUALITY_PB_NX1005_I.FLAGS.FLAG_OLD_DATA:= TRUE;
END_IF

END_IF
END_IF

// In PROFIBUS communication failure with the PROFIBUS slave ...
ELSE

QUALITY_PB_NX1005_I.VALIDITY:= VALIDITY_INVALID;
QUALITY_PB_NX1005_I.FLAGS.FLAG_COMM_FAIL:= TRUE;
QUALITY_PB_NX1005_I.FLAGS.FLAG_FAILURE:= FALSE;
// If the point have ever been updated once ...
IF NOT QUALITY_PB_NX1005_I.FLAGS.FLAG_RESTART THEN

QUALITY_PB_NX1005_I.FLAGS.FLAG_OLD_DATA:= TRUE;
END_IF

END_IF

5.2.5.1.7. PROFIBUS Digital Output Quality

// PROFIBUS digital output quality update, module NX1005

// In communication success case with PROFIBUS slave (address = 99) ...
IF DG_NX5001.tMstStatus.abySlv_State.bSlave_99 = TRUE THEN
// Waits the PROFIBUS slave become apt to exchange data and diagnostics
// (It is necessary to wait, avoiding invalid quality generation)

82

5. CONFIGURATION

IF DG_NX5110.tPbusHeadA.tStatus1.bStation_Non_Existent = FALSE AND
DG_NX5110.tPbusHeadA.tStatus1.bStation_Not_Ready = FALSE AND
DG_NX5110.tPbusHeadA.wIdentNumber > 0 THEN

QUALITY_PB_NX1005_O.FLAGS.FLAG_COMM_FAIL:= FALSE;
// If there is a module present on the bus (slot = 2) and
// if there is no modules config problem (general) and
// if there is no config problem in that module (specific) and
// if there is no fatal error identification by the module and
// if there is no outputs short circuit indication and
// if there is no external power supply missing indication ...
IF (DG_NX5110.tPbusHeadA.dwModuleNotPresent AND SHL(1, 2)) = 0 AND

DG_NX5110.tPbusHeadA.tSummarized.bConfigMismatch = FALSE AND
DG_NX1005_24_Vdc_8_DO_Trans_8_DI.tGeneral.bConfigMismatch = FALSE AND
DG_NX1005_24_Vdc_8_DO_Trans_8_DI.tGeneral.bFatalError = FALSE AND
DG_NX1005_24_Vdc_8_DO_Trans_8_DI.tDetailed.bOutputShortCircuit = FALSE AND
DG_NX1005_24_Vdc_8_DO_Trans_8_DI.tDetailed.bNoExternalSupply = FALSE THEN

QUALITY_PB_NX1005_O.VALIDITY:= VALIDITY_GOOD;
QUALITY_PB_NX1005_O.FLAGS.FLAG_RESTART:= FALSE;
QUALITY_PB_NX1005_O.FLAGS.FLAG_FAILURE:= FALSE;
QUALITY_PB_NX1005_O.FLAGS.FLAG_OLD_DATA:= FALSE;

ELSE
QUALITY_PB_NX1005_O.VALIDITY:= VALIDITY_INVALID;
QUALITY_PB_NX1005_O.FLAGS.FLAG_FAILURE:= TRUE;
// If the point have ever been updated once ...
IF NOT QUALITY_PB_NX1005_O.FLAGS.FLAG_RESTART THEN

QUALITY_PB_NX1005_O.FLAGS.FLAG_OLD_DATA:= TRUE;
END_IF

END_IF
END_IF
// In PROFIBUS communication failure with the PROFIBUS slave ...
ELSE
QUALITY_PB_NX1005_O.VALIDITY:= VALIDITY_INVALID;
QUALITY_PB_NX1005_O.FLAGS.FLAG_COMM_FAIL:= TRUE;
QUALITY_PB_NX1005_O.FLAGS.FLAG_FAILURE:= FALSE;
// If the point have ever been updated once ...
IF NOT QUALITY_PB_NX1005_O.FLAGS.FLAG_RESTART THEN

QUALITY_PB_NX1005_O.FLAGS.FLAG_OLD_DATA:= TRUE;
END_IF
END_IF

5.2.5.1.8. PROFIBUS Analog Inputs Quality

// PROFIBUS analog input quality update, module NX6000

// In communication success case with PROFIBUS slave (address = 99) ...
IF DG_NX5001.tMstStatus.abySlv_State.bSlave_99 = TRUE THEN
// Waits the PROFIBUS slave become apt to exchange data and diagnostics
// (It is necessary to wait, avoiding invalid quality generation)
IF DG_NX5110.tPbusHeadA.tStatus1.bStation_Non_Existent = FALSE AND

DG_NX5110.tPbusHeadA.tStatus1.bStation_Not_Ready = FALSE AND
DG_NX5110.tPbusHeadA.wIdentNumber > 0 THEN

QUALITY_PB_NX6000.FLAGS.FLAG_COMM_FAIL:= FALSE;

83

5. CONFIGURATION

// If there is a module present on the bus (slot = 3) and
// if there is no modules config problem (general) and
// if there is no config problem in that module (specific) and
// if there is no fatal error identification by the module and
// if there is no calibration error indication and
// if there is no over/under range error indication and
// if there is no error indication of input in open loop ...
IF (DG_NX5110.tPbusHeadA.dwModuleNotPresent AND SHL(1, 3)) = 0 AND

DG_NX5110.tPbusHeadA.tSummarized.bConfigMismatch = FALSE AND
DG_NX6000_8_AI_Voltage_Current.tGeneral.bConfigMismatch = FALSE AND
DG_NX6000_8_AI_Voltage_Current.tGeneral.bFatalError = FALSE AND
DG_NX6000_8_AI_Voltage_Current.tGeneral.bCalibrationError = FALSE AND
DG_NX6000_8_AI_Voltage_Current.tDetailed.tAnalogInput_00.bOverRange = FALSE
AND

DG_NX6000_8_AI_Voltage_Current.tDetailed.tAnalogInput_00.bUnderRange = FALSE
AND

DG_NX6000_8_AI_Voltage_Current.tDetailed.tAnalogInput_00.bOpenLoop = FALSE
THEN
QUALITY_PB_NX6000.VALIDITY:= VALIDITY_GOOD;
QUALITY_PB_NX6000.FLAGS.FLAG_RESTART:= FALSE;
QUALITY_PB_NX6000.FLAGS.FLAG_FAILURE:= FALSE;
QUALITY_PB_NX6000.FLAGS.FLAG_OLD_DATA:= FALSE;
QUALITY_PB_NX6000.FLAGS.FLAG_INACCURATE:= FALSE;
QUALITY_PB_NX6000.FLAGS.FLAG_OUT_OF_RANGE:= FALSE;

ELSE
// Condition to turns on imprecision indication
// (check first, because invalid validity must prevail)
IF DG_NX6000_8_AI_Voltage_Current.tGeneral.bCalibrationError = TRUE THEN

QUALITY_PB_NX6000.VALIDITY:= VALIDITY_QUESTIONABLE;
QUALITY_PB_NX6000.FLAGS.FLAG_INACCURATE:= TRUE;

ELSE
QUALITY_PB_NX6000.FLAGS.FLAG_INACCURATE:= FALSE;

END_IF
// Condition to turns on out of range indication
// (check first, because invalid validity must prevail)
IF DG_NX6000_8_AI_Voltage_Current.tDetailed.tAnalogInput_00.bOverRange =
TRUE OR

DG_NX6000_8_AI_Voltage_Current.tDetailed.tAnalogInput_00.bUnderRange =
TRUE THEN

QUALITY_PB_NX6000.VALIDITY:= VALIDITY_QUESTIONABLE;
QUALITY_PB_NX6000.FLAGS.FLAG_OUT_OF_RANGE:= TRUE;

ELSE
QUALITY_PB_NX6000.FLAGS.FLAG_OUT_OF_RANGE:= FALSE;

END_IF
// Condition to turns on general failure indication (priority)
IF (DG_NX5110.tPbusHeadA.dwModuleNotPresent AND SHL(1, 3)) > 0 OR

DG_NX5110.tPbusHeadA.tSummarized.bConfigMismatch = TRUE OR
DG_NX6000_8_AI_Voltage_Current.tGeneral.bConfigMismatch = TRUE OR
DG_NX6000_8_AI_Voltage_Current.tGeneral.bFatalError = TRUE OR
DG_NX6000_8_AI_Voltage_Current.tDetailed.tAnalogInput_00.bOpenLoop = TRUE

THEN
QUALITY_PB_NX6000.VALIDITY:= VALIDITY_INVALID;
QUALITY_PB_NX6000.FLAGS.FLAG_FAILURE:= TRUE;
// If the point have ever been updated once ...
IF NOT QUALITY_PB_NX6000.FLAGS.FLAG_RESTART AND

84

5. CONFIGURATION

NOT DG_NX6000_8_AI_Voltage_Current.tDetailed.tAnalogInput_00.bOpenLoop
THEN

QUALITY_PB_NX6000.FLAGS.FLAG_OLD_DATA:= TRUE;
END_IF

ELSE
QUALITY_PB_NX6000.FLAGS.FLAG_RESTART:= FALSE;
QUALITY_PB_NX6000.FLAGS.FLAG_FAILURE:= FALSE;
QUALITY_PB_NX6000.FLAGS.FLAG_OLD_DATA:= FALSE;

END_IF
END_IF

END_IF
// In PROFIBUS communication failure with the PROFIBUS slave ...
ELSE
QUALITY_PB_NX6000.VALIDITY:= VALIDITY_INVALID;
QUALITY_PB_NX6000.FLAGS.FLAG_COMM_FAIL:= TRUE;
QUALITY_PB_NX6000.FLAGS.FLAG_FAILURE:= FALSE;
// If the point have ever been updated once ...
IF NOT QUALITY_PB_NX6000.FLAGS.FLAG_RESTART AND

NOT DG_NX6000_8_AI_Voltage_Current.tDetailed.tAnalogInput_00.bOpenLoop THEN
QUALITY_PB_NX6000.FLAGS.FLAG_OLD_DATA:= TRUE;

END_IF
END_IF

5.2.5.1.9. PROFIBUS Analog Output Quality

// PROFIBUS analog output quality update, module NX6100

// In communication success case with PROFIBUS slave (address = 99) ...
IF DG_NX5001.tMstStatus.abySlv_State.bSlave_99 = TRUE THEN
// Waits the PROFIBUS slave become apt to exchange data and diagnostics
// (It is necessary to wait, avoiding invalid quality generation)
IF DG_NX5110.tPbusHeadA.tStatus1.bStation_Non_Existent = FALSE AND

DG_NX5110.tPbusHeadA.tStatus1.bStation_Not_Ready = FALSE AND
DG_NX5110.tPbusHeadA.wIdentNumber > 0 THEN

QUALITY_PB_NX6100.FLAGS.FLAG_COMM_FAIL:= FALSE;
// If there is a module present on the bus (slot = 4) and
// if there is no modules config problem (general) and
// if there is no config problem in that module (specific) and
// if there is no fatal error identification by the module and
// if there is no calibration error indication and
// if there is no external power supply missing indication and
// if there is no error indication of output in open loop and
// if there is no outputs short circuit indication ...
IF (DG_NX5110.tPbusHeadA.dwModuleNotPresent AND SHL(1, 4)) = 0 AND

DG_NX5110.tPbusHeadA.tSummarized.bConfigMismatch = FALSE AND
DG_NX6100_4_AO_Voltage_Current.tGeneral.bConfigMismatch = FALSE AND
DG_NX6100_4_AO_Voltage_Current.tGeneral.bFatalError = FALSE AND
DG_NX6100_4_AO_Voltage_Current.tGeneral.bCalibrationError = FALSE AND
DG_NX6100_4_AO_Voltage_Current.tGeneral.bNoExternalSupply = FALSE AND
DG_NX6100_4_AO_Voltage_Current.tDetailed.tAnalogOutput_00.bOpenLoop = FALSE
AND

85

5. CONFIGURATION

DG_NX6100_4_AO_Voltage_Current.tDetailed.tAnalogOutput_00.bShortCircuit =
FALSE THEN
QUALITY_PB_NX6100.VALIDITY:= VALIDITY_GOOD;
QUALITY_PB_NX6100.FLAGS.FLAG_RESTART:= FALSE;
QUALITY_PB_NX6100.FLAGS.FLAG_FAILURE:= FALSE;
QUALITY_PB_NX6100.FLAGS.FLAG_INACCURATE:= FALSE;
QUALITY_PB_NX6100.FLAGS.FLAG_OLD_DATA:= FALSE;

ELSE
// Condition to turns on imprecision indication
// (check first, because invalid validity must prevail)
IF DG_NX6100_4_AO_Voltage_Current.tGeneral.bCalibrationError = TRUE THEN

QUALITY_PB_NX6100.VALIDITY:= VALIDITY_QUESTIONABLE;
QUALITY_PB_NX6100.FLAGS.FLAG_INACCURATE:= TRUE;

ELSE
QUALITY_PB_NX6100.FLAGS.FLAG_INACCURATE:= FALSE;

END_IF
// Condition to turns on general failure indication (priority)
IF (DG_NX5110.tPbusHeadA.dwModuleNotPresent AND SHL(1, 4)) > 0 OR

DG_NX5110.tPbusHeadA.tSummarized.bConfigMismatch = TRUE OR
DG_NX6100_4_AO_Voltage_Current.tGeneral.bConfigMismatch = TRUE OR
DG_NX6100_4_AO_Voltage_Current.tGeneral.bFatalError = TRUE OR
DG_NX6100_4_AO_Voltage_Current.tGeneral.bNoExternalSupply = TRUE OR
DG_NX6100_4_AO_Voltage_Current.tDetailed.tAnalogOutput_00.bOpenLoop = TRUE

OR
DG_NX6100_4_AO_Voltage_Current.tDetailed.tAnalogOutput_00.bShortCircuit =

TRUE THEN
QUALITY_PB_NX6100.VALIDITY:= VALIDITY_INVALID;
QUALITY_PB_NX6100.FLAGS.FLAG_FAILURE:= TRUE;
// If the point have ever been updated once ...
IF NOT QUALITY_PB_NX6100.FLAGS.FLAG_RESTART AND NOT

DG_NX6100_4_AO_Voltage_Current.tDetailed.tAnalogOutput_00.bOpenLoop
THEN

QUALITY_PB_NX6100.FLAGS.FLAG_OLD_DATA:= TRUE;
END_IF

ELSE
QUALITY_PB_NX6100.FLAGS.FLAG_RESTART:= FALSE;
QUALITY_PB_NX6100.FLAGS.FLAG_FAILURE:= FALSE;
QUALITY_PB_NX6100.FLAGS.FLAG_OLD_DATA:= FALSE;

END_IF
END_IF
END_IF
// In PROFIBUS communication failure with the PROFIBUS slave ...
ELSE
QUALITY_PB_NX6100.VALIDITY:= VALIDITY_INVALID;
QUALITY_PB_NX6100.FLAGS.FLAG_COMM_FAIL:= TRUE;
QUALITY_PB_NX6100.FLAGS.FLAG_FAILURE:= FALSE;
// If the point have ever been updated once ...
IF NOT QUALITY_PB_NX6100.FLAGS.FLAG_RESTART AND

NOT DG_NX6100_4_AO_Voltage_Current.tDetailed.tAnalogOutput_00.bOpenLoop THEN
QUALITY_PB_NX6100.FLAGS.FLAG_OLD_DATA:= TRUE;
END_IF
END_IF

86

5. CONFIGURATION

5.3. Serial Interfaces Configuration
5.3.1. COM 1

The COM 1 communication interface, is composed by a DB9 female connector for RS-232C standard. It allows the point to
point communication (or in network by using a converter) in MODBUS RTU slave or MODBUS RTU master open protocols.

The parameters which must be configured for the proper functioning of the application are described below.
When using the MODBUS master/slave protocol, some of these parameters (such as Serial Mode, Data Bits, RX Threshold

and Serial Events) are automatically adjusted by MasterTool for the correct operation of this protocol.

Configuration Description Default Options

Serial Type Serial channel type configu-
ration. RS-232C RS-232C

Baud Rate Serial communication port
speed configuration. 115200 200, 300, 600, 1200, 1800,

2400, 4800, 9600, 19200,
38400, 57600, 115200 bps

Parity Serial port parity configura-
tion. None

Odd
Even
Space
Mark
None

Data Bits Sets the serial communica-
tion character bits quantity. 8 5, 6, 7 and 8

Stop Bits Sets the serial port stop bits. 1 1, 1.5 and 2

Serial Mode Sets the serial port operation
mode configuration. Normal Mode

- Extended Mode: Extended
operation mode which de-
livers information regarding
the received data frame.
- Normal Mode: Serial com-
munication normal opera-
tion mode.

Table 57: RS-232 Standard Serial Configuration

Notes:
Extended Mode: This serial communication operation mode provides information regarding the data frame received. The

information available is the following:
One byte for the received data (RX_CHAR : BYTE): Store the five, six, seven or eight bits from the data received,
depending on the serial communication configuration.
One byte for the signal errors (RX_ERROR : BYTE): It has the format described below:

• Bit 0: 0 - the character in bits 0 to 7 is valid. 1 - the character in bits 0 to 7 is not valid (or it cannot be valid), due
to problems indicated in bits 10 to 15.

• Bit 1: Not used.
• Bit 2: Not used.
• Bit 3: UART interruption error. The serial input remained in logic 0 (space) for a time greater than a character

(start bit + data bits + parity bit + stop bits).
• Bit 4: UART frame error. The logic 0 (space) was read when the first stop bit was expected and it should be logic

1 (mark).
• Bit 5: UART parity error. The parity bit read is not correct according to the calculated one.
• Bit 6: UART overrun error. Data was lost during the FIFO UART reading. New characters were received before

the later ones were removed. This error will only be indicated in the first character read after the overrun error
indication. This means some old data were lost.

• Bit 7: RX line overrun error. This character was written when the RX line was completed, overwriting the unread
characters.

87

5. CONFIGURATION

Two bytes for the timestamp signal (RX_TIMESTAMP : WORD): Indicates the silence time, within the 0 to 65535 inter-
val, using 10 us as base. It saturates in 655.35 ms if the silence time is higher than 65535 units. The RX_TIMESTAMP
of a character measures the time from a reference which can be any of the three options below:

• On most of the cases, the end of the later character.
• Serial port configuration.
• The end of serial communication using the SERIAL_TX FB, in other words, when the last character is sent on line.

Besides measuring the silence between characters, the RX_TIMESTAMP is also important as it measures the silence
time of the last character on the RX line. The silence measuring is important for the correct protocol implementation,
as MODBUS RTU, for example. This protocol specifies an inter-frame greater than 3.5 characters and an inter-byte less
than 1.5 characters.

Data Bits: The serial interfaces Data Bits configuration limits the Stop Bits and Communication Parity fields. Therefore,
the stop bits number and the parity method will vary according to the data bits number.

Data Bits Stop Bits Parity

5 1, 1.5 NO PARITY, ODD, EVEN, PARITY ALWAYS
ONE, PARITY ALWAYS ZERO

6 1, 2 NO PARITY, ODD, EVEN, PARITY ALWAYS
ONE, PARITY ALWAYS ZERO

7 1, 2 NO PARITY, ODD, EVEN, PARITY ALWAYS
ONE, PARITY ALWAYS ZERO

8 1, 2 NO PARITY, ODD, EVEN, PARITY ALWAYS
ONE, PARITY ALWAYS ZERO

Table 58: Specific Configurations

5.3.1.1. Advanced Configurations

The advanced configurations are related to the serial communication control, in other words, when it is necessary the
utilization of a more accurate data transmission and reception control.

Configuration Description Default Options
Advanced Port Parameters

Handshake
Executes the request control
for a command transmission
through RS-232C interface.

RTS Off

- RTS: Enabled at the be-
ginning of transmission and
restarted, as fast as possi-
ble after the end of it. E.g.
The RS-232/RS-485 exter-
nal converter control.
- RTS Off: Always disabled.
- RTS On: Always enabled.
- RTS/CTS: In case the CTS
is disabled, the RTS is en-
abled. Therefore the CTS
enabling must be waited un-
til the transmission can start
again and the RTS restarted,
as fast as possible, at the end
of transmission. E.g. the
radio modems control using
the same modem signal.
- Manual RTS: the user is re-
sponsible for all control sig-
nals.

88

5. CONFIGURATION

Configuration Description Default Options

UART RX Threshold

Bytes quantity which must
be received to generate
a new UART interrup-
tion. Low values make
the TIMESTAMP more
precise when the EX-
TENDED MODE is used
and minimizes the overrun
errors. However, values
too low may cause several
interruptions delaying the
CPU.

8 1, 4, 8 and 14

Serial Events

RX on TX

When true, all received
bytes during transmission
will be discharged instead of
going to the RX line. Used
to disable the full-duplex op-
eration of the RS-232C in-
terface.

Disabled
- Enabled: Configuration en-
abled
- Disabled: Configuration
disabled

RX DCD Event
When true, generates an ex-
ternal event due to DCD sig-
nal change.

Enabled
- Enabled: Configuration en-
abled
- Disabled: Configuration
disabled

RX CTS Event
When true, generates an ex-
ternal event due to CTS sig-
nal change.

Enabled
- Enabled: Configuration en-
abled
- Disabled: Configuration
disabled

Table 59: RS-232 Standard Serial Advanced Configurations

Notes:
RX on TX: This advanced parameter is valid for RS-232C settings and RS-422.
RX DCD Event: External events such as the DCD signal COM 1 of the CPUs NX3010, NX3020, NX3030, may be

associated only to tasks of custom project profile, for further information, please see the MasterTool IEC XE User Manual –
MU299609.

RX CTS Event: External events such as the CTS signal COM 1 of the CPUs NX3010, NX3020, NX3030, may be
associated only to tasks of custom project profile, for further information, please see the MasterTool IEC XE User Manual –
MU299609.

5.3.2. COM 2

The serial interfaces Data Bits configuration limits the Stop Bits and Communication Parity fields. Therefore, the number
of stop bits and the parity method will vary according to the data bits number.

The table below shows the allowed configurations interfaces.

89

5. CONFIGURATION

Data Bits Stop Bits Parity

5 1, 1.5 NO PARITY, ODD, EVEN, PARITY ALWAYS
ONE, PARITY ALWAYS ZERO

6 1, 2 NO PARITY, ODD, EVEN, PARITY ALWAYS
ONE, PARITY ALWAYS ZERO

7 1, 2 NO PARITY, ODD, EVEN, PARITY ALWAYS
ONE, PARITY ALWAYS ZERO

8 1, 2 NO PARITY, ODD, EVEN, PARITY ALWAYS
ONE, PARITY ALWAYS ZERO

Table 60: Specific Configurations

5.3.2.1. Advanced Configurations

The advanced configurations are related to the serial communication control, in other words, when it is necessary the
utilization of a more accurate data transmission and reception control.

Configuration Description Default Options

UART RX Threshold

Bytes quantity which must
be received for a new UART
interruption to be gener-
ated. Low values make
the TIMESTAMP more pre-
cise when the EXTENDED
MODE is used and min-
imizes the overrun errors.
However, values too low
may cause several interrup-
tions delaying the CPU.

8 1, 4, 8 and 14

Table 61: RS-485/RS-422 Standard Serial Advanced Configurations

5.4. Ethernet Interfaces Configuration
Nexto CPUs can provide more local Ethernet interfaces. The NX3020 CPU has NET 1 and NET 2. In addition of the local

Ethernet interfaces, the Nexto Series also provides remote Ethernet interfaces through the inclusion of the module NX5000.
NX5000 modules have only the NET 1 interface.

5.4.1. Internal Ethernet Interfaces

The interfaces are composed by a RJ45 communication connector 10/100Base-TX standard. It allows the point to point
or network communication in the following open protocols, for example: MODBUS TCP Client, MODBUS RTU via TCP
Client, MODBUS TCP Server and MODBUS RTU via TCP Server.

Below are the IP addressing parameters that must be configured for the proper functioning of the application.

90

5. CONFIGURATION

5.4.1.1. NET 1

Configuration Description Default Options

Obtain an IP address auto-
matically

Enables the DHCP Client
functionality on the device
for automatic IP assignment

Unmarked Marked or Unmarked

IP Address IP address of the port on the
Ethernet network 192.168.15.1 1.0.0.1 to 223.255.255.254

Subnetwork Mask Subnet mask of the port on
the Ethernet network 255.255.255.0 128.0.0.0 to

255.255.255.252

Gateway Address
Controller Gateway address
of the port on the Ethernet
network

192.168.15.253 0.0.0.0 to 223.255.255.254

Table 62: NET 1 Configuration

5.4.1.2. NET 2

Configuration Description Default Options

IP Address IP address of the port on the
Ethernet network 192.168.16.1 1.0.0.1 to 223.255.255.254

Subnetwork Mask Subnet mask of the port on
the Ethernet network 255.255.255.0 128.0.0.0 to

255.255.255.252

Gateway Address Gateway address of the port
on the Ethernet network 192.168.16.253 0.0.0.0 to 223.255.255.254

Table 63: NET 2 Configuration

ATTENTION

It is not possible to configure more than one Ethernet interface of a CPU on the same subnet,
and this type of configuration is blocked by the MasterTool tool. Therefore, each Ethernet
interface must be configured on a different subnet.

5.4.1.3. Configuration of Internal Ethernet Interfaces

The Ethernet channels of the CPU can be configured in two different modes of operation: Single Mode and Redundant
Mode. When NET 1 is configured as Redundant Mode, the NET 1 and NET 2 interfaces operate as a redundant pair. In this
architecture, NET 2 has all its configuration fields automatically disabled.

5.4.1.3.1. Single Mode

In this mode, the interface operates as an independent Ethernet port, with no relation to the subsequent interface.

91

5. CONFIGURATION

Figure 50: Advanced Configuration of Local Ethernet Interfaces - Single Mode

5.4.1.3.2. Redundant Mode

In this mode, the interface forms a redundant pair with the subsequent interface, operating in an active/reserve scheme. A
NIC Teaming pair has a single IP address, associated with the interface that is currently active. Thus, a client in a SCADA or
Mastertool, connected to a server on the CPU, doesn’t have to worry about changing the IP address if any of the ports in the
peer fail. In addition, each of the interfaces that form a redundant communication pair has separate diagnostics, to facilitate
the debugging of faults that may eventually arise.

Figure 51: Advanced Configuration of Local Ethernet Interfaces - NIC Teaming Mode

When the NIC Teaming Mode is selected, on the same screen other parameters are automatically enabled and must be
configured:

Period of NIC Teaming Test (ms): Period for sending the communication test frame between the two NETs. Can be
configured with values between 100 and 9900, default 500
Retries of NIC Teaming Test: Maximum number of times the NET that sent the frame will wait for a response. Can be
configured to values between 1 and 100, default 4
Switching Period (s): Maximum time that NET Active will wait for any given packet. Can be configured with values
between 1 and 25, default 10

If the response time of the NIC Teaming reaches Test Period times the Number of Retries and the active interface remains
longer than the Switching Period without receiving any packets, a switchover occurs, making the previously inactive interface,
active. It is important to note that have a delay between fault detection and activation of the inactive interface due to the time
required for its configuration. This delay can be up to a few tens of milliseconds.

When one of the NETs is active, it will assume the configured IP address, and the inactive NET will remain with its IP
Address, Subnet Mask and Gateway Address parameters blank in the PCU diagnostics.

5.4.2. NX5000 Remote Ethernet Interface

5.4.2.1. NET 1

The interface is composed by a RJ45 communication connector 10/100Base-TX standard. It allows the point to point or
network communication in the following open protocols: MODBUS TCP Client, MODBUS RTU via TCP Client, MODBUS
TCP Server and MODBUS RTU via TCP Server.

The parameters which must be configured for the proper functioning of the application are described below.

92

5. CONFIGURATION

Configuration Description Default Options

IP Address IP address of the port on the
Ethernet network 192.168.xx.68 1.0.0.1 to 223.255.255.254

Subnetwork Mask Subnet mask of the port on
the Ethernet network 255.255.255.0 128.0.0.0 to

255.255.255.252

Gateway Address Gateway address of the port
on the Ethernet network 192.168.xx.253 0.0.0.0 to 223.255.255.254

Table 64: NX5000 Remote NET 1 Configuration

5.4.2.2. Operation Modes of the NX5000 Remote Ethernet Interface

The NX5000 modules can be inserted in the project to increase the number of Ethernet interfaces if the local CPU interfaces
are not enough.

The Ethernet channels of the NX5000 modules can be used individually, or arranged in redundant pairs.

5.4.2.2.1. Redundant Mode

A pair of two Ethernet ports forming a redundant pair has a single IP address tied to the port pair. In this way, a client, such
as SCADA or MasterTool, connected to a server at the CPU, does not have to worry about changing the IP address if some of
the ports in the redundant pair fail.

In order to put together two NX5000 modules as a redundant pair, these two modules must necessary occupy adjacent
positions on the backplane rack and the checkbox Redundant from the module on the left must be selected, as show in the
figure below. By doing this, the parameters edition of the module on the right is blocked. The parameters edited in the module
inserted on the left get common for the two modules.

On the other hand, clearing the Redundant checkbox from the module on the left causes the separation of the modules,
which return to behave as individual modules without redundant.

When the Redundant Mode is selected, on the same screen other parameters are automatically enabled and must be con-
figured:

Period of Redundancy Test (ms): Period for sending the communication test frame between the two NETs. Can be
configured with values between 100 and 9900, default 500
Retries of Redundancy Test: Maximum number of times the NET that sent the frame will wait for a response. Can be
configured to values between 1 and 100, default 4
Switching Period (s): Maximum time that NET Active will wait for any given packet. Can be configured with values
between 1 and 25, default 10

If the response time of the Redundancy Test reaches Test Period times the Number of Retries and the active interface
remains longer than the Switching Period without receiving any packets, a switchover occurs, making the previously inactive
interface active. It is important to note that have a delay between fault detection and activation of the inactive interface due to
the time required for its configuration. This delay can be up to a few tens of milliseconds.

When one of the NETs is active, it will assume the configured IP address, and the inactive NET will remain with its IP
Address, Subnet Mask and Gateway Address parameters blank in the CPU diagnostics.

Figure 52: Advanced Configuration of Remote Ethernet Interface - NX5000

93

5. CONFIGURATION

5.4.3. Reserved TCP/UDP Ports

The following TCP/UDP ports of the Ethernet interfaces, both local and remote, are used by CPU services (depending on
availability according to table Protocols) and, therefore, are reserved and must not be used by the user.

Service TCP UDP
System Web Page 80 -

SNTP - 123
SNMP - 161

MODBUS TCP 502* -
Mastertool 1217* 1740:1743
SQL Server 1433 -

MQTT 1883* / 8883* -
EtherNet/IP 44818 2222

IEC 60870-5-104 2404* -
DNP3 20000* / 20005* -

OPC UA 4840 -
WEBVISU 8080 -

CODESYS ARTI 11740 -
PROFINET - 34964

Portainer Docker 9000 -

Table 65: Reserved TCP/UDP ports

* Default port, but user changeable.

5.5. Protocols Configuration
Independently of the protocols used in each application, the Nexto Series CPUs has some maximum limits for each CPU

model. There are basically two different types of communication protocols: symbolic and direct representation mappings. The
maximum limit of mappings as well as the maximum protocol quantity (instances) is defined on table below:

NX3020
Mapped Points 20480
Mappings (Per Instance / Total) 5120 / 20480
Requests 512
NETs – Client or Server Instances (Per
NET / Total) 4 / 8

COM (n) – Master or Slave Instances 1
Control Centers 3

Table 66: Protocols Limits per CPU

Notes:
Mapped Points: It is the maximum number of mapped points that the CPU supports. Each mapping can contain one or

more mapped points, depending on the data size. This varies depending on whether simple variables or ARRAY-type variables
are used. Each simple variable, as well as each index of an ARRAY, is counted as a mapped point, even if it occupies more than
one address in the driver. For example, a simple DWORD-type variable mapped in the MODBUS protocol will be counted as
a single point, even though it occupies two consecutive addresses/registers in the driver.

Mappings: A “mapping” is the relationship between an internal application variable and an object of the application
protocol. This field informs the maximum number of mappings supported by the CPU. It corresponds to the sum of all
mappings made within the instances of communication protocols and their respective devices.

94

5. CONFIGURATION

Requests: The sum of the requests of the communications protocols, declared on devices, may not exceed the maximum
number of requests supported by the CPU.

NETs – Clients or Servers Instances: This field defines the maximum number of protocol instances per Ethernet interface,
and also the total maximum distributed along all the Ethernet interfaces of the system.

COM (n) – Master or Slave Instances: Due to its characteristics, each serial interface supports only one communication
protocol instance. Examples of instances compatible with serial interfaces: MODBUS RTU Master and MODBUS RTU Slave.

Control Centers: “Control Center” is all client device connected to the CPU through protocol IEC 60870-5-104. This
field informs the maximum of client devices of control center type supported by the CPU. Correspond to the sum of all client
devices of communication protocol IEC 60870-5-104 Server (does not include master or clients from MODBUS RTU Slave,
MODBUS Server and DNP3 Server protocols).

The limitations of the MODBUS protocol for Direct Representation and symbolic mapping for the CPUs can be seen in
Tables 67 and 68, respectively.

Limitations MODBUS RTU
Master

MODBUS RTU
Slave

MODBUS
Ethernet Client

MODBUS
Ethernet Server

Mappings per instance 128 32 128 32
Devices per instance 64 1(1) 64 64(2)

Mappings per device 32 32 32 32
Simultaneous requests per in-
stance - - 128 64

Simultaneous requests per device - - 8 64

Table 67: MODBUS Protocol Limitations for Direct Representation

Notes:
Devices per instance:

Master or Client Protocols: number of slaves or server devices supported by each Master or Slave protocol instance.
MODBUS RTU Slave Protocol: the limit (1) informed relates to serial interfaces that do not allow a Slave to establish
communication through the same serial interface, simultaneously, with more than one Master device. It’s not necessary,
nor is it possible to declare or configure the Master device in the instance of the MODBUS RTU slave protocol. The
master device will have access to all the mappings made directly on the instance of MODBUS RTU slave protocol.
MODBUS RTU Server Protocol: the limit (2) informed relates to the Ethernet interfaces, which limit the number of
connections that can be established with other devices through a single Ethernet interface. It is not necessary, nor is it
possible to declare or configure Clients devices in the instance of the MODBUS Server protocol. All Clients devices
will have access to all the mappings made directly in the instance of the MODBUS Server protocol.

Mappings per device: The maximum number of mappings per device, despite being listed above, is also limited by the
protocol maximum number of mappings. Also to be considered the maximum CPU mappings as in Table 66.

Simultaneous Requests per Instance: Number of requests that can be simultaneously transmitted by each Client protocol
instance or that can be received simultaneously by each Server protocol instance. MODBUS RTU protocol instances, Master
or Slave, do not support simultaneous requests.

Simultaneous Requests per Device: Number of requests that can be simultaneously transmitted to each MODBUS Server
device, or may be received simultaneously by each MODBUS client device. MODBUS RTU devices, Master or Slave, do not
support simultaneous requests.

Limitations MODBUS RTU
Master

MODBUS RTU
Slave

MODBUS
Ethernet Client

MODBUS
Ethernet Server

Devices per instance 64 1(1) 64 64(2)

Requests per device 32 - 32 -
Simultaneous requests per in-
stance - - 128 64

Simultaneous requests per device - - 8 64

Table 68: MODBUS Protocol Limitations for Symbolic Mappings

95

5. CONFIGURATION

Notes:
Devices per instance:

Master or Client Protocol: Number of slave or server devices supported by each Master or Client protocol instance.
MODBUS RTU Slave Protocol: the limit (1) informed relates to serial interfaces that do not allow a Slave to establish
communication through the same serial interface, simultaneously, with more than one Master device. It’s not necessary,
nor is it possible to declare or configure the Master device in the instance of the MODBUS RTU slave protocol. The
master device will have access to all the mappings made directly on the instance of MODBUS RTU slave protocol.
MODBUS RTU Server Protocol: the limit (2) informed relates to the Ethernet interfaces, which limit the amount of
connections that can be established with other devices through a single Ethernet interface. It is not necessary, nor is it
possible to declare or configure Clients devices in the instance of the MODBUS Server protocol. All Clients devices
will have access to all the mappings made directly in the instance of the MODBUS Server protocol.

Requests by device: Number of requests, such as reading or writing holding registers, which can be configured for each of
the devices (slaves or servers) from Master or Client protocols instances. This parameter does not apply to instances of Slave
or Server protocols.

Simultaneous Requests per Instance: Number of requests that can be simultaneously transmitted by each client protocol
instance or that can be received simultaneously by each server protocol instance. MODBUS RTU protocol instances, Master
or Slave, do not support simultaneous requests.

Simultaneous Requests per Device: Number of requests that can be simultaneously transmitted for each MODBUS server
device, or may be received simultaneously from each MODBUS client device. MODBUS RTU devices, Master or Slave do
not support simultaneous requests.

ATTENTION

Simultaneous requests to a variable associated to communication points, those which support
the SBO operation mode (Select Before Operate), even being received from different devices
are not supported. Once started the selection/operation of a point by a specific device, that
must be finished before this point become able to be commanded by another device.

The protocol IEC 60870-5-104 Server limitations can be watched on table below.

Limitations IEC 60870-5-104 Server
Devices per instance 3
Simultaneous requests per instance 3
Simultaneous requests per device 1

Table 69: Protocol IEC 60870-5-104 Server Limits

Notes:
Devices per instance: Quantity of client devices, of type control center, supported for each IEC 60870-5-104 Server

protocol instance. The limit informed might be smaller because of the CPU total limits (check Table 66).
Simultaneous requests per instance: Quantity of requests that can be received simultaneously by each instance of Server

protocol.
Simultaneous requests per device: Quantity of requests that can be received simultaneously of each IEC 60870-5-104

Client device.

96

5. CONFIGURATION

5.5.1. Protocol Behavior x CPU State

The table below shows in detail the behavior of each configurable protocol in Nexto Series CPUs in every state of operation.

CPU operational state
STOP RUN

Protocol Type

After
down-
load,
before
appli-
cation
starts

After the
applica-
tion goes
to STOP
(PAUSE)

After an
exception

Non re-
dundant
or Active

Redundant
in Stand-
by

After a
break-
point in
MainPrg

MODBUS Symbol Slave/Server
Master/Client

MODBUS Slave/Server
Master/Client

SOE (DNP3) Outstation
IEC 60870-5-104 Server
EtherCAT Master NA
OPC DA Server
OPC UA Server
SNTP Client
HTTP Server
SNMP Agent
EtherNet/IP Scanner NA

Adapter NA

Table 70: Protocol Behavior x CPU State

Notes:
Symbol : Protocol remains active and operating normally.
Symbol : Protocol is disabled.
MODBUS Symbol Slave/Server: To keep the protocol communicating when the CPU isn’t in RUN or after a breakpoint,

it’s need to check the option “Keep the communication running on CPU stop”.

5.5.2. Double Points

The input and output double digital points representation is done through a special data type called DBP (defined in the
LibDataTypes library). This type consist basically in a structure of two BOOL type elements, called OFF and ON (equivalent
to TRIP and CLOSE respectively).

In Nexto, variables of this type cannot be associated to digital input and output modules, being necessary the single digital
points mapping, BOOL type, and the treatment by application to conversion in double points.

To further information about the double points mapping in the input and output digital modules check the IEC 60870-5-104
Server section.

5.5.3. CPU’s Events Queue

The CPU owns an events queue of type FIFO (First In, First Out) used to store temporarily the events related to communi-
cation points until they are moved to their final destiny.

All communication points events generated in the CPU are directed and stored in CPU’s queue. This queue has the
following features:

97

5. CONFIGURATION

Size: 1000 events
Retentivity : it is not retentive
Overflow policy: keep the newests

ATTENTION

In the Nexto PLC, the events queue is stored in a non-retentive memory area (volatile). This
way, the events present in CPU’s queue, which haven’t been transmitted yet to the control
center, are going to be lost in a CPU’s eventual power off.

The CPU’s event queue is redundant, that means it is synchronized each cycle between both CPUs, when is used CPU’s
redundancy. Further information can be found on the section about CPU redundancy.

The in and out of events in this queue follows the concept of producer/consumer. Producers are those system elements
capable of generate events, adding events in the CPU’s queue, while the consumers are those system elements which receive
and use this events, taking them of the CPU’s queue. The figure below describes this working, including the example of some
events consumers and producers.

Figure 53: CPU’s Event Queue

5.5.3.1. Consumers

The consumers are typically communication drivers that will communicate with SCADA or HMI. After been stored in
CPU’s queue, the consumers receive the events related to communication points mapped in its configuration. These events are
then stored in a consumer’s own events queue, which the size and working are described on the communication driver specific
section.

5.5.3.2. Queue Functioning Principles

Once stored in CPU’s queue, each event is transmitted to the consumer that has this communication point in its data base.
On the figure above, the Event 0 is referred to a communication point mapped to two control centers IEC 60870-5-104 (Client

98

5. CONFIGURATION

1 and 2). Thus the Event 1 is referred to a communication point mapped only to one control center IEC 60870-5-104 (Client
2). By its time, the Event 2 is referred to a communication point mapped to another control center IEC 60870-5-104 (Client
3).

The events remain stored in the CPU’s queue until all its consumers acknowledge its receiving. The criteria used to confirm
the receive is specific of each consumer. In case of the IEC 60870-5-104 Server, the acknowledge occurs when the event is
transmitted to the IEC 60870-5-104 client.

In Nexto Series case, there are no diagnostics available to watch the CPU’s events queue occupation, not even information
about the queue overflow. However the consumers have a diagnostics group referred to its events queue. Further information
can be found at the specific driver communication section.

5.5.3.2.1. Overflow Sign

The overflow sign to the consumers’ events queue occurs in two situations:

When the consumer events queue is out of space to store new events
If the CPU aborted the event generation (because occurred to more events in a single execution cycle than the events
queue total size)

5.5.3.3. Producers

The producers are typically communication drivers or PLC internal elements that are capable to generate events. The
previous figure show some examples.

Internal Points: This is a PLC’s firmware internal element, which detects events each execution cycle (MainTask)
to those communication points that don’t have a defined origin and then inserts the events in the CPU’s queue. The
maximum number of events that can be detected in each MainTask cycle is equal to the CPU’s events queue size. In case
the number of generated events is bigger than this, in a single cycle, the exceeding are going to be lost.
MODBUS Driver (Client/Server/Master/Slave): The variables value change caused by MODBUS read/write are de-
tected at each MainTask cycle and then the events are inserted in CPU’s queue. In Client/Master cases, are also generated
quality events when there is a communication failure with the slave device.

5.5.4. Interception of Commands Coming from the Control Center

The Nexto PLC has a function block that allows selection commands and operation to the output points received by server
drivers (IEC 60870-5-104 Server) been treated by the user logic. This resource allows the interlocking implementation, as well
as the handling of the received command data in the user logic, or yet the command redirecting to different IEDs.

The commands interception is implemented by the CommandReceiver function block, defined in the LibRtuStandard. The
input and output parameters are described on the following tables:

Parameter Type Description
bExec BOOL When TRUE, executes the command interception

bDone BOOL
Indicates that the command output data have been already
processed, releasing the function block to receive another
command

dwVariableAddr DWORD Variable address, mapped in the server driver, which will
receive the client command

99

5. CONFIGURATION

Parameter Type Description

eCommandResult ENUM

Input action defined by user from the following list:
SUCCESS(0)
NOT_SUPPORTED(1)
BLOCKED_BY_SWITCHING_HIERARCHY(2)
SELECT_FAILED(3)
INVALID_POSITION(4)
POSITION_REACHED(5)
PARAMETER_CHANGE_IN_EXECUTION(6)
STEP_LIMIT(7)
BLOCKED_BY_MODE(8)
BLOCKED_BY_PROCESS(9)
BLOCKED_BY_INTERLOCKING(10)
BLOCKED_BY_SYNNCHROCHECK(11)
COMMAND_ALREADY_IN_EXECUTION(12)
BLOCKED_BY_HEALTH (13)
ONE_OF_N_CONTROL(14)
ABORTION_BY_CANCEL(15)
TIME_LIMIT_OVER(16)
ABORTION_BY_TRIP(17)
OBJECT_NOT_SELECTED(18)
OBJECT_ALREADY_SELECTED(19)
NO_ACCESS_AUTHORITY(20)
ENDED_WITH_OVERSHOOT(21)
ABORTION_DUE_TO_DEVIATION(22)
ABORTION_BY_COMMUNICATION_LOSS(23)
BLOCKED_BY_COMAND(24)
NONE(25)
INCONSISTENT_PARAMETERS(26)
LOCKED_BY_OTHER_CLIENT(27)
HARDWARE_ERROR(28)
UNKNOWN(29)

dwTimeout DWORD Time-out [ms] to the treatment by user logic

Table 71: CommandReceiver Function Block Input Parameters

Notes:
bExec: When FALSE, the command just stop being intercepted for the user application, but it keeps being treated normally

by the server.
bDone: After the command interception, the user is going to be responsible for treat it. At the end of the treatment, this

input must be enabled for a new command can be received. Case this input is not enabled, the block is going to wait the time
defined in dwTimeout, to then become capable of intercept new commands.

eCommandResult: Treatment results of command intercepted by user. The result returned to the client that sent the
command, which must be attributed together with the input bDone, is converted to the protocol’s format from which was
received the command. In Nexto Series it is only supported the interception of commands coming from protocol IEC 60870-
5-104. In protocol interception, any return different from SUCCESS results in a negative Acknowledge.

ATTENTION

It is not recommended the simultaneous commands interception to one same variable by two
or more CommandReceiver function blocks. Just one of the function blocks will intercept
correctly the command, being able to suffer undesirable interference from the others function
blocks if addressed to the same variable.

100

5. CONFIGURATION

Parameter Type Description

bCommandAvailable BOOL Indicates that a command was intercepted and the data
are available to be processed

sCommand STRUCT

This structure stores received command data, which is
composed by the following fields:
eCommand
sSelectParameters
sOperateParameters
The description of each field is in this section.

eStatus ENUM
(TYPE_RESULT)

Out of function action from obtained result, according to
list:
OK_SUCCESS(0)
ERROR_FAILED(1)

Table 72: CommandReceiver Function Block Output Parameters

Note:
eStatus: Return of a register process of a communication point command interception. When the interception is regis-

tered with success OK_SUCCESS is returned, else ERROR_FAILED is. In case interceptor register failure, commands to the
determined point are not intercepted by this function block. TYPE_RESULT is defined in LibDataTypes library.

Supported commands are described on table below:

Parameter Type Description

eCommand ENUM
NO_COMMAND(0)
SELECT(1)
OPERATE(2)

Table 73: CommandReceiver Function Block Supported Commands

The parameters that build the sSelectParameters, sOperateParameters and sCancelParameters structures are described on
the following table:

Parameter Type Description

sSelectConfig STRUCT Received selection command configuration. This struc-
ture parameters are described on Table 75

sValue STRUCT
Received value in a select, when is received a selection
command with value. This structure parameters are de-
scribed on Table 78

Table 74: Parameters sSelectParameters

Parameter Type Description

bSelectWithValue BOOL When true indicates a selection command reception with
value.

Table 75: Parameters sSelectConfig

101

5. CONFIGURATION

Parameter Type Description

sOperateConfig STRUCT Received selection command configuration. This struc-
ture parameters are described on Table 77

sValue STRUCT Field of received operation command referred value. This
structure parameters are described on Table 78

Table 76: Parameters sOperateParameters

Parameter Type Description

bDirectOperate BOOL When true indicates that an operation command without
select was received.

bNoAcknowledgement BOOL When true indicates that a command, which doesn’t re-
quire the receiving acknowledge, was received.

bTimedOperate BOOL When true indicates that an operation command activated
by time was received.

liOperateTime LINT
Programming of the instant in which it must be runned
the command. This field is valid only when bTimedOper-
ate is true.

bTest BOOL When true indicates that the received command was sent
only for test, as so the command must not be runned.

Table 77: Parameters sOperateConfig

Parameter Type Description

eParamType ENUM

Informs the type of the received command:
NO_COMMAND(0)
SINGLE_POINT_COMMAND(1)
DOUBLE_POINT_COMMAND(2)
INTEGER_STATUS_COMMAND(3)
ENUMERATED_STATUS_COMMAND(4)
ANALOGUE_VALUE_COMMAND(5)

sSinglePoint STRUCT

When a command is received, in received command type
function, defined by eParamType, the corresponding data
structure is filled. This structures parameters are de-
scribed on Tables 79 to 83

sDoublePoint STRUCT
sIntegerStatus STRUCT
sEnumeratedStatus STRUCT
sAnalogueValue STRUCT

Table 78: Parameters sValue

Parameter Type Description
bValue BOOL Point operation value.

sPulseConfig STRUCT
The pulsed command configuration parameters are stored
in this structure. This structure parameters are described
on Table 84.

Table 79: Parameters sSinglePoint

102

5. CONFIGURATION

Parameter Type Description
bValue BOOL Point operation value.

sPulseConfig STRUCT
The pulsed command configuration parameters are stored
in this structure. This structure parameters are described
on Table 84.

Table 80: Parameters sDoublePoint

Parameter Type Description
diValue DINT Point operation value.

Table 81: Parameters sIntegerStatus

Parameter Type Description
dwValue DWORD Point operation value.

Table 82: Parameters sEnumeratedStatus

Parameter Type Description

eType ENUM
Informs the data type of the received analog value.
INTEGER (0)
FLOAT (1)

diValue DINT Point operation value, integer format.
fValue REAL Point operation value, float format.

Table 83: Parameters sAnalogueValue

Parameter Type Description
bPulseCommand BOOL When true indicates that received command is pulsed.

dwOnDuration DWORD This is time, in milliseconds, that the output must remain
on.

dwOffDuration DWORD This is time, in milliseconds, that the output must remain
off.

dwPulseCount DWORD Number of times the command must be executed.

Table 84: Parameters sPulseConfig

To intercept commands to a specific point, first it is need to load in the dwVariableAddr parameter the variable address cor-
respondent to the point wanted to intercept the commands and then execute a pulse in the bExec parameter. Once the command
was intercepted, the function block informs that a command was intercepted through bCommandAvailable parameter. The
intercepted command information are then filled in the sCommand and eStatus output parameters, according to the received
command type. This operation depends only of the received command type, don’t matter the variable’s data type to which is
being intercepted the command. The interception is finished and then the function block can be released to intercept a new
command when bDone parameter is true. Yet must be pointed the command processing result in eCommandResult.

5.5.5. MODBUS RTU Master

This protocol is available for the Nexto Series CPUs in its serial channels. By selecting this option at MasterTool IEC XE,
the CPU becomes MODBUS communication master, allowing the access to other devices with the same protocol, when it is

103

5. CONFIGURATION

in the execution mode (Run Mode).
There are two configuration modes for this protocol. One makes use of Direct Representation (%Q), in which the variables

are defined by its address. The other, called Symbolic Mapping has the variables defined by its name.
Regardless of the configuration mode, the steps to insert a protocol instance and configure the serial interface are the same.

The procedure to insert a protocol instance is found in detail in the MasterTool IEC XE User Manual - MU299609 or in the
section Inserting a Protocol Instance. The remaining configuration steps are described below for each mode.

Add the MODBUS RTU Master Protocol instance to the serial channel COM 1 or COM 2 (or both, in case of two
communication networks). To execute this procedure, see Inserting a Protocol Instance section.
Configure the serial interface, choosing the transmission speed, the RTS/CTS signals behavior, the parity, the channel
stop bits, among others configurations by a double click on the COM 1 or COM 2 serial channel. See Serial Interfaces
Configuration section.

5.5.5.1. MODBUS Master Protocol Configuration by Symbolic Mapping

To configure this protocol using symbolic mapping, you must perform the following steps:

Configure the general parameters of the MODBUS Master protocol, like: transmission delay times and minimum inter-
frame as in Figure 54.
Add and configure devices via the General Parameters tab, defining the slave address, communication time-out and
number of communication retries as can be seen in Figure 55.
Add and configure the MODBUS mappings on Mappings tab as Figure 56, specifying the variable name, data type, and
the data initial address, the data size and range are filled automatically.
Add and configure the MODBUS requests as presented in Figure 57, specifying the function, the scan time of the request,
the starting address (read/write), the data size (read/write) and generate diagnostic variables and disabling the request
via the buttons at the bottom of the window.

5.5.5.1.1. MODBUS Master Protocol General Parameters – Symbolic Mapping Configuration

The general parameters, found on the MODBUS protocol initial screen (figure below), are defined as:

Figure 54: MODBUS RTU Master Configuration Screen

Configuration Description Default Options

Send Delay (ms) Delay for the answer trans-
mission. 0 0 to 65535

Minimum Interframe
(chars)

Minimum silence time be-
tween different frames. 3.5 3.5 to 100.0

Table 85: MODBUS RTU Master General Configurations

Notes:
Send Delay: The answer to a MODBUS protocol may cause problems in certain moments, as in the RS-485 interface or

other half-duplex. Sometimes there is a delay between the slave answer time and the physical line silence (slave delay to put
RTS in zero and put the RS-485 in high impedance state). To solve this problem, the master can wait the determined time in
this field before sending the new request. Otherwise, the first bytes transmitted by the master could be lost.

Minimum Interframe: The MODBUS standard defines this time as 3.5 characters, but this parameter is configurable in
order to attend the devices which do not follow the standard.

104

5. CONFIGURATION

The MODBUS protocol diagnostics and commands configured, either by symbolic mapping or direct representation, are
stored in T_DIAG_MODBUS_RTU_MASTER_1 variables. For the direct representation mapping, they are also in 4 bytes and
8 words which are described in table below:

T_DIAG_MODBUS_RTU_MASTER_1.* Size Description
Diagnostic Bits:

tDiag.bRunning BIT The master is running.

tDiag.bNotRunning BIT The master is not running (see bit: bInterruptedBy-
Command).

tDiag.bInterruptedByCommand BIT The bit bNotRunning was enabled as the master was
interrupted by the user through command bits.

tDiag.bConfigFailure BIT Configuration failure.
tDiag.bModuleFailure BIT Not implemented.

Error codes:
0: there are no errors
1: invalid serial port
2: invalid serial port mode
3: invalid baud rate
4: invalid data bits
5: invalid parity
6: invalid stop bits
7: invalid modem signal parameter
8: invalid UART RX Threshold parameter
9: invalid time-out parameter
10: busy serial port
11: UART hardware error
12: remote hardware error

eErrorCode SERIAL_STATUS
(BYTE) 20: invalid transmission buffer size

21: invalid signal modem method
22: CTS time-out = true
23: CTS time-out = false
24: transmission time-out error
30: invalid reception buffer size
31: reception time-out error
32: flow control configured differently from manual
33: invalid flow control for the configured serial port
34: data reception not allowed in normal mode
35: data reception not allowed in extended mode
36: DCD interruption not allowed
37: CTS interruption not allowed
38: DSR interruption not allowed
39: serial port not configured
50: internal error in the serial port

Command bits, automatically initialized:
tCommand.bStop BIT Stop master.
tCommand.bRestart BIT Restart master.
tCommand.bResetCounter BIT Restart diagnostics statistics (counters).

Communication Statistics:

tStat.wTXRequests WORD Counter of request transmitted by the master (0 to
65535).

tStat.wRXNormalResponses WORD Counter of normal responses received by the master (0
to 65535).

tStat.wRXExceptionResponses WORD Counter of responses with exception codes received by
the master (0 to 65535).

tStat.wRXIllegalResponses WORD
Counter of illegal responses received by master – in-
valid syntax, not enough received bytes, invalid CRC –
(0 to 65535).

tStat.wRXOverrunErrors WORD Counter of overrun errors during reception - UART
FIFO or RX line – (0 to 65535).

tStat.wRXIncompleteFrames WORD Counter of answers with construction errors, parity or
failure during reception (0 to 65535).

tStat.wCTSTimeOutErrors WORD Counter of CTS time-out error, using RTS/CTS hand-
shake, during transmission (0 to 65535).

Table 86: MODBUS RTU Master Diagnostics

105

5. CONFIGURATION

Note:
Counters: All MODBUS RTU Master diagnostics counters return to zero when the limit value 65535 is exceeded.

5.5.5.1.2. Devices Configuration – Symbolic Mapping configuration

The devices configuration, shown on figure below, follows the following parameters:

Figure 55: Device General Parameters Settings

Configuration Description Default Options
Slave Address MODBUS slave address 1 0 to 255
Communication Time-out
(ms)

Defines the application level
time-out 3000 10 to 65535

Maximum Number of Re-
tries

Defines the numbers of re-
tries before reporting a com-
munication error

2 0 to 9

Table 87: Device Configurations

Notes:
Slave Address: According to the MODBUS standard, the valid slave addresses are from 0 to 247, where the addresses

from 248 to 255 are reserved. When the master sends a writing command with the address configured as zero, it is making
broadcast requests in the network.

Communication Time-out: The communication time-out is the time that the master waits for a response from the slave
to the request. For a MODBUS RTU master device it must be taken into account at least the following system variables: the
time it takes the slave to transmit the frame (according to the baud rate), the time the slave takes to process the request and the
response sending delay if configured in the slave. It is recommended that the time-out is equal to or greater than the time to
transmit the frame plus the delay of sending the response and twice the processing time of the request. For more information,
see Communication Performance section.

Maximum number of retries: Sets the number of retries before reporting a communication error. For example, if the
slave does not respond to a request and the master is set to send three retries, the error counter number is incremented by one
unit when the execution of these three retries. After the increase of the communication error trying to process restarts and if
the number of retries is reached again, new error will increment the counter.

5.5.5.1.3. Mappings Configuration – Symbolic Mapping Settings

The MODBUS relations configuration, showed on figure below, follows the parameters described on table below:

106

5. CONFIGURATION

Figure 56: MODBUS Data Mappings Screen

Configuration Description Default Options

Value Variable Symbolic variable name - Name of a variable declared
in a program or GVL

Data Type MODBUS data type -

Coil - Write (1 bit)
Coil - Read (1 bit)
Holding Register - Write
(16 bits)
Holding Register - Read (16
bits)
Holding Register – Mask
AND (16 bits)
Holding Register – Mask
OR (16 bits)
Input Register (16 bits)
Input Status (1 bit)

Data Start Address Initial address of the MOD-
BUS data - 1 to 65536

Data Size Size of the MODBUS data - 1 to 65536

Data Range The address range of config-
ured data - -

Table 88: MODBUS Mappings Settings

Notes:
Value Variable: this field is used to specify a symbolic variable in MODBUS relation.
Data type: this field is used to specify the data type used in the MODBUS relation.

107

5. CONFIGURATION

Data Type Size [bits] Description
Coil - Write 1 Writing digital output.
Coil - Read 1 Reading digital output.

Holding Register - Write 16 Writing analog output.
Holding Register - Read 16 Reading analog output.

Holding Register - Mask AND 16 Analog output which can be read or written with AND
mask.

Holding Register - Mask OR 16 Analog output which can be read or written with OR
mask.

Input Register 16 Analog input which can be only read.
Input Status 1 Digital input which can be only read.

Table 89: Data Types Supported in MODBUS

Data Start Address: Data initial address of a MODBUS mapping.
Data Size: The size value specifies the maximum amount of data that a MODBUS interface can access, from the initial

address. Thus, to read a continuous address range, it is necessary that all addresses are declared in a single interface. This field
varies with the MODBUS data type configured.

Data Range: This field shows to the user the memory address range used by the MODBUS interface.

5.5.5.1.4. Requests Configuration – Symbolic Mapping Settings

The configuration of the MODBUS requests, viewed in figure below, follow the parameters described in table below:

Figure 57: Data Requests Screen MODBUS Master

108

5. CONFIGURATION

Configuration Description Default Value Options

Function Code MODBUS function type -

01 – Read Coils
02 – Read Input Status
03 – Read Holding Regis-
ters
04 – Read Input Registers
05 – Write Single Coil
06 – Write Single Register
15 – Write Multiple Coils
16 – Write Multiple Regis-
ters
22 – Mask Write Register
23 – Read/Write Multiple
Registers

Polling (ms) Communication period (ms) 100 0 to 3600000

Read Data Start Address Initial address of the MOD-
BUS read data - 1 to 65536

Read Data Size Size of MODBUS Read data - Depends on the function
used

Read Data Range MODBUS Read data ad-
dress range - 0 to 2147483646

Write Data Start Address Initial address of the MOD-
BUS write data - 1 to 65536

Write Data Size Size of MODBUS Write
data - Depends on the function

used

Write Data Range MODBUS Write data ad-
dress range - 0 to 2147483647

Diagnostic Variable Diagnostic variable name - Name of a variable declared
in a program or GVL

Disabling Variable Variable used to disable
MODBUS relation -

Field for symbolic variable
used to disable, individually,
MODBUS requests config-
ured. This variable must be
of type BOOL. The variable
can be simple or array el-
ement and can be in struc-
tures.

Table 90: MODBUS Relations Configuration

Notes:
Setting: the number of factory default settings and the values for the column Options may vary according to the data type

and MODBUS function (FC).
Function Code: MODBUS (FC) functions available are the following:

Code
DEC HEX Description

1 0x01 Read Coils (FC 01)
2 0x02 Read Input Status (FC 02)
3 0x03 Read Holding Registers (FC 03)
4 0x04 Read Input Registers (FC 04)
5 0x05 Write Single Coil (FC 05)

109

5. CONFIGURATION

Code
DEC HEX Description

6 0x06 Write Single Holding Register (FC 06)
15 0x0F Write Multiple Coils (FC 15)
16 0x10 Write Multiple Holding Registers (FC 16)
22 0x16 Mask Write Holding Register (FC 22)
23 0x17 Read/Write Multiple Holding Registers (FC 23)

Table 91: MODBUS Functions Supported by Nexto CPUs

Polling: this parameter indicates how often the communication set for this request must be performed. By the end of a
communication will be awaited a time equal to the value configured in the field polling and after that, a new communication
will be executed.

Read Data Start Address: field for the initial address of the MODBUS read data.
Read Data Size: the minimum value for the read data size is 1 and the maximum value depends on the MODBUS function

(FC) used as below:

Read Coils (FC 01): 2000
Read Input Status (FC 02): 2000
Read Holding Registers (FC 03): 125
Read Input Registers (FC 04): 125
Read/Write Multiple Registers (FC 23): 121

Read Data Range: this field shows the MODBUS read data range configured for each request. The initial address, along
with the read data size will result in the range of read data for each request.

Write Data Start Address: field for the initial address of the MODBUS write data.
Write Data Size: the minimum value for the write data size is 1 and the maximum value depends on the MODBUS

function (FC) used as below:

Write Single Coil (FC 05): 1
Write Single Register (FC 06): 1
Write Multiple Coils (FC 15): 1968
Write Multiple Registers (FC 16): 123
Mask Write Register (FC 22): 1
Read/Write Multiple Registers (FC 23): 121

Write Data Range: this field shows the MODBUS write data range configured for each request. The initial address, along
with the read data size will result in the range of write data for each request.

Diagnostic Variable: The MODBUS request diagnostics configured by symbolic mapping or by direct representation, are
stored in variables of type T_DIAG_MODBUS_RTU_MAPPING_1 for Master devices and T_DIAG_MODBUS_ETH_CLIENT_1
for Client devices and the mapping by direct representation are in 4-byte and 2-word, which are described in Table 92.

T_DIAG_MODBUS_RTU_MAPPING_1.* Size Description
Communication Status Bits:

byStatus.bCommIdle BIT Communication idle (waiting to be executed).
byStatus.bCommExecuting BIT Active communication.

byStatus.bCommPostponed BIT

Communication deferred, because the maximum
number of concurrent requests was reached. De-
ferred communications will be carried out in the
same sequence in which they were ordered to avoid
indeterminacy. The time spent in this State is not
counted for the purposes of time-out. The bCom-
mIdle and bCommExecuting bits are false when the
bCommPostponed bit is true.

byStatus.bCommDisabled BIT Communication disabled. The bCommIdle bit is
restarted in this condition.

byStatus.bCommOk BIT Communication terminated previously was held
successfully.

byStatus.bCommError BIT Communication terminated previously had an error.
Check error code.

110

5. CONFIGURATION

T_DIAG_MODBUS_RTU_MAPPING_1.* Size Description
Last error code (enabled when bCommError = true):

eLastErrorCode MASTER_ERROR_CODE
(BYTE)

Informs the possible cause of the last error in the
MODBUS mapping. Consult Table 115 for further
details.

Last exception code received by master:
NO_EXCEPTION (0)
FUNCTION_NOT_SUPPORTED (1)
MAPPING_NOT_FOUND (2)

eLastExceptionCode MODBUS_EXCEPTION ILLEGAL_VALUE (3)
(BYTE) ACCESS_DENIED (128)*

MAPPING_DISABLED (129)*
IGNORE_FRAME (255)*

Communication statistics:

wCommCounter WORD

Communications counter terminated, with or with-
out errors. The user can test when communication
has finished testing the variation of this counter.
When the value 65535 is reached, the counter re-
turns to zero.

wCommErrorCounter WORD
Communications counter terminated with errors.
When the value 65535 is reached, the counter re-
turns to zero.

Table 92: MODBUS RTU Relations Diagnostics

Notes:
Exception Codes: The exception codes presented in this field are values returned by the slave. The definitions of the ex-

ception codes 128, 129 and 255 presented in the table are valid only when using Altus slaves. Slaves from other manufacturers
might use other definitions for each code.

Disabling Variable: variable of Boolean type used to disable, individually, MODBUS requests configured on request tab
via button at the bottom of the window. The request is disabled when the variable, corresponding to the request, is equal to 1,
otherwise the request is enabled.

Last Error Code: The codes for the possible situations that cause an error in the MODBUS communication can be
consulted below:

Code Enumerable Description

1 ERR_EXCEPTION Reply is in an exception code (see eLastExceptionCode
= Exception Code).

2 ERR_CRC Reply with invalid CRC.

3 ERR_ADDRESS MODBUS address not found. The address that replied
the request was different than expected.

4 ERR_FUNCTION Invalid function code. The reply’s function code was dif-
ferent than expected.

5 ERR_FRAME_DATA_COUNT The amount of data in the reply was different than ex-
pected.

7 ERR_NOT_ECHO The reply is not an echo of the request (FC 05 and 06).
8 ERR_REFERENCE_NUMBER Invalid reference number (FC 15 and 16).
9 ERR_INVALID_FRAME_SIZE Reply shorter than expected.

20 ERR_CONNECTION Error while establishing connection.
21 ERR_SEND Error during transmission stage.
22 ERR_RECEIVE Error during reception stage.
40 ERR_CONNECTION_TIMEOUT Application level time-out during connection.
41 ERR_SEND_TIMEOUT Application level time-out during transmission.
42 ERR_RECEIVE_TIMEOUT Application level time-out while waiting for reply.
43 ERR_CTS_OFF_TIMEOUT Time-out while waiting CTS = false in transmission.
44 ERR_CTS_ON_TIMEOUT Time-out while waiting CTS = true in transmission.

111

5. CONFIGURATION

Code Enumerable Description
128 NO_ERROR No error since startup.

Table 93: MODBUS Relations Error Codes

ATTENTION

Differently from other application tasks, when a depuration mark in the MainTask is reached,
the task of a Master MODBUS RTU instance and any other MODBUS task will stop running
at the moment that it tries to perform a writing in a memory area. It occurs in order to keep
the consistency of the memory areas data while a MainTask is not running.

5.5.5.2. MODBUS Master Protocol Configuration for Direct Representation (%Q)

To configure this protocol using direct representation (%Q), the following steps must be performed:

Configure the general parameters of the MODBUS protocol, such as: communication times and direct representation
variables (%Q) to receive diagnostics.
Add and configure devices by setting address, direct representation variables (%Q) to disable the relations, communica-
tion time-outs, etc.
Add and configure MODBUS relations, specifying the data type and MODBUS function, time-outs, direct representation
variables (%Q) to receive diagnostics of the relation and other to receive/write the data, amount of data to be transmitted
and relation polling.

The descriptions of each configuration are listed below in this section.

5.5.5.2.1. General Parameters of MODBUS Master Protocol - setting by Direct Representation (%Q)

The General parameters, found on the home screen of MODBUS protocol configuration (figure below), are defined as:

112

5. CONFIGURATION

Figure 58: MODBUS RTU Master Setup Screen

Direct representation variables (%Q) for the protocol diagnostic:

Configuration Description Default
Value Options

%Q Start Address of Diag-
nostics Area

Initial address of the diag-
nostic variables - 0 to 2147483628

Size Size of diagnostics area 20 Disabled for editing

Table 94: MODBUS RTU Master Configuration

Notes:
Initial Address of Diagnostics in %Q: this field is limited by the size of outputs variables (%Q) addressable memory of

each CPU, which can be found in section Memory.
Default Value: the factory default value cannot be set to the %Q Start Address of Diagnostics Area field, because the

creation of a Protocol instance may be held at any time on application development. The MasterTool IEC XE software itself
allocate a value, from the range of output variables of direct representation (%Q), not used yet.

The diagnostics and MODBUS protocol commands are described in Table 86.
The communication times of the MODBUS Master protocol, found on the button Advanced... in the configuration screen

are divided into Send Delay and Minimum Interframe, further details are described in section MODBUS Master Protocol
General Parameters – Symbolic Mapping Configuration.

5.5.5.2.2. Devices Configuration – Configuration for Direct Representation (%Q)

The configuration of the devices, viewed in figure below, comprises the following parameters:

113

5. CONFIGURATION

Figure 59: Device Configuration

Configuration Description Default
Value Options

Name Name of the instance MODBUS_Device Identifier, according to IEC
61131-3

Slave Address The MODBUS slave ad-
dress 1 0 to 255

Communication Time-out
(ms)

Sets the time-out of the ap-
plication level 1000 10 to 65535

Maximum Number of Re-
tries

Sets the number of retries
before reporting a communi-
cation error

2 0 to 9

Mapping Disabling Initial address used to dis-
able MODBUS relations - 0 to 2147483644

Table 95: Device Configuration - MODBUS Master

Notes:
Instance Name: this field is the identifier of the device, which is checked according to IEC 61131-3, i.e. does not allow

spaces, special characters and start with numeral character. It’s limited in 24 characters.
Mapping Disabling: composed of 32 bits, used to disable, individually, the 32 MODBUS relations configured in Device

Mappings space. The relation is disabled when the bit, corresponding to relation, is equal to 1, otherwise, the mapping is
enabled. This field is limited by the size of outputs variables (%Q) addressable memory of each CPU, which can be found in
section Memory.

Default Value: the factory default value cannot be set to the Mapping Disabling field, because the creation of a Protocol
instance may be held at any time on application development. The MasterTool IEC XE software itself allocate a value, from
the range of output variables of direct representation (%Q), not used yet.

For further details on the Slave Address, Communication Time-out and Maximum Number of Retries parameters see notes
in section Devices Configuration – Symbolic Mapping configuration.

5.5.5.2.3. Mappings Configuration – Configuration for Direct Representation (%Q)

The MODBUS relations settings, viewed in the figures below, follow the parameters described in table below:

114

5. CONFIGURATION

Figure 60: MODBUS Data Type

Figure 61: MODBUS Function

In table below, the number of factory default settings and the values for the column Options, may vary according to the
data type and MODBUS function (FC).

Configuration Description Default Value Options

Function MODBUS function type Read
Read
Write
Read/Write
Mask Write

Polling (ms) Communication period (ms) 100 0 to 3600000

Mapping Diagnostics Area
Initial address of the MOD-
BUS relation diagnostics
(%Q)

- 0 to 2147483640

Read Data Start Address Initial address of the MOD-
BUS read data 1 1 to 65536

Read Data Size Number of MODBUS read
data - Depends on the function

used

Read IEC Variable Initial address of the read
variables (%I) - 0 to 2147483646

Write Data Start Address Initial address of the MOD-
BUS write data 1 1 to 65536

Write Data Size Number of MODBUS write
data - Depends on the function

used

115

5. CONFIGURATION

Configuration Description Default Value Options

Write IEC Variable Initial address of the write
variables (%Q) - 0 to 2147483647

Mask Write IEC Variables
Initial address of the vari-
ables for the write mask
(%Q)

- 0 to 2147483644

Table 96: Device Mapping

Notes:
Function: the available data types are detailed in the Table 115 and MODBUS functions (FC) are available in the Table

113.
Polling: this parameter indicates how often the communication set for this relation must be executed. At the end of

communication will be awaited a time equal to the configured polling and after, will be performed a new communication as
soon as possible.

Mapping Diagnostics Area: this field is limited by the size of output variables addressable memory (%Q) at CPU, which
can be found in the section Memory. The configured MODBUS relations diagnostics are described in Table 92.

Read/Write Data Size: details of the data size supported by each function are described in the notes of the section
Requests Configuration – Symbolic Mapping Settings.

ATTENTION

When accessing the communication data memory is between devices with different endian-
ism (Little-Endian and Big-Endian), inversion of the read/write data may occur. In this case,
the user must adjust the data in the application.

Read IEC Variable: if the MODBUS data type is Coil or Input Status (bit), the initial address of the IEC reading variables
will have the format %IX10.1, for example. However, if the MODBUS data type is Holding Register or Input Register (16
bits), the initial address of the IEC reading variables will be %IW. This field is limited by the size of input variables addressable
memory (%I) at CPU, which can be found in the section Memory.

Write IEC Variable: if the MODBUS data type is Coil, the initial address of the IEC writing variables will have the
format %QX10.1, for example. However, if the MODBUS data type is Holding Register (16 bits), the initial address of the IEC
writing variables will be %QW. This field is limited by the size of output variables addressable memory (%Q) at CPU, which
can be found in the section Memory.

Write Mask: the function Mask Write (FC 22), employs a logic between the value already written and the two words that
are configured in this field using %QW(0) for the AND mask and %QW(2) for the OR mask; allowing the user to handle the
word. This field is limited by the size of output variables addressable memory (%Q) of each CPU, which can be found in the
section Memory.

Default Value: the factory default value cannot be set for the Mapping Diagnostics Area, Read IEC Variable, Write IEC
Variable and Mask Write IEC Variables fields, since the creation of a relation can be performed at any time on application
development. The MasterTool IEC XE software itself allocate a value from the range of direct representation output variables
(%Q), still unused. Factory default cannot be set to the Read/Write Data Size fields, as they will vary according to the
MODBUS data type selected.

ATTENTION

Unlike other tasks of an application, when a mark is reached at MainTask debugging, the
MODBUS RTU Master instance task or any other MODBUS task will stop being executed
at the moment it tries to write in the memory area. This occurs in order to maintain data
consistency of memory areas while MainTask is not running.

5.5.6. MODBUS RTU Slave

This protocol is available for the Nexto Series on its serial channels. At selecting this option in MasterTool IEC XE, the
CPU becomes a MODBUS communication slave, allowing the connection with MODBUS RTU master devices.

There are two ways to configure this protocol. The first one makes use of direct representation (%Q), in which the variables
are defined by your address. The second one, through symbolic mapping, where the variables are defined by your name.

116

5. CONFIGURATION

Independent of the configuration mode, the steps to insert an instance of the protocol and configure the serial interface
are equal. The procedure to insert an instance of the protocol is found in detail in the MasterTool IEC XE User Manual -
MU299609. The remaining configuration steps are described below for each mode:

Add the MODBUS RTU Slave Protocol instance to the serial channel COM 1 or COM 2 (or both, in cases of two
communication networks). To execute this procedure see Inserting a Protocol Instance section.
Configure the serial interface, choosing the communication speed, the RTS/CTS signals behavior, the parity, the stop
bits channel, among others. See Serial Interfaces Configuration section.

5.5.6.1. MODBUS Slave Protocol Configuration by Symbolic Mapping

To configure this protocol using symbolic mapping, you must perform the following steps:

Configure the MODBUS slave protocol general parameters, as: slave address and communication times (available at the
Slave advanced configurations button).
Add and configure MODBUS relations, specifying the variable name, MODBUS data type and data initial address.
Automatically, the data size and range will be filled, in accordance to the variable type declared.

5.5.6.1.1. MODBUS Slave Protocol Configuration via Symbolic Mapping

The general parameters, found on the MODBUS protocol initial screen (figure below), are defined as.

Figure 62: MODBUS RTU Slave Configuration Screen

Configuration Description Default Options
Slave Address MODBUS slave address 1 1 to 255

Table 97: Slave Configurations

The MODBUS slave protocol communication times, found in the Advanced... button on the configuration screen, are
divided in: Task Cycle, Send Delay and Minimum Interframe as shown in figure below and in table below.

Figure 63: Modbus Slave Advanced Configurations

117

5. CONFIGURATION

Configuration Description Default Options

Task Cycle (ms)

Time for the instance execu-
tion within the cycle, with-
out considering its own exe-
cution time

50 20 to 100

Send Delay (ms) Delay for the transmission
response 0 0 to 65535

Minimum Interframe
(chars)

Minimum silence time be-
tween different frames 3.5 3.5 to 100.0

Keep the communication
running on CPU stop

Enable the MODBUS Sym-
bol Slave to run while the
CPU is in STOP or standing
in a breakpoint

Unchecked Checked or unchecked

Table 98: Modbus Slave Advanced Configurations

Notes:
Task Cycle: the user will have to be careful when changing this parameter as it interferes directly in the answer time, data

volume for scan and mainly in the CPU resources balance between communications and other tasks.
Send Delay: the answer to a MODBUS protocol may cause problems in certain moments, as in the RS-485 interface or

other half-duplex. Sometimes there is a delay between the time of the request from the master and the silence on the physical
line (slave delay to put RTS in zero and put the RS-485 in high impedance state). To solve this problem, the master can wait
the determined time in this field before sending the new request. On the opposite case, the first bytes transmitted by the master
could be lost.

Minimum Interframe: the MODBUS standard defines this time as 3.5 characters, but this parameter is configurable in
order to attend the devices which don’t follow the standard.

The MODBUS Slave protocol diagnostics and commands configured, either by symbolic mapping or direct representation,
are stored in T_DIAG_MODBUS_RTU_SLAVE_1 variables. For the direct representation mapping, they are also in 4 bytes and
8 words which are described in table below:

T_DIAG_MODBUS_RTU_SLAVE_1.* Size Description
Diagnostic Bits:

tDiag.bRunning BIT The slave is in execution mode.

tDiag.bNotRunning BIT The slave is not in execution (see bit: bInterruptedBy-
Command).

tDiag.bInterruptedByCommand BIT The bit bNotRunning was enabled as the slave was in-
terrupted by the user through command bits.

tDiag.bConfigFailure BIT Configuration failure.
tDiag.bModuleFailure BIT Not implemented.

Error codes:
0: there are no errors
1: invalid serial port
2: invalid serial port mode
3: invalid baud rate
4: invalid data bits
5: invalid parity
6: invalid stop bits
7: invalid modem signal parameter
8: invalid UART RX Threshold parameter
9: invalid time-out parameter
10: busy serial port
11: UART hardware error
12: remote hardware error

eErrorCode SERIAL_STATUS
(BYTE) 20: invalid transmission buffer size

21: invalid signal modem method
22: CTS time-out = true
23: CTS time-out = false
24: transmission time-out error
30: invalid reception buffer size

118

5. CONFIGURATION

T_DIAG_MODBUS_RTU_SLAVE_1.* Size Description
31: reception time-out error
32: flow control configured differently from manual
33: invalid flow control for the configured serial port
34: data reception not allowed in normal mode
35: data reception not allowed in extended mode
36: DCD interruption not allowed
37: CTS interruption not allowed
38: DSR interruption not allowed
39: serial port not configured
50: internal error in the serial port

Command bits, automatically initialized:
tCommand.bStop BIT Stop slave.
tCommand.bRestart BIT Restart slave.
tCommand.bResetCounter BIT Restart diagnostics statistics (counters).

Communication Statistics:

tStat.wRXRequests WORD
Counter of normal requests received by the slave and
answered normally. In case of a broadcast command,
this counter is incremented, but it is not transmitted (0
to 65535).

tStat.wTXExceptionResponses WORD
Counter of normal requests received by the slave and
answered with exception code. In case of a broadcast
command, this counter is incremented, but it isn’t trans-
mitted (0 to 65535).

tStat.wRXFrames WORD
Counter of frames received by the slave. It’s considered
a frame something which is processed and it is followed
by a Minimum Interframe Silence, in other words, an
illegal message is also computed (0 to 65535).

tStat.wRXIllegalRequests WORD
Illegal request counter. These are frames which start
with address 0 (broadcast) or with the MODBUS slave
address, but aren’t legal requests – invalid syntax,
smaller frames, invalid CRC – (0 to 65535).

tStat.wRXOverrunErrors WORD Counter of frames with overrun errors during reception
– UART FIFO or RX line – (0 to 65535).

tStat.wRXIncompleteFrames WORD Counter of frames with construction errors, parity or
failure during reception (0 to 65535).

tStat.wCTSTimeOutErrors WORD Counter of CTS time-out error, using the RTS/CTS
handshake, during the transmission (0 to 65535).

Table 99: MODBUS RTU Slave Diagnostic

Note:
Counters: all MODBUS RTU Slave diagnostics counters return to zero when the limit value 65535 is exceeded.

5.5.6.1.2. MODBUS Slave Protocol General Parameters – Configuration via Symbolic Mapping

The MODBUS relations configuration, showed on figure below, follows the parameters described on table below:

Figure 64: MODBUS Data Mappings Screen

119

5. CONFIGURATION

Configuration Description Default Options

Value Variable Symbolic variable name - Name of a variable declared
in a program or GVL

Data Type MODBUS data type -
Coil
Input Status
Holding Register
Input Register

Data Start Address MODBUS data initial ad-
dress - 1 to 65536

Absolute Data Start Ad-
dress

Absolute initial address of
MODBUS data according to
its type

- -

Data Size MODBUS data size - 1 to 65536

Data Range Data address range config-
ured - -

Table 100: MODBUS Mappings Configurations

Notes:
Value Variable: this field is used to specify a symbolic variable in MODBUS relation.
Data Type: this field is used to specify the data type used in the MODBUS relation.

Data Type Size [bits] Description
Coil 1 Digital output that can be read or written.

Input Status 1 Digital input (read only).
Holding Register 16 Analog output that can be read or written.

Input Register 16 Analog input (read only).

Table 101: MODBUS data types supported by Nexto CPUs

Data Start Address: data initial address of the MODBUS relation.
Data Size: the Data Size value sets the maximum amount of data that a MODBUS relation can access from the initial

address. Thus, in order to read a continuous range of addresses, it is necessary that all addresses are declared in a single
relation. This field varies according to the configured type of MODBUS data.

Data Range: this field shows the user the memory address range used by the MODBUS relation.

ATTENTION

Differently from other application tasks, when a depuration mark in the MainTask is reached,
the task of a MODBUS RTU Slave instance and any other MODBUS task will stop running
at the moment that it tries to perform a writing in a memory area. It occurs in order to keep
the consistency of the memory areas data while a MainTask is not running.

5.5.6.2. MODBUS Slave Protocol Configuration via Direct Representation (%Q)

To configure this protocol using Direct Representation (%Q), you must perform the following steps:

Configure the general parameters of MODBUS slave protocol, such as: communication times, address and direct repre-
sentation variables (%Q) to receive diagnostics and control relations.
Add and configure MODBUS relations, specifying the MODBUS data type, direct representation variables (%Q) to
receive/write the data and amount of data to communicate.

The descriptions of each setting are listed below, in this section.

120

5. CONFIGURATION

5.5.6.2.1. General Parameters of MODBUS Slave Protocol – Configuration via Direct Representation (%Q)

The general parameters, found on the home screen of MODBUS protocol configuration (figure below), are defined as:

Figure 65: MODBUS RTU Slave Configuration Screen by Direct Representation

Address and direct representation variables (%Q) to control relations and diagnostics:

Configuration Description Default Value Options
%Q Start Address of Diag-
nostics Area

Initial address of the diag-
nostic variables - 0 to 2147483628

Size Size of diagnostics area - Disabled for editing
Slave Address MODBUS slave address 1 1 to 255

Mapping Disabling Initial address used to dis-
able MODBUS relations - 0 to 2147483644

Table 102: Address and Direct Representation Variables Settings

Notes:
%Q Start Address of Diagnostics Area: this field is limited by the size of output variables addressable memory (%Q) of

each CPU, which can be found in section Memory.
Slave Address: it is important to note that the Slave accepts requests broadcast, when the master sends a command with

the address set to zero. Moreover, in accordance with standard MODBUS, the valid address range for slaves is 1 to 247. The
addresses 248 to 255 are reserved.

Mapping Disabling: composed of 32 bits, used to disable, individually, the 32 MODBUS relations configured in Slave
Mappings space. The relation is disabled when the corresponding bit is equal to 1, otherwise, the mapping is enabled. This
field is limited by the size of output variables addressable memory (%Q) of each CPU, which can be found on Memory section.

Default Value: the factory default value cannot be set for the %Q Start Address of Diagnostics Area and Mapping Dis-
abling fields, since the creation of a relation can be performed at any time on application development. The MasterTool IEC
XE software itself allocate a value from the range of direct representation output variables (%Q), still unused.

The MODBUS Slave by Direct Representation protocol stops communicating while the CPU is in STOP or stopped at a
breakpoint.

The MODBUS protocol diagnostics and commands are described in the Table 99.

121

5. CONFIGURATION

The communication times of the MODBUS Slave protocol, found on the button Advanced... of the configuration screen,
are described in Table 98.

5.5.6.2.2. Mappings Configuration – Configuration via Direct Representation (%Q)

The MODBUS relations settings, viewed in the figures below, follow the parameters described in table below:

Figure 66: Adding MODBUS Relations

Figure 67: Configuring the MODBUS Relation

Configuration Description Default
Value Options

Data Type MODBUS data type Coil
Coil (1 bit)
Holding Register (16 bits)
Input Register (16 bits)
Input Status (1 bit)

Data Start Address Initial address of the MOD-
BUS data 1 1 to 65536

Data Size Number of MODBUS data - 1 to 65536

IEC Variable Initial address of variables
(%Q) - 0 to 2147483647

122

5. CONFIGURATION

Configuration Description Default
Value Options

Read-only Only allows reading Disabled Enabled or disabled

Table 103: Slave Mappings

Notes:
Options: the values written in the column Options may vary according with the configured MODBUS data.
Data Size: the value of Data Size defines the maximum amount of data that a MODBUS relation can access, from the

initial address. Thus, to read a continuous address range, it is necessary that all addresses are declared in a single interface.
This field varies with the MODBUS data type configured, i.e. when selected Coil or Input Status, the Data Size field must be a
multiple of eight. Also, the maximum amount must not exceed the size of output addressable memory and not assign the same
values used in the application.

ATTENTION

When accessing the communication data memory is between devices with different endian-
ism (Little-Endian and Big-Endian), inversion of the read/write data may occur. In this case,
the user must adjust the data in the application.

IEC Variable: in case the MODBUS data type is Coil or Input Status (bit), the IEC variables initial address will be in the
format %QX10.1. However, if the MODBUS data type is Holding Register or Input Register (16 bits), the IEC variables initial
address will be in the format %QW. This field is limited by the memory size of the addressable output variables (%Q) from
each CPU, which can be seen on Memory section.

Read-only: when enabled, it only allows the communication master to read the variable data. It does not allow the writing.
This option is valid for the writing functions only.

Default Value: the default value cannot be defined for the IEC Variable field since the creation of a relation can be
performed at any time on application development. The MasterTool IEC XE software itself allocate a value from the range of
direct representation output variables (%Q), still unused. The default cannot be defined for the Data Size field as it will vary
according to selected MODBUS data type.

In the previously defined relations, the maximum MODBUS data size can be 65535 (maximum value configured in the
Data Size field). However, the request which arrives in the MODBUS RTU Slave must address a subgroup of this mapping
and this group must have, at most, the data size depending on the function code which is defined below:

Read Coils (FC 1): 2000
Read Input Status (FC 2): 2000
Read Holding Registers (FC 3): 125
Read Input Registers (FC 4): 125
Write Single Coil (FC 5): 1
Write Single Holding register (FC 6): 1
Force Multiple Coils (FC 15): 1968
Write Holding Registers (FC 16): 123
Mask Write Register (FC 22): 1
Read/Write Holding Registers (FC 23):

• Read: 121
• Write: 121

ATTENTION

Differently from other application tasks, when a depuration mark in the MainTask is reached,
the task of a Slave MODBUS RTU instance and any other MODBUS task will stop running
at the moment that it tries to perform a writing in a memory area. It occurs in order to keep
the consistency of the memory areas data while a MainTask is not running.

123

5. CONFIGURATION

5.5.7. MODBUS Ethernet

The multi-master communication allows the Nexto CPUs to read or write MODBUS variables in other controllers or HMIs
compatible with the MODBUS TCP protocol or MODBUS RTU via TCP. The Nexto CPU can, at the same time, be client and
server in the same communication network, or even have more instances associated to the Ethernet interface. It does not matter
if they are MODBUS TCP or MODBUS RTU via TCP, as described on Table 66.

The figure below represents some of the communication possibilities using the MODBUS TCP protocol simultaneously
with the MODBUS RTU via TCP protocol.

Figure 68: MODBUS TCP Communication Network

The association of MODBUS variables with CPU symbolic variables is made by the user through relations definition via
MasterTool IEC XE configuration tool. It’s possible to configure up to 32 relations for the server mode and up to 128 relations
for the client mode. The relations in client mode, on the other hand, must respect the data maximum size of a MODBUS
function: 125 registers (input registers or holding registers) or 2000 bits (coils or input status). This information is detailed in
the description of each protocol.

All relations, in client mode or server mode, can be disabled through direct representation variables (%Q) identified as
Disabling Variables by MasterTool IEC XE. The disabling may occur through general bits which affect all relations of an
operation mode, or through specific bits, affecting specific relations.

For the server mode relations, IP addresses clusters can be defined with writing and reading allowance, called filters. This
is made through the definition of an IP network address and of a subnet mask, resulting in a group of client IPs which can

124

5. CONFIGURATION

read and write in the relation variables. Reading/writing functions are filtered, in other words, they cannot be requested by any
client, independent from the IP address. This information is detailed in the MODBUS Ethernet Server protocol.

When the MODBUS TCP protocol is used in the client mode, it’s possible to use the multiple requests feature, with the
same TCP connection to accelerate the communication with the servers. When this feature isn’t desired or isn’t supported by
the server, it can be disabled (relation level action). It is important to emphasize that the maximum number of TCP connections
between the client and server is 63. If some parameters are changed, inactive communications can be closed, which allows the
opening of new connections.

The tables below bring, respectively, the complete list of data and MODBUS functions supported by the Nexto CPUs.

Data Type Size [bits] Description
Coil 1 Digital output that can be read or written.

Input Status 1 Digital input (read only).
Holding Register 16 Analog output that can be read or written.

Input Register 16 Analog input (read only).

Table 104: MODBUS data types supported by Nexto CPUs

Code
DEC HEX Description

1 0x01 Read Coils (FC 01)
2 0x02 Read Input Status (FC 02)
3 0x03 Read Holding Registers (FC 03)
4 0x04 Read Input Registers (FC 04)
5 0x05 Write Single Coil (FC 05)
6 0x06 Write Single Holding Register (FC 06)

15 0x0F Write Multiple Coils (FC 15)
16 0x10 Write Multiple Holding Registers (FC 16)
22 0x16 Mask Write Holding Register (FC 22)
23 0x17 Read/Write Multiple Holding Registers (FC 23)

Table 105: MODBUS Functions Supported by Nexto CPUs

Independent of the configuration mode, the steps to insert an instance of the protocol and configure the Ethernet interface
are equal. The remaining configuration steps are described below for each modality.

Add one or more instances of the MODBUS Ethernet client or server protocol to Ethernet channel. To perform this
procedure, refer to the section Inserting a Protocol Instance.
Configure the Ethernet interface. To perform this procedure, see section Ethernet Interfaces Configuration.

5.5.8. MODBUS Ethernet Client

This protocol is available for all Nexto Series CPUs on its Ethernet channels. When selecting this option at MasterTool
IEC XE, the CPU becomes a MODBUS communication client, allowing the access to other devices with the same protocol,
when it’s in execution mode (Run Mode).

There are two ways to configure this protocol. The first one makes use of direct representation (%Q), in which the variables
are defined by your address. The second one, through symbolic mapping, where the variables are defined by your name.

The procedure to insert an instance of the protocol is found in detail in the MasterTool IEC XE User Manual – MU299609
or on Inserting a Protocol Instance section.

5.5.8.1. MODBUS Ethernet Client Configuration via Symbolic Mapping

To configure this protocol using Symbolic Mapping, it’s necessary to execute the following steps:

125

5. CONFIGURATION

Configure the general parameters of MODBUS protocol client, with the Transmission Control Protocol (TCP) or RTU
via TCP.
Add and configure devices by setting IP address, port, address of the slave and time-out of communication (available on
the Advanced Settings button of the device).
Add and configure the MODBUS mappings, specifying the variable name, data type, data initial address, data size and
variable that will receive the quality data.
Add and configure the MODBUS request, specifying the desired function, the scan time of the request, the initial address
(read/write), the size of the data (read/write), the variable that will receive the data quality and the variable responsible
for disabling the request.

5.5.8.1.1. MODBUS Client Protocol General Parameters – Configuration via Symbolic Mapping

The general parameters, found on the MODBUS protocol configuration initial screen (figure below), are defined as:

Figure 69: MODBUS Client General Parameters Configuration Screen

Configuration Description Default Options

Connection Mode Protocol selection TCP RTU via TCP
TCP

Table 106: MODBUS Client General Configurations

The MODBUS Client protocol diagnostics and commands configured, either by symbolic mapping or direct representation,
are stored in T_DIAG_MODBUS_ETH_CLIENT_1 variables. For the direct representation mapping, they are also in 4 bytes
and 8 words which are described in table below:

T_DIAG_MODBUS_ETH_CLIENT_1.* Size Description
Diagnostic Bits:

tDiag.bRunning BIT The client is in execution mode.

tDiag.bNotRunning BIT The client is not in execution mode (see bit bInterrupt-
edByCommand).

tDiag.bInterruptedByCommand BIT The bit bNotRunning was enabled, as the client was in-
terrupted by the user through command bits.

tDiag.bConfigFailure BIT Configuration failure.

tDiag.bModuleFailure BIT Indicates if there is failure in the module or the module
is not present.

tDiag.bAllDevicesCommFailure BIT Indicates that all devices configured in the Client are in
failure.

Command bits, automatically initialized:
tCommand.bStop BIT Stop client.
tCommand.bRestart BIT Restart client.
tCommand.bResetCounter BIT Restart the diagnostic statistics (counters).

Communication Statistics:

tStat.wTXRequests WORD Counter of number of requests transmitted by the client
(0 to 65535).

tStat.wRXNormalResponses WORD Counter of normal answers received by the client (0 to
65535).

tStat.wRXExceptionResponses WORD Counter of answers with exception code (0 to 65535).

126

5. CONFIGURATION

T_DIAG_MODBUS_ETH_CLIENT_1.* Size Description

tStat.wRXIllegalResponses WORD
Counter of illegal answers received by the client – in-
valid syntax, invalid CRC or not enough bytes received
(0 to 65535).

Table 107: MODBUS Client Protocol Diagnostics

Note:
Counters: all MODBUS TCP Client diagnostics counters return to zero when the limit value 65535 is exceeded.

5.5.8.1.2. Device Configuration – Configuration via Symbolic Mapping

The devices configuration, shown on figure below, follows the following parameters:

Figure 70: Device General Parameters Settings

Configuration Description Default Options
IP Address Server IP address 0.0.0.0 1.0.0.1 to 223.255.255.255
TCP Port TCP port 502 2 to 65534
Slave Address MODBUS Slave address 1 0 to 255

Table 108: MODBUS Client General Configurations

Notes:
IP Address: IP address of Modbus Server Device.
TCP Port: if there are multiple instances of the protocol added in a single Ethernet interface, different TCP ports must be

selected for each instance. Some TCP ports, among the possibilities mentioned above, are reserved and therefore cannot be
used. See table Reserved TCP/UDP ports.

Slave address: according to the MODBUS standard, the valid address range for slaves is 0 to 247, where addresses 248 to
255 are reserved. When the master sends a command of writing with the address set to zero, it is performing broadcast requests
on the network.

The parameters in the advanced settings of the MODBUS Client device, found on the button Advanced... in the General
Parameters tab are divided into: Maximum Simultaneous Requests, Communication Time-out, Mode of Connection Time-out
and Inactive Time.

Configuration Description Default Options

Maximum Simultaneous
Request

Number of simultaneous re-
quest the client can ask from
the server

1 1 to 8

Communication Time-out
(ms)

Application level time-out in
ms 3000 10 to 65535

127

5. CONFIGURATION

Configuration Description Default Options

Mode
Defines when the connec-
tion with the server finished
by the client

Connection is
closed after
an inactive
time of (s):
10 to 3600.

Connection is closed after a
time-out.
Connection is closed at the
end of each communica-
tion.
Connection is closed after
an inactive time of (s): 10
to 3600.

Inactive Time (s) Inactivity time 10 3600

Table 109: MODBUS Client Advanced Configurations

Notes:
Maximum Simultaneous Requests: it is used with a high scan cycle. This parameter is fixed in 1 (not editable) when the

configured protocol is MODBUS RTU over TCP.
Communication Time-out: the Communication time-out is the time that the client will wait for a server response to the

request. For a MODBUS Client device, two variables of the system must be considered: the time the server takes to process
a request and the response sending delay in case it is set in the server. It is recommended that the time-out is equal or higher
than twice the sum of these parameters. For further information, check Communication Performance section.

Mode: defines when the connection with the server is finished by the client. Below follows the available options:
Connection is closed after a time-out or Connection is never closed in normal situations: Those options presents the same
behavior of Client, close the connection due non response of a request by the Server before reaching the Communication
Time-out.
Connection is closed at the end of each communication: The connection is closed by the Client after finish each request.
Connection is closed after an Inactive Time: The connection will be closed by the Client if it reach the Inactive Time
without performing a request to the Server.

Inactive Time: inactivity connection time.

5.5.8.1.3. Mappings Configuration – Configuration via Symbolic Mapping

The MODBUS relations configuration, showed on figure below, follows the parameters described on table below:

Figure 71: MODBUS Data Type

128

5. CONFIGURATION

Configuration Description Default Options

Value Variable Symbolic variable name - Name of a variable declared
in a program or GVL

Data Type MODBUS data type -

Coil - Write (1 bit)
Coil - Read (1 bit)
Holding Register - Write
(16 bits)
Holding Register - Read (16
bits)
Holding Register – Mask
AND (16 bits)
Holding Register – Mask
OR (16 bits)
Input Register (16 bits)
Input Status (1 bit)

Data Start Address Initial address of the MOD-
BUS data - 1 to 65536

Data Size Size of the MODBUS data - 1 to 65536

Data Range The address range of config-
ured data - -

Table 110: MODBUS Mappings Settings

Notes:
Value Variable: this field is used to specify a symbolic variable in MODBUS relation.
Data type: this field is used to specify the data type used in the MODBUS relation.

Data Type Size [bits] Description
Coil - Write 1 Writing digital output.
Coil - Read 1 Reading digital output.

Holding Register - Write 16 Writing analog output.
Holding Register - Read 16 Reading analog output.

Holding Register - Mask AND 16 Analog output which can be read or written with AND
mask.

Holding Register - Mask OR 16 Analog output which can be read or written with OR
mask.

Input Register 16 Analog input which can be only read.
Input Status 1 Digital input which can be only read.

Table 111: Data Types Supported in MODBUS

Data Start Address: Data initial address of a MODBUS mapping.
Data Size: The size value specifies the maximum amount of data that a MODBUS interface can access, from the initial

address. Thus, to read a continuous address range, it is necessary that all addresses are declared in a single interface. This field
varies with the MODBUS data type configured.

Data Range: This field shows to the user the memory address range used by the MODBUS interface.

5.5.8.1.4. Requests Configuration – Configuration via Symbolic Mapping

The configuration of the MODBUS requests, viewed in figure below, follow the parameters described in table below:

129

5. CONFIGURATION

Figure 72: MODBUS Data Request Screen

Configuration Description Default Value Options

Function Code MODBUS function type -

01 – Read Coils
02 – Read Input Status
03 – Read Holding Regis-
ters
04 – Read Input Registers
05 – Write Single Coil
06 – Write Single Register
15 – Write Multiple Coils
16 – Write Multiple Regis-
ters
22 – Mask Write Register
23 – Read/Write Multiple
Registers

Polling (ms) Communication period (ms) 100 0 to 3600000

Read Data Start Address Initial address of the MOD-
BUS read data - 1 to 65536

Read Data Size Size of MODBUS Read data - Depends on the function
used

Read Data Range MODBUS Read data ad-
dress range - 0 to 2147483646

Write Data Start Address Initial address of the MOD-
BUS write data - 1 to 65536

Write Data Size Size of MODBUS Write
data - Depends on the function

used

Write Data Range MODBUS Write data ad-
dress range - 0 to 2147483647

Diagnostic Variable Diagnostic variable name - Name of a variable declared
in a program or GVL

130

5. CONFIGURATION

Configuration Description Default Value Options

Disabling Variable Variable used to disable
MODBUS relation -

Field for symbolic variable
used to disable, individually,
MODBUS requests config-
ured. This variable must be
of type BOOL. The variable
can be simple or array el-
ement and can be in struc-
tures.

Table 112: MODBUS Relations Configuration

Notes:
Setting: the number of factory default settings and the values for the column Options may vary according to the data type

and MODBUS function (FC).
Function Code: MODBUS (FC) functions available are the following:

Code
DEC HEX Description

1 0x01 Read Coils (FC 01)
2 0x02 Read Input Status (FC 02)
3 0x03 Read Holding Registers (FC 03)
4 0x04 Read Input Registers (FC 04)
5 0x05 Write Single Coil (FC 05)
6 0x06 Write Single Holding Register (FC 06)

15 0x0F Write Multiple Coils (FC 15)
16 0x10 Write Multiple Holding Registers (FC 16)
22 0x16 Mask Write Holding Register (FC 22)
23 0x17 Read/Write Multiple Holding Registers (FC 23)

Table 113: MODBUS Functions Supported by Nexto CPUs

Polling: this parameter indicates how often the communication set for this request must be performed. By the end of a
communication will be awaited a time equal to the value configured in the field polling and after that, a new communication
will be executed.

Read Data Start Address: field for the initial address of the MODBUS read data.
Read Data Size: the minimum value for the read data size is 1 and the maximum value depends on the MODBUS function

(FC) used as below:

Read Coils (FC 01): 2000
Read Input Status (FC 02): 2000
Read Holding Registers (FC 03): 125
Read Input Registers (FC 04): 125
Read/Write Multiple Registers (FC 23): 121

Read Data Range: this field shows the MODBUS read data range configured for each request. The initial address, along
with the read data size will result in the range of read data for each request.

Write Data Start Address: field for the initial address of the MODBUS write data.
Write Data Size: the minimum value for the write data size is 1 and the maximum value depends on the MODBUS

function (FC) used as below:

Write Single Coil (FC 05): 1
Write Single Register (FC 06): 1
Write Multiple Coils (FC 15): 1968

131

5. CONFIGURATION

Write Multiple Registers (FC 16): 123
Mask Write Register (FC 22): 1
Read/Write Multiple Registers (FC 23): 121

Write Data Range: this field shows the MODBUS write data range configured for each request. The initial address, along
with the read data size will result in the range of write data for each request.

Diagnostic Variable: The MODBUS request diagnostics configured by symbolic mapping or by direct representation, are
stored in variables of type T_DIAG_MODBUS_RTU_MAPPING_1 for Master devices and T_DIAG_MODBUS_ETH_CLIENT_1
for Client devices and the mapping by direct representation are in 4-byte and 2-word, which are described in Table 92.

T_DIAG_MODBUS_ETH_MAPPING_1.* Size Description
Communication Status Bits:

byStatus.bCommIdle BIT Communication idle (waiting to be executed).
byStatus.bCommExecuting BIT Active communication.

byStatus.bCommPostponed BIT

Communication deferred, because the maximum
number of concurrent requests was reached. De-
ferred communications will be carried out in the
same sequence in which they were ordered to avoid
indeterminacy. The time spent in this State is not
counted for the purposes of time-out. The bCom-
mIdle and bCommExecuting bits are false when the
bCommPostponed bit is true.

byStatus.bCommDisabled BIT Communication disabled. The bCommIdle bit is
restarted in this condition.

byStatus.bCommOk BIT Communication terminated previously was held
successfully.

byStatus.bCommError BIT Communication terminated previously had an error.
Check error code.

byStatus.bCommAborted BIT Previously terminated communication was inter-
rupted due to connection failure.

Last error code (enabled when bCommError = true):

eLastErrorCode MASTER_ERROR_CODE
(BYTE)

Informs the possible cause of the last error in the
MODBUS mapping. Consult Table 115 for further
details.

Last exception code received by master:
NO_EXCEPTION (0)
FUNCTION_NOT_SUPPORTED (1)
MAPPING_NOT_FOUND (2)

eLastExceptionCode MODBUS_EXCEPTION ILLEGAL_VALUE (3)
(BYTE) ACCESS_DENIED (128)*

MAPPING_DISABLED (129)*
IGNORE_FRAME (255)*

Communication statistics:

wCommCounter WORD

Communications counter terminated, with or with-
out errors. The user can test when communication
has finished testing the variation of this counter.
When the value 65535 is reached, the counter re-
turns to zero.

wCommErrorCounter WORD
Communications counter terminated with errors.
When the value 65535 is reached, the counter re-
turns to zero.

Table 114: MODBUS Client Relations Diagnostics

Notes:
Exception Codes: the exception codes show in this filed is the server returned values. The definitions of the exception

codes 128, 129 and 255 are valid only with Altus slaves. For slaves from other manufacturers these exception codes can have
different meanings.

Disabling Variable: field for the variable used to disable MODBUS requests individually configured within requests. The
request is disabled when the variable, corresponding to the request, is equal to 1, otherwise the request is enabled.

Last Error Code: The codes for the possible situations that cause an error in the MODBUS communication can be
consulted below:

132

5. CONFIGURATION

Code Enumerable Description

1 ERR_EXCEPTION Reply is in an exception code (see eLastExceptionCode
= Exception Code).

2 ERR_CRC Reply with invalid CRC.

3 ERR_ADDRESS MODBUS address not found. The address that replied
the request was different than expected.

4 ERR_FUNCTION Invalid function code. The reply’s function code was dif-
ferent than expected.

5 ERR_FRAME_DATA_COUNT The amount of data in the reply was different than ex-
pected.

7 ERR_NOT_ECHO The reply is not an echo of the request (FC 05 and 06).
8 ERR_REFERENCE_NUMBER Invalid reference number (FC 15 and 16).
9 ERR_INVALID_FRAME_SIZE Reply shorter than expected.

20 ERR_CONNECTION Error while establishing connection.
21 ERR_SEND Error during transmission stage.
22 ERR_RECEIVE Error during reception stage.
40 ERR_CONNECTION_TIMEOUT Application level time-out during connection.
41 ERR_SEND_TIMEOUT Application level time-out during transmission.
42 ERR_RECEIVE_TIMEOUT Application level time-out while waiting for reply.
43 ERR_CTS_OFF_TIMEOUT Time-out while waiting CTS = false in transmission.
44 ERR_CTS_ON_TIMEOUT Time-out while waiting CTS = true in transmission.
128 NO_ERROR No error since startup.

Table 115: MODBUS Relations Error Codes

ATTENTION

Unlike other tasks of an application, when a mark is reached at MainTask debugging, the
MODBUS Ethernet Client instance task or any other MODBUS task will stop being executed
at the moment it tries to write in the memory area. This occurs in order to maintain data
consistency of memory areas while MainTask is not running.

5.5.8.2. MODBUS Ethernet Client configuration via Direct Representation (%Q)

To configure this protocol using direct representation (%Q), the following steps must be performed:

Configure the general parameters of the MODBUS protocol, such as: communication times and direct representation
variables (%Q) to receive diagnostics.
Add and configure devices by setting address, direct representation variables (%Q) to disable the relations, communica-
tion time-outs, etc.
Add and configure MODBUS relations, specifying the data type and MODBUS function, time-outs, direct representation
variables (%Q) to receive diagnostics of the relation and other to receive/write the data, amount of data to be transmitted
and relation polling.

The descriptions of each configuration are listed below in this section.

5.5.8.2.1. General parameters of MODBUS Protocol Client - configuration for Direct Representation (%Q)

The General parameters, found on the home screen of MODBUS protocol configuration (figure below), are defined as:

133

5. CONFIGURATION

Figure 73: MODBUS Client Setup Screen

Protocol selection and direct representation variables (%Q) for diagnostics:

Setting Description Default
Value Options

%Q Start Address of Diag-
nostics Area

Initial address of the diag-
nostic variables - 0 to 2147483628

Size Size of diagnostics 20 Disabled for editing

Protocol Protocol selection TCP RTU via TCP
TCP

Table 116: MODBUS Client settings

Notes:
%Q Start Address of Diagnostics Area: this field is limited by the size of output variables addressable memory (%Q) at

CPU, which can be found in section Memory.
Default Value: the default value cannot be defined for the %Q Start Address of Diagnostics Area field since the creation

of a protocol instance can be made at any moment within the application development. The MasterTool IEC XE software itself
allocate a value from the range of direct representation output variables (%Q), still unused.

The diagnostics and MODBUS commands are described in Table 107.

5.5.8.2.2. Device Configuration – Configuration via Direct Representation (%Q)

The configuration of the devices, viewed in figure below, comprises the following parameters:

134

5. CONFIGURATION

Figure 74: Configuring MODBUS Client

Configuration Description Factory
default Options

Name Name of the instance MODBUS_Device Identifier, according to IEC
61131-3

Destination IP IP address of the server 0. 0. 0.1 1.0.0.1 to 223.255.255.255
TCP Port TCP Port 502 2 to 65534

Mapping Disabling Initial address used to dis-
able MODBUS relations - Any address of the %Q area,

limited by the CPU model

Table 117: Configuration of Client Devices

Notes:
Instance Name: this field is the identifier of the device, which is checked according to IEC 61131-3, i.e. it does not allow

spaces, special characters and starting with numeral character. It is limited to 24 characters.
TCP Port: if there are multiple instances of the protocol added in a single Ethernet interface, different TCP ports must be

selected for each instance. Some TCP ports, among the possibilities mentioned above, are reserved and therefore cannot be
used. See table Reserved TCP/UDP ports.

Mapping Disabling: composed of 32 bits, it is used to disable, individually, the 32 MODBUS relations configured in
Device Mappings space. The relation is disabled when the corresponding bit is equal to 1, otherwise, the mapping is enabled.
This field is limited by the size of output variables addressable memory (%Q) at CPU, which can be found in section Memory.

Default Value: factory default cannot be set for the Mapping Disabling field, since the creation of a protocol instance can
be made at any moment within the application development. The MasterTool IEC XE software itself allocate a value from the
range of direct representation output variables (%Q), still unused.

Communication Time-out: the settings present on the button Advanced... on the TCP connection, are described in the
notes of the section Device Configuration – Configuration via Symbolic Mapping.

5.5.8.2.3. Mapping Configuration – Configuration via Direct Representation (%Q)

The MODBUS relations settings, viewed in the figures below, follow the parameters described in table below:

135

5. CONFIGURATION

Figure 75: MODBUS Data Type

Figure 76: MODBUS Function

In table below, the number of factory default settings and the values for the column Options, may vary according to the
data type and MODBUS function (FC).

Configuration Description Default Value Options

Function MODBUS function type Read
Read
Write
Read/Write
Mask Write

Slave Address MODBUS slave address 1 0 to 255

Polling (ms) Period of communication
(ms) 100 0 to 3600000

Mapping Diagnostics Area Starting address of MOD-
BUS interface diagnostics - 0 to 2147483640

Read Data Start Address Starting address of the read
MODBUS data 1 1 to 65536

Read Data Size Number of read MODBUS
data - Depends on the function

used

Read IEC Variable Starting address of the read
variables (%I) - 0 to 2147483647

136

5. CONFIGURATION

Configuration Description Default Value Options

Write Data Start Address Starting address of MOD-
BUS writing data 1 1 to 65536

Write Data Size Number of MODBUS writ-
ing data - Depends on the function

used

Write IEC Variable Starting address of the write
variables (%Q) - 0 to 2147483647

Mask Write IEC Variables Starting address of variables
for write mask (%Q) - 0 to 2147483644

Table 118: Device Mapping

Notes:
Device Mappings Table: the number of settings and values described in the column Options may vary according to the

data type and MODBUS function.
Slave Address: typically, the address 0 is used when the server is a MODBUS RTU or MODBUS RTU via TCP Gateway,

and the same broadcasts the request to all network devices. When the address 0 is used, the client doesn’t waits for a response
and its use serves only to written commands. Moreover, in accordance with MODBUS standard, the valid address range for
slaves is 0 to 247, and addresses 248 to 255 are reserved.

Polling: this parameter indicates how often the communication set for this relation must be executed. At the end of
communication will be awaited a time equal to the configured polling and after, will be performed a new communication as
soon as possible.

Mapping Diagnostic Area: this field is limited by the size of output variables addressable memory (%Q) at CPU, which
can be found in the section Memory . The configured MODBUS relations diagnostics are described in Table 92.

Size of the Read and Write Data: details of the size of the data supported by each function are described in the notes of
Requests Configuration – Symbolic Mapping Settings section.

ATTENTION

When accessing the communication data memory is between devices with different endian-
ism (Little-Endian and Big-Endian), inversion of the read/write data may occur. In this case,
the user must adjust the data in the application.

Read IEC Variable: in case the MODBUS data type is Coil or Input Status (bit), the IEC variables initial address will be
in the format %IX10.1. However, if the MODBUS data type is Holding Register or Input Register (16 bits), the IEC variables
initial address will be in the format %IW. This field is limited by the memory size of the addressable input variables (%I) from
each CPU, which can be seen on Memory section.

Write IEC Variable: in case the MODBUS data type is Coil (bit), the IEC variables initial address will be in the format
%QX10.1. However, if the MODBUS data type is Holding Register (16 bits), the IEC variables initial address will be in the
format %QW. This field is limited by the memory size of the addressable output variables (%Q) from each CPU, which can be
seen on Memory section.

Write Mask of IEC Variables: the Mask Write Register function (FC 22) employs a logic between the value already
written and the two words that are configured in this field using %QW(0) for the AND mask and %QW(2) for the OR mask;
allowing the user to handle the word. This field is limited by the size of output variables addressable memory (%Q) of each
CPU, which can be found in the section Memory.

Default Value: the factory default value cannot be set for the Mapping Diagnostics Area, Read IEC Variable, Write IEC
Variable and Mask Write IEC Variables fields, since the creation of a relation can be performed at any time on application
development. The MasterTool IEC XE software itself allocate a value from the range of direct representation output variables
(%Q), still unused. Factory default cannot be set to the Read/Write Data Size fields, as they will vary according to the
MODBUS data type selected.

ATTENTION

Unlike other tasks of an application, when a mark is reached at MainTask debugging, the
MODBUS Ethernet Client instance task or any other MODBUS task will stop being executed
at the moment it tries to write in the memory area. This occurs in order to maintain data
consistency of memory areas while MainTask is not running.

137

5. CONFIGURATION

5.5.8.3. MODBUS Client Relation Start in Acyclic Form

To start a MODBUS Client relation in acyclic form, it is suggested the following method which can be implemented in a
simple way in the user application program:

Define the maximum polling time for the relations;
Keep the relation normally disabled;
Enable the relation at the moment the execution is desired;
Wait for the confirmation of the relation execution finishing and, at this moment, disable it again.

5.5.9. MODBUS Ethernet Server

This protocol is available for all Nexto Series CPUs on its Ethernet channels. When selecting this option at MasterTool
IEC XE, the CPU becomes a MODBUS communication server, allowing the connection with MODBUS client devices. This
protocol is only available when the CPU is in execution mode (Run Mode).

There are two ways to configure this protocol. The first one makes use of direct representation (%Q), in which the variables
are defined by your address. The second one, through symbolic mapping, where the variables are defined by your name.

The procedure to insert an instance of the protocol is found in detail in the MasterTool IEC XE User Manual – MU299609.

5.5.9.1. MODBUS Server Ethernet Protocol Configuration for Symbolic Mapping

To configure this protocol using Symbolic Mappings, it is necessary to execute the following steps:

Configure the MODBUS server protocol general parameters, as: TCP port, protocol selection, IP filters for Reading
and Writing (available at the Filters Configuration button) and communication times (available at the Server Advanced
Configurations button).
Add and configure MODBUS mappings, specifying the variable name, data type, data initial address and data size.

The description of each configuration is related ahead in this section.

5.5.9.1.1. MODBUS Server Protocol General Parameters – Configuration via Symbolic Mapping

The general parameters, found on the MODBUS protocol initial screen (figure below), are defined as.

Figure 77: MODBUS Server General Parameters Configuration Screen

Configuration Description Default Options
TCP Port TCP port 502 2 to 65534

Connection Mode Protocol selection TCP RTU via TCP
TCP

Table 119: MODBUS Server General Configurations

Notes:
TCP Port: if there are multiple instances of the protocol added in a single Ethernet interface, different TCP ports must be

selected for each instance. Some TCP ports, among the possibilities mentioned above, are reserved and therefore cannot be

138

5. CONFIGURATION

used. See table Reserved TCP/UDP ports.
The settings present on the Filters... button, described in table below, are relative to the TCP communication filters:

Configuration Description Default Value Options

Write Filter IP Address

Specifies a range of IPs with
write access in the variables
declared in the MODBUS
interface.

0.0.0.0 0.0.0.0 to
255.255.255.255

Write Filter Mask
Specifies the subnet mask in
conjunction with the IP filter
parameter for writing.

0.0.0.0 0.0.0.0 to
255.255.255.255

Read Filter IP Address

Specifies a range of IPs with
read access in the variables
declared in the MODBUS
interface.

0.0.0.0 0.0.0.0 to
255.255.255.255

Read Filter Mask
Specifies the subnet mask in
conjunction with the IP filter
parameter for reading.

0.0.0.0 0.0.0.0 to
255.255.255.255

Table 120: IP Filters

Note:
Filters: filters are used to establish a range of IP addresses that have write or read access to MODBUS relations, being

individually configured. The permission criteria is accomplished through a logical AND operation between the Write Filter
Mask and the IP address of the client. If the result is the same as the Write Filter IP Address, the client is entitled to write. For
example, if the Write Filter IP Address = 192.168.15.0 and the Write Filter Mask = 255.255.255.0, then only customers with
IP address = 192.168.15.x shall be entitled. The same procedure is applied in the Read Filter parameters to define the read
rights.

The communication times of the MODBUS server protocol, found on the Advanced... button of the configuration screen,
are divided into: Task Cycle and Connection Inactivity Time-out.

Figure 78: MODBUS Server Advanced Settings Configuration Screen

139

5. CONFIGURATION

Configuration Description Default Value Options

Task Cycle (ms)

Time for the instance execu-
tion within the cycle, with-
out considering its own exe-
cution time

50 5 to 100

Connection Inactivity
Time-out (s)

Maximum idle time between
client and server before the
connection is closed by the
server

10 1 to 3600

Keep the communication
running on CPU stop.

Enable the MODBUS Sym-
bol Slave to run while the
CPU is in STOP or after a
breakpoint

Unmarked Marked or Unmarked

Table 121: MODBUS Server Advanced Configurations

Notes:
Task Cycle: the user has to be careful when changing this parameter as it interferes directly in the answer time, data

volume for scanning and mainly in the CPU resources balance between communications and other tasks.
Connection Inactivity Time-out: this parameter was created in order to avoid that the maximum quantity of TCP con-

nections is reached, imagining that inactive connections remain open on account of the most different problems. It indicates
how long a connection (client or server) can remain open without being used (without exchanging communication messages).
If the specified time is not reached, the connection is closed releasing an input in the connection table.

5.5.9.1.2. MODBUS Server Diagnostics – Configuration via Symbolic Mapping

The diagnostics and commands of the MODBUS server protocol configured, either by symbolic mapping or by direct
representation, are stored in variables of type T_DIAG_MODBUS_ETH_SERVER_1 and the mapping by direct representation
are in 4-byte and 8-word, which are described in table below:

T_DIAG_MODBUS_ETH_SERVER_1.* Size Description
Diagnostic Bits:

tDiag.bRunning BIT The server is running.

tDiag.bNotRunning BIT The server is not running (see bit bInterruptedBy-
Command).

tDiag.bInterruptedByCommand BIT The bit bNotRunning was enabled, because the server
was interrupted by the user through the command bit.

tDiag.bConfigFailure BIT Configuration failure.

tDiag.bModuleFailure BIT Indicates if there is failure in the module or the module
is not present.

Command bits, automatically initialized:
tCommand.bStop BIT Stop the server.
tCommand.bRestart BIT Restart the server.
tCommand.bResetCounter BIT Reset diagnostics statistics (counters).

Communication Statistics:

tStat.wActiveConnections WORD Number of established connections between client and
server (0 to 64).

tStat.wTimeoutClosedConnections WORD
Connections counter, between the client and server, in-
terrupted after a period of inactivity - time-out (0 to
65535).

tStat.wClientClosedConnections WORD Connections counter interrupted due to customer re-
quest (0 to 65535).

tStat.wRXFrames WORD
Ethernet frames counter received by the server. An Eth-
ernet frame can contain more than one request (0 to
65535).

tStat.wRXRequests WORD Requests received by the server counter and answered
normally (0 to 65535).

tStat.wTXExceptionResponses WORD Requests received by the server counter and answered
with exception codes (0 to 65535).

140

5. CONFIGURATION

T_DIAG_MODBUS_ETH_SERVER_1.* Size Description
tStat.wRXIllegalRequests WORD Illegal requests counter (0 to 65535).

Table 122: MODBUS Server Diagnostics

Note:
Counters: all counters of the MODBUS Ethernet Server Diagnostics return to zero when the limit value 65535 is exceeded.
bModuleFailure: Diagnosis implemented only for symbolic MODBUS.

5.5.9.1.3. Mapping Configuration – Configuration via Symbolic Mapping

The MODBUS relations configuration, showed on figure below, follows the parameters described on table below:

Figure 79: MODBUS Server Data Mappings Screen

Configuration Description Default
Value Options

Value Variable Symbolic variable name - Name of a variable declared
in a program or GVL

Data Type MODBUS data type -
Coil
Input Status
Holding Register
Input Register

Data Start Address Starting address of the
MODBUS data - 1 to 65536

Absolute Data Start Ad-
dress

Start address of absolute
data of Modbus as its type - -

Data Size Size of the MODBUS data - 1 to 65536

Data Range Data range address config-
ured - -

Table 123: MODBUS Ethernet Mappings Configuration

Notes:
Value Variable: this field is used to specify a symbolic variable in MODBUS relation.
Data Type: this field is used to specify the data type used in the MODBUS relation.
Data Start Address: data initial address of the MODBUS relation.
Absolute Data Start Address: absolute start address of the MODBUS data according to their type. For example, the

Holding Register with address 5 has absolute address 400005. This field is read only and is available to assist in Client/Master
MODBUS configuration that will communicate with this device. The values depend on the base address (offset) of each data
type and allowed MODBUS address for each data type.

Data Size: the Data Size value sets the maximum amount of data that a MODBUS relation can access from the initial
address. Thus, in order to read a continuous range of addresses, it is necessary that all addresses are declared in a single
relation. This field varies according to the configured type of MODBUS data.

Data Range: is a read-only field and reports on the range of addresses that is being used by this mapping. It is formed by

141

5. CONFIGURATION

the sum of the fields Data Start Address and Data Size. There can be no range overlays with others mappings of the same Data
Type.

ATTENTION

Unlike other tasks of an application, when a mark is reached at MainTask debugging, the
MODBUS Ethernet Server instance task or any other MODBUS task will stop being exe-
cuted at the moment it tries to write in the memory area. This occurs in order to maintain
data consistency of memory areas while MainTask is not running.

5.5.9.2. MODBUS Server Ethernet Protocol Configuration via Direct Representation (%Q)

To configure this protocol using Direct Representation (%Q), the user must perform the following steps:

Configure the general parameters of MODBUS Server Protocol, such as: communication times, address and direct
representation variables (%Q) to receive the diagnostics and control relation.
Add and configure MODBUS relations, specifying the MODBUS data type, direct representation variables (%Q) to
receive/write the data and amount of data to be reported.

The descriptions of each configuration are listed below in this section.

5.5.9.2.1. General Parameters of MODBUS Server Protocol – Configuration via Direct Representation (%Q)

The general parameters, found on the home screen of MODBUS protocol configuration (figure below), are defined as:

Figure 80: MODBUS Server Setup Screen

TCP port, protocol and direct representation variables (%Q) to control relations and diagnostics:

Configuration Description Default Value Options
%Q Start Address of Diag-
nostics Area

Starting address of the diag-
nostic variables - 0 to 2147483628

Size Size of diagnostics 20 Disabled for editing
TCP Port TCP Port 502 2 to 65534

142

5. CONFIGURATION

Configuration Description Default Value Options

Mapping Disabling Starting address used to dis-
able MODBUS relations - 0 to 2147483644

Protocol Protocol selection TCP RTU via TCP
TCP

Table 124: Settings to control relations and diagnostics

Notes:
%Q Start Address of Diagnostics Area: this field is limited by the size of output variables addressable memory (%Q) at

CPU, which can be found in section Memory.
TCP Port: if there are multiple instances of the protocol added in a single Ethernet interface, different TCP ports must be

selected for each instance. Some TCP ports, among the possibilities mentioned above, are reserved and therefore cannot be
used. See table Reserved TCP/UDP ports.

Mapping Disabling: composed of 32 bits, used to disable, individually, the 32 MODBUS relations configured in Server
Mappings space. The relation is disabled when the corresponding bit is equal to 1, otherwise, the mapping is enabled. This
field is limited by the size of output variables addressable memory (%Q) of each CPU, which can be found on Memory section.

Default Value: the factory default value cannot be set to the %Q Start Address of Diagnostics Area and Mapping Disabling
fields, because the creation of a Protocol instance may be held at any time on application development. The MasterTool IEC
XE software itself allocate a value, from the range of output variables of direct representation (%Q), not used yet.

The communication times of the MODBUS Server protocol, found on the Advanced... button of the configuration screen,
are divided into: Task Cycle (ms) and Connection Inactivity Time-out (s). Further details are described in MODBUS Server
Protocol General Parameters – Configuration via Symbolic Mapping section.

The diagnostics and MODBUS commands are described in Table 122.

5.5.9.2.2. Mapping Configuration – Configuration via Direct Representation (%Q)

The MODBUS relations settings, viewed in the figures below, follow the parameters described in table below:

Figure 81: MODBUS Data Type

143

5. CONFIGURATION

Figure 82: MODBUS Server Function

Configuration Description Default Options

Data Type MODBUS data type Coil
Coil (1 bit)
Holding Register (16 bits)
Input Status (1 bit)
Input Register (16 bits)

Data Start Address MODBUS data initial ad-
dress 1 1 to 65536

Data Size MODBUS data quantity 8
1 to 65536 (Holding Regis-
ter and Input Register)
8 to 65536 (Coil and Input
Status)

IEC Variable Variables initial address
(%Q) - 0 to 2147483647

Read-only Allow reading only Disabled Enabled or Disabled

Table 125: Server Mappings

Notes:
Options: the values written in the column Options may vary according with the configured MODBUS data.
Data Size: the Data Size value sets the maximum amount of data that a MODBUS relation can access from the initial

address. Thus, to read a continuous range of addresses, it is necessary that all addresses are declared in a single relation. This
field varies according to the set MODBUS data type, that is, when selected Coil or Input Status, the field Data Size must be a
number multiple of 8. It is also important to take care so the maximum value is not greater than the addressable output memory
size and the attributed values aren’t the same already used during the application.

ATTENTION

When accessing the communication data memory is between devices with different endian-
ism (Little-Endian and Big-Endian), inversion of the read/write data may occur. In this case,
the user must adjust the data in the application.

IEC Variable: in case the MODBUS data type is Coil or Input Status (bit), the IEC variables initial address will be in the
format for example %QX10.1. However, if the MODBUS data type is Holding Register or Input Register (16 bits), the IEC
variables initial address will be in the format %QW. This field is limited by the memory size of the addressable output variables
(%Q) from each CPU, which can be seen on the Memory section.

Read-only: when enabled, it only allows the communication master to read the variable data. It does not allow the writing.

144

5. CONFIGURATION

This option is valid for the writing functions only.
Default: the default cannot be defined for the IEC Variable field as the creation of a protocol instance can be made at any

moment within the application development, making the MasterTool IEC XE software allocate a value itself from the direct
representation output variables range (%Q) still not used. The default cannot be defined for the Data Size field as it will vary
according to selected MODBUS data type.

The settings present on the Filters... button, described in table below, are relative to the TCP communication filters:

Configuration Description Default Value Options

Write Filter IP Address

Specifies a range of IPs with
write access in the variables
declared in the MODBUS
interface.

0.0.0.0 0.0.0.0 to
255.255.255.255

Write Filter Mask
Specifies the subnet mask in
conjunction with the IP filter
parameter for writing.

0.0.0.0 0.0.0.0 to
255.255.255.255

Read Filter IP Address

Specifies a range of IPs with
read access in the variables
declared in the MODBUS
interface.

0.0.0.0 0.0.0.0 to
255.255.255.255

Read Filter Mask
Specifies the subnet mask in
conjunction with the IP filter
parameter for reading.

0.0.0.0 0.0.0.0 to
255.255.255.255

Table 126: IP Filters

Note:
Filters: filters are used to establish a range of IP addresses that have write or read access to MODBUS relations, being

individually configured. The permission criteria is accomplished through a logical AND operation between the Write Filter
Mask and the IP address of the client. If the result is the same as the Write Filter IP Address, the client is entitled to write. For
example, if the Write Filter IP Address = 192.168.15.0 and the Write Filter Mask = 255.255.255.0, then only customers with
IP address = 192.168.15.x shall be entitled. The same procedure is applied in the Read Filter parameters to define the read
rights.

In the previously defined relations, the maximum MODBUS data size can be 65536 (maximum value configured in the
Data Size field). However, the request which arrives in the MODBUS Ethernet Server must address a subgroup of this mapping
and this group must have, at most, the data size depending on the function code which is defined below:

Read Coils (FC 1): 2000
Read Input Status (FC 2): 2000
Read Holding Registers (FC 3): 125
Read Input Registers (FC 4): 125
Write Single Coil (FC 5): 1
Write Single Holding register (FC 6): 1
Force Multiple Coils (FC 15): 1968
Write Holding Registers (FC 16): 123
Mask Write Register (FC 22): 1
Read/Write Holding Registers (FC 23):

• Read: 121
• Write: 121

ATTENTION

Differently from other application tasks, when a depuration mark in the MainTask is reached,
the task of an Ethernet MODBUS Server instance and any other MODBUS task will stop
running at the moment that it tries to perform a writing in a memory area. It occurs in order
to keep the consistency of the memory areas data while a MainTask is not running.

145

5. CONFIGURATION

5.5.10. OPC DA Server

It’s possible to communicate with the Nexto Series CPUs using the OPC DA (Open Platform Communications Data
Access) technology. This open communication platform was developed to be the standard in industrial communications.
Based on client/server architecture, it offers several advantages in project development and communication with automation
systems.

A very common analogy to describe the OPC DA technology is of a printer. When correctly connected, the computer needs
a driver to interface with the equipment. Similarly, the OPC helps with the interface between the supervision system and the
field data on the PLC.

When it comes to project development, to configure the communication and exchange information between the systems is
extremely simple using OPC DA technology. Using other drivers, based on addresses, it’s necessary to create tables to relate
tags from the supervision system with variables from the programmable controller. When the data areas are changed during
the project, it’s necessary to remap the variables and create new tables with the relations between the information on the PLC
with the Supervisory Control And Data Acquisition system (SCADA).

Figure 83: OPC DA Architecture

The figure above shows an architecture to communicate a SCADA system and PLCs in automation projects. All the roles
present on a communication are explicit on this figure regardless of the equipment in which it’s executed, since they can be
done in the same equipment or in various ones. Each of the roles of this architecture are described on table below.

146

5. CONFIGURATION

Role Description

Programmable Controllers and
Field Devices Level

The field devices and the PLCs are where the operation state and
plant control information are stored. The SCADA system ac-
cess the information on these devices and store on the SCADA
server, so that the SCADA clients can consult it during the plant
operation.

Acquisition Network
The acquisition network is where the requests for data collected
by field devices travel, to request the data collected from the
field devices.

Gateway for PLC Communica-
tion

A gateway enables the communication between the OPC DA
Server and Nexto Series PLCs. A gateway in the same sub-
net of the PLC is always necessary, as described in chapter
Communication Settings of MasterTool IEC XE User Manual
– MU299609.

OPC Server Module
The OPC DA Server is a Module responsible of receiving the
OPC DA requests and translate them to the communication with
the field devices.

Device Module OPC Client
The OPC Client Device module is responsible for the requests to
the OPC DA Server using the OPC DA protocol. The collected
data is stored on the SCADA Server database.

SCADA Server Level
The SCADA Server is responsible for connecting to the various
communication devices and store the data collected by them on
a database, so that it can be consulted by the SCADA Clients.

Supervision Network

The supervision network is the network through which the
SCADA Clients are connected to the SCADA Servers. In a
topology in which there aren’t multiple Client or where the
Server and the Client are installed on the same equipment, this
kind of network doesn’t exist.

SCADA Client Level

The SCADA Clients are responsible for requesting to the
SCADA Servers the necessary data to be shown in a screen
where the operation of a plant is being executed. Through then
it is possible to execute readings and writings on data stored on
the SCADA Server database.

Table 127: Roles Description on an OPC DA Server Architecture

The relation between the tags on the supervision system and the process data on the controller variables is totally trans-
parent. This means that, if there’s an alteration on the data areas through the development of the project, it isn’t necessary to
rework the relations between the information on the PLC and the SCADA, just use the new variable provided by the PLC on
the systems that request this data.

The use of OPC offers more productivity and connectivity with SCADA systems. It contributes with the reduction of
applications development time and with the maintenance costs. It even makes possible the insertion of new data on the
communication in a simplified form and with greater flexibility and interoperability between the automation system, due to the
fact that it’s an open standard.

The installation of the OPC DA Server is done altogether with MasterTool IEC XE installation, and its settings are done
inside the tool. It’s worth notice that the OPC is available only with the local Ethernet interface of the Nexto CPUs. The
Ethernet expansion modules do not support this functionality.

147

5. CONFIGURATION

5.5.10.1. Creating a Project for OPC DA Communication

Unlike the communication with drivers such as MODBUS and PROFIBUS DP, to set an OPC DA communication it’s only
necessary to correctly set the node and indicate which variables will be used in the communication. There are two ways to
indicate which variables of the project will be available in the OPC DA Server. In both cases it’s necessary to add the object
Symbol Configuration to the application, in case it isn’t present. To add it, right-click over the object Application and select
the option.

ATTENTION

The variables shown in the objects IoConfig_Globals, IoConfig_Application_Mappings and
IoConfig_Global_Mappings are used internally for I/O control and shouldn’t be used by the
user.

ATTENTION

In addition to the variables declared at SFC language POUs, some implicitly created vari-
ables are also shown. To each step created, a type IecSfc.SFCStepType variable is created,
where the step states can be monitored, namely whether it is active or not and the time that
it’s active as in norm IEC 61131-1. To each transition, a BOOL type variable is created
that defines if the transition is true or false. These variables are shown in the object Symbol
Configuration that can be provided access to the OPC Client.

Figure 84: Symbol Configuration Object

The table below presents the descriptions of the Symbol Configuration object screen fields.

Field Description
Symbols Variable identifier that will be provided to the OPC DA Server.

Access Rights

Indicates what the possible access right level are in the declared
symbol. When not utilized, this column remains empty, and the
access right level is maximum. Otherwise the access right level
can be modified by clicking over this field. The possible options
are:

Read only

Write only

Read and Write

Maximal

Indicates the maximum access right level that is possible to as-
sign to the variable. The symbols hold the same meanings from
the ones in Access Rights. It’s not possible to change it and it’s
indicated by the presence or not of the attribute ’symbol’

148

5. CONFIGURATION

Field Description

Attribute

Indicates if attribute ’symbol’ is being used when the variable is
declared. When not used, this column remains empty. For the
cases in which the attribute is used, the behavior is the follow-
ing:

attribute ’symbol’ := ’read’ the column shows

attribute ’symbol’ := ’write’ the column shows

attribute ’symbol’ := ’readwrite’ the column shows
Type Data type of the declared variable.

Members
When the data type is a Struct, a button is enabled in this col-
umn. Clicking on the button will allow the selection of which
elements of that struct will be provided to the OPC DA Server.

Comment

Variable comment, inserted on the POU or GVL where the vari-
able was declared. To show up as a variable comment here, the
comment must be entered one line before the variable on the
editor, while in text mode, or in the comment column when in
tabular mode.

Table 128: Symbol Configuration object screen fields description

When altering the project settings, such as adding or removing variables, it’s necessary to run the command Build, in
order to refresh the list of variables. This command must be executed until the message in Figure 84 disappear. After this, all
available variables in the project, whether they are declared on POUs, GVLs or diagnostics, will be shown here and can be
selected. The selected variables will be available on the OPC DA Server to be accessed by the Clients.

Figure 85: Selecting Variables on the Symbol Configuration

After this procedure, the project must be loaded into a PLC so the variables will be available for communication with
the OPC DA Server. If the object Symbol Configuration screen is open and any of the variables, POUs or GVLs selected is
changed, its name will appear with the red color. The situations in which this may happen is when a variable is deleted or the
attribute value is modified.

It’s also possible to set which variables will be available on the OPC DA Server through an attribute inserted directly on
the POUs or GVLs where the variables are declared. When the attribute ’symbol’ is present on the variable declaration, and it
may be before the definition of the POU or GVL name, or to each variable individually, these variables are sent directly to the
object Symbol Configuration, with a symbol in the Attribute column. In this case it’s necessary, before loading the project into
the CPU, to run the command Build from within the object Symbol Configuration.

The valid syntaxes to use the attribute are:

attribute ’symbol’ := ’none’ – when the attribute value is ’none’, the variables won’t be available to the OPC DA Server
and won’t be shown in the object Symbol Configuration screen.

149

5. CONFIGURATION

attribute ’symbol’ := ’read’ - when the attribute value is ’read’, the variables will be available to the OPC DA Server
with read only access right.
attribute ’symbol’ := ’write’ - when the attribute value is ’write’, the variables will be available to the OPC DA Server
with write only access right.
attribute ’symbol’ := ’readwrite’ – when the attribute value is ’readwrite’, the variables will be available to the OPC DA
Server with read and write access right.

In the following example of variable declaration, the variables A and B settings allow that an OPC DA Server access them
with read and write access. However the variable C cannot be accessed, while the variable D can be accessed with read only
access rights.

{attribute 'symbol' := 'readwrite'}
PROGRAM UserPrg
VAR
A: INT;
B: INT;
{attribute 'symbol' := 'none'}
C: INT;
{attribute 'symbol' := 'read'}
D :INT;
END_VAR

When a variable with a type different from the basic types is defined, the use of the attribute must be done inside the
declaration of this DUT and not only in the context in which the variable is created. For example, in the case of a DUT
instance inside of a POU or a GVL that has an attribute, it will not impact in the behavior of this DUT instance elements. It
will be necessary to apply the same access right level on the DUT declaration.

ATTENTION

The configurations of the symbols that will be provided to the OPC DA Server are stored
inside the PLC project. By modifying these configurations it’s necessary to load the appli-
cation on the PLC so that it’s possible to access those variables.

ATTENTION

When a variable is removed from the project and loaded on the PLC unchecking it from the
object Symbol Configuration, the variable can no longer be read with the OPC Client. If the
variable is added again to the project, with the same name and same context, and inserted on
the object Symbol Configuration, it will be necessary to reboot the OPC Client to refresh the
variable address reference, which will be created on a different memory area of the PLC.

5.5.10.2. Configuring a PLC on the OPC DA Server

The configuration of the PLC is done inside MasterTool IEC XE through the option available in the Online. It’s necessary
to run MasterTool IEC XE as administrator.

150

5. CONFIGURATION

Figure 86: OPC DA Server Settings

The Gateway Configuration is the same set in the Gateway used for the communication between the MasterTool IEC XE
and the PLC and described in Communication Settings, present in the MasterTool IEC XE User Manual – MU299609. If the
configuration used is localhost the Gateway Address must be filled with 127.0.0.1. This configuration is necessary because
the OPC DA Server uses the same communication gateway and the same protocol used for communication between PLC and
MasterTool IEC XE.

There’s the option Using the Gateway Embedded in PLC that can be selected when it’s desired to use the Gateway that is in
PLC itself. This option can be used to optimize the communication, since it prevent excess traffic through a particular station,
when more than one station with OPC Client is connected to the same PLC.

To configure the PLC, there are two possible configuration types, depending on the selection of the checkbox Use TCP/IP
Blockdriver. When the option isn’t selected, the field Device Name must be filled with the name of the PLC. This is the name
displayed by the PLC selected as active in the Communication Settings screen.

The other option is to use the IP Address of the Ethernet Interfaces. The same address set on the configuration screens must
be put in this field. Furthermore, when this method is used, the port number must be set to 11740. The confirmation will save
the OPC DA Server configurations.

Device Configuration Description Default Set-
ting Options

Name

PLC description inside the
OPC DA Server configura-
tion file. This field can have
any name, but for organiza-
tional purposes, it’s recom-
mended to use the project
name that is loaded in the
PLC.

‘PLC01’

This field is a STRING and
it accepts alphanumeric (let-
ters and numbers) charac-
ters and the “_” character.
It’s not allowed to initiate
a STRING with numbers or
with “_”. It allows up to 49
characters.

Gateway Address

IP Address of the computer
that the OPC DA Server is
installed, for the cases in
which all PLCs are in the
same subnetwork. If there’s
some PLC that it’s in an-
other subnetwork, it must be
specified the Gateway used
in that subnetwork.

127.0.0.1 0.0.0.0 to 255.255.255.255

151

5. CONFIGURATION

Device Configuration Description Default Set-
ting Options

Gateway Port TCP Port for the connection
with the Gateway. 1217 2 to 65534

Device Name

It’s the PLC name displayed
in the Communication Set-
tings of the Device tab. The
name is the STRING before
the hexadecimal value that
is between []. Enabled
only when the checkbox Use
TCP/IP Blockdriver is not
selected.

‘0000’

This field is a STRING and
it accepts any characters,
as done in the PLC name
configuration in the Device
Communication Settings tab.
It allows up to 49 characters.

IP Address Active

IP address of the PLC. En-
abled only when the check-
box Use TCP/IP Block-
driver is selected. It is used
only when the setting is not
redundant.

192.168.15.1 0.0.0.0 to 255.255.255.255

IP Address PLC A

IP address of the PLC A. En-
abled only when the config-
uration is redundant. It is
the primary PLC address to
which the server will com-
municate if there is no fail-
ure.

192.168.15.69 0.0.0.0 to 255.255.255.255

IP Address PLC B

IP address of the PLC B. En-
abled only when the config-
uration is redundant. It is the
secondary PLC address to
which the server will com-
municate if a failure occurs.

192.168.15.70 0.0.0.0 to 255.255.255.255

Device Port

TCP Port. Enabled only
when the checkbox Use
TCP/IP Blockdriver is se-
lected.

11740 11740 or 11739

Table 129: Configuration Parameter of each PLC for the OPC DA Server

When a new PLC needs to be configured on the OPC DA Server, simply press the New Device button and the configuration
will be created. When the setup screen is accessed, a list of all PLCs already configured on the OPC DA Server will be
displayed. Existing configurations can be edited by selecting the PLC in the Devices list and editing the parameters. The PLCs
settings that are no longer in use can be deleted. The maximum number of PLCs configured in an OPC DA Server is 16.

If the automation architecture used specifies that the OPC DA Server must be ran on a computer that does not execute
communication with the PLC via MasterTool IEC XE, the tool must be installed on this computer to allow OPC DA Server
configuration in the same way as done in other situations.

ATTENTION

To store the OPC DA Server configuration, the MasterTool IEC XE must be run with ad-
ministrator rights on the Operational System. Depending on the OS version, this privilege
must be done in the moment that the program is executed: right-click the MasterTool IEC
XE icon and choose Run as Administrator.

152

5. CONFIGURATION

ATTENTION

The settings of a PLC on the OPC DA Server are not stored in the project created in Mas-
terTool IEC XE. For this reason, it can be performed with an open or closed project. The
settings are stored in a configuration file where the OPC DA Server is installed. When chang-
ing the settings, it is not required to load the application on the PLC, but depending on the
OPC Client it may be necessary to reconnect to the server or load the settings for the data to
be updated correctly.

5.5.10.2.1. Importing a Project Configuration

Using the button Read Project Configuration, as shown in Figure 86, you can assign the configuration of the open project
to the PLC configuration that is being edited. For this option to work correctly, there must be an open project and an Active
Path should be set as described in Communication Settings, present in the MasterTool IEC XE User Manual – MU299609. If
any of these conditions is not met an error message will be displayed and no data will be modified.

When the above conditions are valid, the PLC settings receive the parameters of the opened project. The IP Address and
Gateway Port information are configured as described in Communication Settings according to the Active Path. However, the
IP Address settings are read from NET 1 Ethernet interface settings. The port for connection to the PLC is always assigned in
this case as 11740.

5.5.10.3. OPC DA Communication Status and Quality Variables

For each PLC created in the OPC DA Server, status variables are generated, named _CommState and _CommStateOK. The
_CommState variable indicates the communication between the OPC and the PLC state. This state can interpreted by the OPC
Clients according to table below.

State Value Description

STATE_TERMINATE -1

If the communication between the OPC DA Server and
the OPC Client is terminated, this value will be returned.
When there’s more than one OPC Client simultaneously
connected, this return will occur on the disconnection of
the latter connected one. Besides the fact that this state
is in the variable, it’s value can’t be visualized because
it only changes when there’s no longer a connection with
the client.

STATE_PLC_NOT_CONNECTED 0

The PLC configured in the OPC DA Server is not con-
nected. It can happen if the configuration is incorrect
(wrong PLC and/or Gateway IP Address) or the PLC is
unavailable in that moment.

STATE_PLC_CONNECTED 1 The PLC configured in the OPC DA Server is connected.
This is a transitory state during the connection.

STATE_NO_SYMBOLS 2

There are no symbols (variables) available in the PLC
configured in the OPC DA Server. It can happen when
there are no symbols or there isn’t a project loaded on the
PLC.

STATE_SYMBOLS_LOADED 3
Finished the process of reading the symbols (variables)
from the PLC configured in the OPC DA Server. This is
a transitory state during the connection.

STATE_RUNNING 4
After the reading of the symbols (variables) the OPC DA
Server is running the periodic update of the values of the
available symbols in each configured PLC.

STATE_DISCONNECT 5 There has been a disconnection with the PLC configured
in the OPC DA Server.

153

5. CONFIGURATION

State Value Description

STATE_NO_CONFIGURATION 6

When the OPC configuration (stored in an OPCServer.ini
file) has a wrong syntax, the variable value will be this.
Generally, this behavior is not observed for the Master-
Tool IEC XE maintains this configuration valid.

Table 130: Description of the Communication states between OPC DA Server and the PLC

The _CommStateOK is a variable of the Bool type that indicates if the communication between the OPC DA Server and
the PLC is working. When the value is TRUE, it indicates that the communication is working correctly. If the value is FALSE,
for some reason it isn’t possible to communicate with the PLC.

In addition to monitoring the communication status, the OPC Client can access information on the quality of communi-
cation. The quality bits form a byte. They are divided into three groups of bits: Quality, Substatus and Limit. The bits are
distributed as follows QQSSSSLL, in which QQ are the Quality bits, SSSS Substatus bits and LL Limit bits. In this case the QQ
bits are the most significant in the byte, while the LL bits are the least significant.

QQ Bits values Definition Description

0 00SSSSLL Bad

The value read can’t be used be-
cause there’s some problem with
the connection. It’s possible to
monitor the value of _CommState
and diagnose the problem.

1 01SSSSLL Uncertain
The quality can’t be defined and
may be presented in the Substatus
field.

2 10SSSSLL NA This value is reserved and isn’t used
by the OPC standard.

3 11SSSSLL Good The quality is good and the value
read can be used.

Table 131: Description of the OPC Quality value

Table 131 presents the possible quality values. The OPC DA Server only returns Good and Bad Quality values. A OPC
Client can maintain the quality as Uncertain due to failures in which it can’t establish a connection to the Server. In case of
monitoring of the 8 quality bits directly from the OPC DA Server, the Substatus and Limit fields shall be null and the Good
Quality will be presented as the value 192 and the Bad Quality will be value 0.

5.5.10.4. Limits of Communication with OPC DA Server

The table below presents the OPC DA Server configuration limits.

Maximum number of variables communicating with
a single PLC -

Maximum number of PLCs in an OPC DA Server 16
Maximum number of simultaneous connections of an
OPC DA Server in a single PLC 8

Table 132: OPC DA Server Communication Limits

Note:
Maximum number of variables communicating with a single PLC: There is no configuration limit. The maximum

possible number of variables depends on the processing capacity of the device.

154

5. CONFIGURATION

ATTENTION

The Maximum number of simultaneous connections of an OPC DA Server in a single PLC
is shared with connections made with the MasterTool IEC XE. I.e. the sum of connections of
OPC DA Server and MasterTool IEC XE should not exceed the maximum quantity defined
in Table 132.

The communication between the OPC DA Server and the PLC uses the same protocol used in the MasterTool IEC XE
communication with the PLC. This protocol is only available for the Ethernet interfaces of the Nexto Series CPUs, it’s not
possible to establish this kind of communication with the Ethernet expansion modules.

When a communication between the OPC DA Server and the PLC is established, these two elements start a series of
transactions aimed at solving the addresses of each declared variables, optimizing the communication in data reading regime.
Besides, it’s also resolved in this stage the communication groups used by some Clients in order to optimize the communication.
This initial process demands some time and depends on the quantity of mapped variables and the processing capacity of the
device.

5.5.10.5. Accessing Data Through an OPC DA Client

After the configuration of the OPC DA Server, the available data on all PLCs can be accessed via an OPC Client. In the
configuration of the OPC Client, the name of the OPC DA Server must be selected. In this case the name is CoDeSys.OPC.DA.
The figure below shows the server selection on the client driver of the BluePlant SCADA software.

ATTENTION

The same way that in MasterTool IEC XE, some tools must be executed with administrator
privileges in the Operational System for the correct functioning of the OPC Client. Depend-
ing on the OS version, this privilege must be activated in the moment that the program is
executed. To do this, right-click MasterTool IEC XE icon and choose Run as Administrator.

Figure 87: Selecting the OPC DA Server in the Client Configuration

In cases where the server is remotely located, it may be necessary to add the network path or IP address of the computer
in which the server is installed. In these cases, there are two configuration options. The first is to directly configure it, being
necessary to enable the COM/DCOM Windows Service. However, a simpler way is to use a tunneller tool that abstracts the
COM/DCOM settings, and enable a more secure communication between the Client and the Server. For more information on
this type of tool, refer to the NAP151 - Tunneller OPC.

Once the Client connects with the Server, it’s possible to use the TAGs import commands. These commands consult the
information declared in the PLC, returning a list with all the symbols available in it.

155

5. CONFIGURATION

Figure 88: Symbols list consulted by the OPC Client

The list of selected variables will be included in the Client communication list and can be used, for example, in a SCADA
system screen.

ATTENTION

The simulation mode of MasterTool IEC XE software can be used for OPC communication
tests. The information on how to configure it are presented in the Testing an OPC Commu-
nication using the Simulator section of the MasterTool IEC XE User Manual – MU299609.

5.5.11. OPC UA Server

The OPC UA protocol is an evolution of the OPC family. Independent of platform, it is designed to be the new standard
used in industrial communications.

Based on the client/server architecture, the OPC UA protocol offers numerous advantages in the development of design
and facilities in communication with the automation systems.

When it comes to project development, configuring communication and exchanging information between systems is ex-
tremely simple using OPC UA technology. Using other address-based drivers, it is necessary to create tables to relate the
supervision system tags and programmable controller variables. When data areas change during project development, it is
necessary to redo the mappings and new tables with the relationships between the PLC information and the SCADA system.

156

5. CONFIGURATION

Figure 89: OPC UA Architecture

The figure above presents a typical architecture for SCADA system communication and PLCs in automation design. All
roles present in the communication are explicit in this figure regardless of where they are running, they may be on the same
equipment or on different equipment. Each of the roles of this architecture is described in table below.

Role Description

Programmable Controllers and
Field Devices Level

The field devices and the PLCs are where the operation state and
plant control information are stored. The SCADA system ac-
cess the information on these devices and store on the SCADA
server, so that the SCADA clients can consult it during the plant
operation.

OPC UA Server Modules
The OPC UA Server is an internal module of the PLCs respon-
sible for receiving the OPC UA requests and translating them
for communication with the field devices.

Acquisition Network
The acquisition network is the network in which OPC UA mes-
sages travel to request the data that is collected from the PLCs
and field devices.

OPC Client Device Module

The OPC UA Client module, which is part of the SCADA
Server, is responsible for making requests to the OPC UA
Servers using the OPC UA protocol. The data collected by it
is stored in the SCADA Server database.

SCADA Server Level
The SCADA Server is responsible for connecting to the various
communication devices and store the data collected by them on
a database, so that it can be consulted by the SCADA Clients.

157

5. CONFIGURATION

Role Description

Supervision Network

The supervisory network is the network by which SCADA
Clients are connected to SCADA Servers, often using a propri-
etary SCADA system protocol. In a topology in which multiple
Clients are not used or the Server and Client are installed in the
same equipment, there is no such network, and in this case this
equipment must directly use the OPC UA protocol for commu-
nication with the PLC.

SCADA Client Level

The SCADA Clients are responsible for requesting to the
SCADA Servers the necessary data to be shown in a screen
where the operation of a plant is being executed. Through then
it is possible to execute readings and writings on data stored on
the SCADA Server database.

Table 133: Roles Description on an OPC UA Server Architecture

When using the OPC UA protocol, the relationship between the tags of the supervisory systems and the process data in
the controller variables is completely transparent. This means that if data areas change during project development, there is no
need to re-establish relationships between PLC information and SCADA. Simply use the new variable provided by the PLC in
the systems that request this data.

The use of OPC UA offers greater productivity and connectivity with SCADA systems. It contributes to reduced application
development time and maintenance costs. It also enables the insertion of new data in the communication in a simplified way
with greater flexibility and interoperability among the automation systems as it is an open standard.

It is worth noting that the OPC UA is only available on the local Ethernet interfaces of the Nexto CPUs. Ethernet expansion
modules do not support this functionality.

5.5.11.1. Creating a Project for OPC UA Communication

The steps for creating a project with OPC UA are very similar to the steps described in the section Creating a Project
for OPC DA Communication. As with the OPC DA protocol, the configuration of the OPC UA protocol is based on the
configuration of the Symbol Configuration. To enable the OPC UA, simply enable the Support OPC UA Features option in the
configuration, as shown in figure below.

158

5. CONFIGURATION

Figure 90: Symbol Configuration Object

ATTENTION

When enabling OPC UA protocol support, OPC DA protocol support is still enabled. You
can enable OPC UA and OPC DA communications at the same time to report the variables
configured on the Symbol Configuration object or via attributes.

Another way to access this configuration, once already created a project with the Symbol Configuration object, is given by
accessing the Settings menu of the configuration tab of the Symbol Configuration. Simply select the option Support OPC UA
features to enable support for the OPC UA protocol, as shown in figure below.

Figure 91: Enabling OPC UA in Object Symbol Configuration

After this procedure the project can be loaded into a PLC and the selected variables will be available for communication
with the OPC UA Server.

159

5. CONFIGURATION

5.5.11.2. Types of Supported Variables

This section defines the types of variables that support communication via the OPC UA protocol, when declared within
GVLs or POUs and selected in the Symbol Configuration object (see previous section).

The following types of simple variables are supported:

BOOL
SINT
USINT / BYTE
INT
UINT / WORD
DINT
UDINT / DWORD
LINT
ULINT / LWORD
REAL
LREAL
STRING
TIME
LTIME

You can also use structured types (STRUCTs or Function Blocks) created from previous simple types.
Finally, it is also possible to create arrays of simple types or of structured types.

5.5.11.3. Limit Connected Clients on the OPC UA Server

The maximum number of OPC UA clients connected simultaneously in a PLC is 8 (eight).

5.5.11.4. Limit of Communication Variables on the OPC UA Server

There is no configuration limit. The maximum possible number of variables depends on the processing capacity of the
device.

When a communication is established between the OPC UA Server and the PLC, these two elements initiate a series of
transactions that aim to solve the address of each declared variable, optimizing the communication in regime of reading of
data. In addition, at this stage, the classifications of the communication groups used by some Clients are also resolved in order
to optimize communication. This initial process takes some time and depends on the amount of variables mapped and the
processing capacity of the device.

5.5.11.5. Encryption Settings

If desired, the user can configure encryption for OPC UA communication using the Basic256SHA256 profile, for a secure
connection (cyber security).

To configure encryption on an OPC UA server, you must create a certificate for it using the following steps in the MasterTool
programmer:

1. Define an active path for communication with the controller (no login required);
2. From the View menu, select Security Screen;
3. Click the Devices tab on the left side of this screen;
4. Click the icon to perform a refresh;
5. Click on the Device icon, below which will open several certificates (Own Certificates, Trusted Certificates, Untrusted

Certificates, Quarantined Certificates);
6. Click the icon to generate a certificate and select the following parameters:

Key length (bit): 3072
Validity period (days): 365 (can be modified if desired)

7. Wait while the certificate is calculated and transferred to the controller (this may take a few minutes);
8. Reboot the controller.
9. On the OPC UA client, perform the necessary procedures to connect to the OPC UA server and generate a certificate

with the Basic256Sha256 profile (see specific OPC UA client manual for details);

160

5. CONFIGURATION

10. Back to MasterTool, click on the icon of the Security Screen to perform a refresh;
11. On the Security Screen, select the "Quarantined Certificates" folder under the Device. In the right panel you should

observe a certificate requested by the OPC UA client;
12. Drag this certificate to the folder "Trusted Certificates";
13. Proceed with the settings in the OPC UA client (see specific OPC UA client manual for details).

To remove encryption previously configured on a controller, you must do the following:
1. Define an active path for communication with the controller (no login required);
2. From menu View, select Security Screen;
3. Click on the Devices on the left side of this screen;
4. Click the icon to perform a refresh;
5. Click on the Device icon, below which will open several certificates (Own Certificates, Trusted Certificates, Untrusted

Certificates, Quarantined Certificates);
6. Click the folder "Own Certificates" and in the right panel select the certificate (OPC UA Server);
7. Click the icon to remove this project and driver certificate;
8. Reset (turn off and on) the controller.

5.5.11.6. Main Communication Parameters Adjusted in an OPC UA Client

Some OPC UA communication parameters are configured on the OPC UA client, and negotiated with the OPC UA server
at the time the connection between both is established. The following subsections describe the main OPC UA communication
parameters, their meaning, and care to select appropriate values for them.

In an OPC UA client it is possible to group the variables of a server into different subscriptions. Each subscription is a
set of variables that are reported in a single communication packet (PublishResponse) sent from the server to the client. The
selection of the variables that will compose each subscription is made in the OPC UA client.

ATTENTION

Grouping variables into multiple subscriptions is interesting for optimizing the processing
capacity and consumption of Ethernet communication bandwidth. Such aspects of optimiza-
tion are analyzed in greater depth in the OPC UA Server user manual MU214609, where
some rules for the composition of subscriptions are suggested. This user manual also dis-
cusses in more depth several concepts about the OPC UA protocol.

Some of the communication parameters described below must be defined for the server as a whole, others for each sub-
scription, and others for each variable that makes up a subscription.

5.5.11.6.1. Endpoint URL

This parameter defines the IP address and TCP port of the server, for example:
opc.tcp://192.168.17.2:4840
In this example, the IP address of the controller is 192.168.17.2.
The TCP port should always be 4840.

5.5.11.6.2. Publishing Interval (ms) e Sampling Interval (ms)

The Publishing Interval parameter (unit: milliseconds) must be set for each subscription.
The Sampling Interval parameter must be set for each variable (unit: milliseconds). However, in many OPC UA clients, the

Sampling Interval parameter can be defined for a subscription, being the same for all the variables grouped in the subscription.
Only the variables of a subscription whose values have been modified are reported to the client through a Publish Re-

sponse communication packet. The Publishing Interval parameter defines the minimum interval between consecutive Publish
Response packets of the same subscription, in order to limit the consumption of processing and Ethernet communication
bandwidth.

To find out which subscription variables have changed and are to be reported to the client in the next Publish Response
packet, the server must perform comparisons, and such (samplings) are performed by the same with the Sampling Interval. It
is recommended that the value of Sampling Interval varies between 50% and 100% of the value of the Publishing Interval,
because there is a relatively high processing consumption associated with the comparison process executed in each Sampling
Interval.

It can be said that the sum between Publishing Interval and Sampling Interval is the maximum delay between changing a
value on the server and the transmission of the Publish Response packet that reports this change. Half of this sum is the average
delay between changing a value on the server and the transmission of the Publish Response packet that reports this change.

161

5. CONFIGURATION

5.5.11.6.3. Lifetime Count e Keep-Alive Count

These two parameters must be configured for each subscription.
The purpose of these two parameters is to create a mechanism for deactivating a subscription on the initiative of the

server, in case it does not receive customer’s PublishRequest communication packets for this subscription for a long time.
PublishRequest packets must be received by the server so that it can broadcast Publish Response packets containing the
subscription variables that have changed their values.

If the server does not receive PublishRequest packets for a time greater than Lifetime Count multiplied by Publishing
Interval, the server deactivates the subscription, which must be re-created by the client in the future if desired.

In situations where the variables of a subscription do not change, it could be a long time without the transmission of
PublishResponses and consequently PublishRequests that succeed, causing an undesired deactivation of the subscription. To
prevent this from happening, the Keep-Alive Count parameter was created. If there are no subscription data changes for a
time equal to Keep-Alive Count multiplied by Publishing Interval, the server will send a small empty Publish Response packet
indicating that no variable has changed. This empty Publish Response will authorize the client to immediately send the next
PublishRequest.

The Keep-Alive Count value must be less than the Lifetime Count value to prevent unwanted deactivation of the subscrip-
tion. It is suggested that LifeTime Count be at least 3 times larger than Keep-Alive Count.

5.5.11.6.4. Queue Size e Discard Oldest

These parameters must be maintained with the following fixed values, which are usually the default values on the clients:

Queue Size: 1
Discard Oldest: enable

According to the OPC UA standard, it is possible to define these parameters for each variable. However, many clients
allow you to define common values for all variables configured in a subscription.

Queue Size must be retained with value 1 because there is no event support in this implementation of the OPC UA server,
so it is unnecessary to define a queue. Increasing the value of Queue Size may imply increase communication bandwidth and
CPU processing, and this should be avoided.

Discard Oldest must be maintained with the enable value, so that the Publish Response package always reports the most
recent change of value detected for each variable.

5.5.11.6.5. Filter Type e Deadband Type

These parameters must be maintained with the following fixed values, which are usually the default values in the clients:

Filter Type: DataChangeFilter
Deadband Type: none

According to the OPC UA standard, it is possible to define these parameters for each variable. However, many clients
allow you to define common values for all variables configured in a subscription.

The Filter Type parameter must be of DataChangeFilter, indicating that value changes in the variables should cause it to
be transmitted in a Publish Response package.

Deadband Type should be kept in “none” because there is no implementation of deadbands for analog variables. In this
way, any change of the analog variable, however minimal, causes its transmission in a Publish Response package.

To reduce processing power and Ethernet communication bandwidth, you can deploy deadbands on your own as follows:

Do not include the analog variable in a subscription;
Instead, include in a subscription an auxiliary variable linked to the analog variable;
Copy the analog variable to the auxiliary variable only when the user-managed deadband is extrapolated.

5.5.11.6.6. PublishingEnabled, MaxNotificationsPerPublish e Priority

It is suggested that the following parameters be maintained with the following values, which are usually the default values
in the clients:

PublishingEnabled: true
MaxNotificationsPerPublish: 0
Priority: 0

162

5. CONFIGURATION

These parameters must be configured for each subscription.
PublishingEnable must be “true” so that the subscription variables are reported in case of change of value.
MaxNotificationsPerPublish indicates how many of the variables that have changed value can be included in the same

Publish Response package. The special value “0” indicates that there is no limit to this, and it is recommended to use this
value so that all changed variables are reported in the same Publish Response package.

Priority indicates the relative priority of this subscription over others. If at any given moment the server should send
multiple Publish Response packages of different subscriptions, it will prioritize the one with the highest value of priority. If all
subscriptions have the same priority, Publish Response packets will be transmitted in a fixed sequence.

5.5.11.7. Accessing Data Through an OPC UA Client

After configuration of the OPC UA Server the data available in all PLCs can be accessed via a Client OPC UA. In the
configuration of the OPC UA Client, the address of the correct OPC UA Server must be selected. In this case the address
opc.tcp://ip-address-of-device:4840. The figure below shows the server selection in the SCADA BluePlant client software
driver.

ATTENTION

Like MasterTool IEC XE, some tools need to be run with administrator rights on the Op-
erating System for the correct operation of the OPC UA Client. Depending on the version
of the Operating System this right must be authorized when running the program. For this
operation right click on the tool executable and choose the option Run as administrator.

Figure 92: Selecting OPC UA Server in Client Configuration

Once the Client connects to the Server, TAG import commands can be used. These commands query information declared
in the PLC, returning a list with all the symbols made available by the PLC.

163

5. CONFIGURATION

Figure 93: List of Symbols Browsed by OPC UA

The list of selected variables will be included in the Client’s communications list and can be used, for example, in screens
of a SCADA system.

5.5.12. EtherCAT Master

EtherCAT (Ethernet Control Automation Technology) is a master-slave architecture protocol with high performance, for
deterministic Ethernet, that allows real time performance as it updates 1000 distributed I/O in 30 µS or 100 servomotors axis
each 100 µS using twisted pair cables or optic fiber. Besides, it supports flexible topology, allowing for line, tree and/or star
connections.

An Ethernet frame can be processed in real time instead of being received, interpreted and copied as process data in each
connection. The FMMU (Fieldbus Memory Management Unit) in each Slave node reads the data that are addressed to it at
the same time that the telegram is forwarded to the next device. In a similar way, the input data are inserted as the telegram
is passed. Because of this, the frames are delayed just a few nanoseconds. Access on the Ethernet terminals can be made in
any order as the data sequence is independent of the physical order. It can perform Broadcast, Multicast and between slaves
communications.

The EtherCAT protocol allows a precise synchronization, that is required, for example, in applications where several axis
simultaneously perform coordinated movements, it can be done through an exact adjust of the Distributed Clock. There’s also
the possibility to configure devices that, as opposed to synchronous communication, have an elevated tolerance degree inside
the communication system.

The configuration of EtherCAT modules is initially determined by the Device Description Files of the Master and Slave
devices used, and can be modified by the user in the Configuration Editor dialog boxes. However, for conventional applications
and with the desire of an as easy as possible manipulation, large-scale configurations can be automated by choosing the
Autoconfig mode in EtherCAT Master Parameters.

Note the possibility of modifying the Master and Slave configuration parameters also in operational mode, through the
Master and Slave instances, according to the availability of the device in question.

5.5.12.1. Installing and inserting EtherCAT Devices

In order to be able to insert and configure EtherCAT devices as objects in the device tree, the Slave devices must be
installed.

The Master device is automatically installed by the default MasterTool IEC XE installation. The EtherCAT Master defines
which Slaves can be inserted.

To install the Slave devices the Device Repository must be opened, use the EtherCAT XML Device description Config-
uration File (*.xml) filter and select the device description files (EtherCAT XML Device Description / ESI EtherCAT Slave
Information), supplied with the hardware. The Slave descriptions are available as XML files (file type: *.xml).

An EtherCAT Master can be added to the Devices Tree through the Add Device command, through the context menu of the
CPU NET connectors.

Under a master, one or more slaves can be added, selecting an EtherCAT Master and running the Add Device command
(context menu of the EtherCAT Master) or running the Scan For Devices command.

164

5. CONFIGURATION

Figure 94: EtherCAT Configuration Example

ATTENTION

- Only one EtherCAT Master instance per project is allowed.
- Only available on the NET connectors of the PLC.
- It cannot be used when the NETs are set as redundant.
- It cannot be used when Project has cluster redundancy.
- Other drivers cannot be instanced in the same NET port as the EtherCAT Master.

5.5.12.1.1. EtherCAT - Scan For Devices

The Scan For Devices command, available in the EtherCAT Master context menu, runs a search for the Slave devices
physically installed in the EtherCAT network of the PLC currently connected. This means that with this command it’s possible
to detect and visualize the hardware components in the window presented in the figure below, allowing the user to map them
directly in the project Device Tree do projeto.

It’s noteworthy that, when the Scan For Devices command is selected, a connection with the PLC will be automatically
established before the search begins and terminated when the search ends. So, for the first execution of this command, the
Gateway connection must be configured and a program with the EtherCAT Master configured must be loaded into the PLC. In
case of future additions of Slave devices, in order to run this command, it’s necessary that the EtherCAT network is stopped.
To do this, put to TRUE the bStopBus bit, present in the variables of the EtherCAT Master Diagnostics.

When the command is executed, the Scanned Devices field will contain a list of all devices and modules found during the
last scan. To add them to the project, just click on the button Copy All Devices To Project. It’s also possible to perform a
comparison of the devices found in the search with the ones in the project by selecting the box Show differences to project.

If you add an EtherCAT Master module to the Project and use the Scan For Devices command, you will have a list of all
the available EtherCAT Slaves. Entries in bold will be shown, if there’s more than one device with the same description. With
a double click on the entrance a list will open, and so the desired device can be selected.

After completing the changes in the EtherCAT network configuration, it’s necessary to do a new project download, for the
changes to take effect.

Figure 95: EtherCAT Devices Search Dialog

165

5. CONFIGURATION

5.5.12.2. EtherCAT Master Settings

Below are listed the options to carry out the EtherCAT Master configuration, such as defined in Device Description File.

5.5.12.2.1. EtherCAT Master Parameters

Below are the general parameters found in the initial screen of the EtherCAT Master configuration, according figure below.

Figure 96: EtherCAT Master Configuration Dialog

Device Configuration Description Factory De-
fault Possible Values

Autoconfig master/slaves Enable the Master and Slave
automatic configuration. Marked Marked

Unmarked

Cycle time [µs]
Sets the time period in
which a new data telegram
must be send to the bus.

4000 2000 to 1000000

Sync Offset [%]

Adjust the offset, from the
PLC cycle, of the EtherCAT
Slave synchronization inter-
rupt.

20 -50 to 50

Sync window monitoring
If enabled, this option al-
lows monitoring the Slave
synchronization.

Unmarked Marked
Unmarked

Sync window [µs] Time for the Sync Window
Monitoring. 1 1 to 32768

Use LRW instead of
LWR/LRD

Enabling of the combined
read and write commands. Unmarked Marked

Unmarked

Messages per task

If enabled, the read and
write commands that are
dealing with input and out-
put messages can be done in
different tasks.

Unmarked Marked
Unmarked

166

5. CONFIGURATION

Device Configuration Description Factory De-
fault Possible Values

Automatic restart slaves Restart the devices when the
communication is aborted. Marked Marked

Unmarked

Table 134: EtherCAT Master Configuration

Notes:
Autoconfig master/slaves: If this option is enabled, most of Master and Slave configuration will be made automatically,

based on the description files and implicit calculations. In this case, the FMMU / Sync dialog will not be available. If it’s
unchecked the Image In Address and Image Out Address options will be available to the user.

ATTENTION

The Autoconfig mode is enabled by default and usually enough and highly recommended
for standard applications. If it’s disabled, all configuration definitions will have to be made
manually, and thus, some specialized knowledge is required. To configure a Slave-to-Slave
communication, the Autoconfig option must be disabled.

Cycle time: Time period after which, a new data telegram must be sent to the bus. If Distributed Clock functionality is
enabled, the value of this parameter will be transferred to the Slaves clocks. This way, a precise data exchange synchronization
can be achieved, which is especially important in cases where the distributed process demands simultaneous actions. So, a
very precise time base, with a jitter significantly smaller than a microsecond, for all the network can be achieved.

Sync Offset: This value allows the adjustment of the offset of the EtherCAT Slave synchronization interrupt to the PLC
cycle. Normally, the PLC task cycle begins 20% later than the Slaves synchronization interruption. This means that the PLC
task can be delayed by 80% of the cycle time and no message will be lost.

Sync Window: If the synchronization of all Slaves are inside this time window, the EtherCAT Master bDistributed-
ClockInSync diagnostic will be set to TRUE, otherwise it will be set to FALSE. When Distributed Clock is used, it’s highly
recommended to use a dedicated task with high priority as the Bus cycle task of the EtherCAT Master. To do this, it’s necessary
to use Project Profiles that allows the creation of new tasks, then create a cyclic task with priority 0 (real time task) and link
it to the master Bus cycle task on the EtherCAT Master - I/O Mapping tab of the EtherCAT Master. The user can also change
the value of the wDCInSyncWindow variable, configuring the maximum jitter allowed on the synchronization between master
and slaves.

Use LRW instead of LWR/LRD: Activating this option enables the Slave-to-Slave communication because, instead of
using separated reading (LRD) and write (LWR) commands, combined reading/writing (LRW) commands will be used.

Automatic Restart Slaves: By enabling this option, the Master will restart the Slaves as soon as the communication is
aborted.

5.5.12.2.2. EtherCAT Master - Sync Unit Assignment

This tab of the EtherCAT Master configuration editor shows all slaves that are entered below a specific master with an
assignment to the sync units.

With EtherCAT sync units, multiple slaves are configured into groups and subdivided into smaller units. For each group,
the job counter can be monitored for better and more accurate error detection. As soon as a slave is missing from a group of
synchronization units, the other slaves in the group are also shown as missing. Detection occurs immediately on the next bus
cycle because the job counter is checked continuously. With device diagnostics, the missing group can be remedied as quickly
as possible.

Unaffected groups remain operable without any interference.

167

5. CONFIGURATION

5.5.12.2.3. EtherCAT Master - Overview

This tab of the EtherCAT Master configuration editor provides an overview of the states of all slaves, which are entered
below this master and have an address. Modules are not displayed.

5.5.12.2.4. EtherCAT Master - I/O Mapping

This EtherCAT Master configuration editor tab offers the possibility to change the task that will be used for bus updates.

Figure 97: Slave I/O Mapping Dialog

5.5.12.2.5. EtherCAT Master - Status / Information Tabs

The Status tab of the EtherCAT Master configuration editor provides status information (e.g. ’Running’, ’Stopped’) and
diagnostic messages specific of the device and the internal bus system.

The Information tab, present on the EtherCAT Master configuration editor, shows, if available, the following general
information about the module: Name, Vendor, Type, Version Number, Category, Order Number, Description, Image.

5.5.12.3. EtherCAT Slave Configuration

Below are listed the main EtherCAT Slave configuration options, as defined in the Device Description File.

5.5.12.3.1. EtherCAT Slave - General

Below are presented the general parameters found in EtherCAT Slave configuration initial screen. This field is only avail-
able if the Autoconfig mode (Master) isn’t enabled.

168

5. CONFIGURATION

Figure 98: EtherCAT Slave Configuration Dialog

Device Configuration Description Default
Value Options

AutoInc Address
Auto incremental Address
(16-bit) defined by the Slave
position in the network.

- -65535 to 0

EtherCAT Address

Slave final address, assign
by the Master during startup.
This address is independent
from the position in the net-
work.

- 1 to 65535

Expert settings Enable the Slave advanced
Settings options. Unmarked Marked

Unmarked

Optional Declare the Slave as Op-
tional. Unmarked Marked

Unmarked

Select DC
Show all Distributed Clock
configurations provided by
the device description file.

- -

Enable Distributed Clock Enable the Distributed
Clock configuration options. Unmarked Marked

Unmarked

169

5. CONFIGURATION

Device Configuration Description Default
Value Options

Sync Unit Cycle [µs] Show the Cycle Time set in
Master. 100000 2000 to 1000000

Enable (Sync 0) Enable the Sync 0 synchro-
nization unit configurations. Unmarked Marked

Unmarked

Sync Unit Cycle (Sync 0)

By selecting this option, the
Cycle Time will be deter-
mined by the product of the
factor and the Sync Unit Cy-
cle.

Unmarked Marked
Unmarked

User Defined (Sync 0)

If this option is selected, the
desired time, in microsec-
onds, can be directly set into
the Cycle Time (µs) field.

Unmarked Marked
Unmarked

Cycle Time [µs] (Sync 0) Show the cycle time cur-
rently set. 100000 1 to 2147483647

Shift Time [µs] (Sync 0)

Time between the sync
events and the “Output
Valid” or “Input Latch”
time.

0 -2147483648 to
2147483647

Enable (Sync 1) Enable the Sync 1 synchro-
nization unit configurations. Unmarked Marked

Unmarked

Sync Unit Cycle (Sync 1)

By selecting this option, the
Cycle Time will be deter-
mined by the product of the
factor and the Sync Unit Cy-
cle.

Unmarked Marked
Unmarked

User Defined (Sync 1)

If this option is selected, the
desired time, in microsec-
onds, can be directly set into
the Cycle Time (µs) field.

Unmarked Marked
Unmarked

Cycle Time [µs] (Sync 1) Show the cycle time cur-
rently set. 100000 1 to 2147483647

Shift Time [µs] (Sync 1)

Time between the sync
events and the “Output
Valid” or “Input Latch”
time.

0 -2147483648 to
2147483647

Check Vendor ID If unmarked, it will disable
the Vendor ID Check. Marked Marked

Unmarked

Check Product ID If unmarked, it will disable
the Product ID Check. Marked Marked

Unmarked

SDO Access
Set a time reference for the
timeout check of a SDO Ac-
cess.

- 0 to 100000

I -> P

Set a time reference for the
timeout check of the switch
from Init to Pre-Operation
mode.

- 0 to 100000

170

5. CONFIGURATION

Device Configuration Description Default
Value Options

P -> S/S -> O

Set a time reference for
the timeout check of the
switch from Pre-Operation
to Safe-Operation and from
Safe-Operation to Opera-
tional modes.

- 0 to 100000

Cyclic Unit Set the Unit Cycle to the lo-
cal microprocessor. Unmarked Marked

Unmarked

Latch Unit 0 Set the Latch Unit 0 to the
local microprocessor. Unmarked Marked

Unmarked

Latch Unit 1 Set the Latch Unit 1 to the
local microprocessor. Unmarked Marked

Unmarked

Table 135: EtherCAT Slave Configurations

Notes:
AutoInc Address: This address is used only during startup, when the Master is assigning the EtherCAT addresses to the

Slaves. When for this matter, the first telegram runs through the Slaves, each fast-read Slave increases its AutoInc Address by
1. The Slave with address 0 finally will receive the data.

Optional: If a Slave is declared as Optional, no error message will be created in case the device doesn’t exist in the bus
system. Thus a Station alias address must be defined and written to the EEPROM. This option is only available if the option
Autoconfig Master/Slaves in the settings of the EtherCAT Master is activated and if this function is supported by the EtherCAT
Slave.

Enable Distributed Clock: If the Distributed Clock functionality is enabled, the data exchange cycle time, displayed in
the Sync Unit Cycle (µs) field will be determined by the Master Cycle Time. Thus the master clock can synchronize the data
exchange within the network. The settings for handling the synchronization unit(s) depend on the Slave.

Enable Sync 0: If this option is activated, the Sync0 synchronization unit is used. A synchronization unit describes a set
of process data which is exchanged synchronously.

Sync Unit Cycle (Sync 0): If this option is activated, the Master Cycle Time, multiplied by the chosen factor will be used
as synchronization cycle time for the slave. The Cycle Time (µs) field shows the currently set cycle time.

Shift Time: The Shift Time describes the time between the sync events (Sync0, Sync1) and the Output Valid or Input Latch
times. Writable value, if the slave supports shifting of Output Valid or Input Latch.

Enable Sync 1: If this option is selected, the synchronization unit Sync1 is used. A synchronization unit is a set of process
data which is exchange synchronously.

Sync Unit Cycle (Sync1): If this option is activated, the Master Cycle Time, multiplied by the chosen factor will be used
as synchronization cycle time for the slave. The Cycle Time (µs) field shows the currently set cycle time.

Check Vendor ID and Product ID: By default, at startup of the system the Vendor ID and/or the Product ID will be
checked against the current configured settings. If a mismatch is detected, the bus will be stopped and no further actions will
be executed. This serves to avoid the download of an erroneous configuration. This option is intended to switch off the check,
if necessary.

SDO Access: By default there’s no timeout set for the SDO list submit action at system startup. However, if it’s necessary
to check if this action exceeds a certain time, it must be defined (in microseconds) in this field.

I -> P: By default there’s no timeout set for the state transition from Init to Pre-Operational. However, if it’s necessary to
check if this action exceeds a certain time, it must be defined (in microseconds) in this field.

P -> S / S -> O: By default there’s no timeout set for the state transition from Pre-Operational to Safe-Operational and
from Safe-Operational to Operational. However, if it’s necessary to check if this action exceeds a certain time, it must be
defined (in microseconds) in this field.

DC cycle unit control: Choose the desired option(s) concerning the Distributed Clock functions in order to define, which
should be assigned to the local microprocessor. The control is done in register 0x980 in the EtherCAT slave. The possible
settings: Cyclic Unit, Latch Unit 0, Latch Unit 1.

Enable: If the setting Optional is not activated, this setting can be activated if explicitly supported by the device description
of the slave. It allows direct assignment of an alias address in order to get the slaves address independent of its position within
the bus. If the option Optional is activated, this checkbox is disabled.

171

5. CONFIGURATION

5.5.12.3.2. EtherCAT Slave - Process Data

The Process Data tab of the EtherCAT Slave configurator editor shows the slave input and output process data, each defined
by name, type and index by the device description file, as seen in figure below.

The selected input (to be read) and output (to be written) of the device are available in the EtherCAT Slave - I/O Mapping
dialog as PLC inputs and outputs to which project variables might be mapped.

Figure 99: Process Data Dialog

The Expert Process Data dialog will only be available in the EtherCAT Slave configuration editor if the Enable Expert
Settings option is activated. It provides another, more detailed, vision of the process data, adding to what is presented in the
Process Data tab. Furthermore, the download of the PDO Assignment and the PDO Configuration can be activated in this
dialog.

ATTENTION

If the Slave doesn’t accept the PDO Configuration, it will stay in Pre-Operational state and
none real time data exchange will be possible.

172

5. CONFIGURATION

Figure 100: Expert Process Data Dialog

This dialog is divided in four sections and two options:

Sync Manager: List of Sync Manager with data size and type of PDOs.
PDO Assignment: List of PDOs assigned to the selected Sync Manager. The checkbox activates the PDO and I/O
channels are created. It is similar to the simple PDO configuration windows. Here only PDOs can be enabled or
disabled.
PDO List: List of all PDOs defined in the device description file. Single PDOs can be deleted, edited or added by
executing of the respective command from the context menu.
PDO Content: Displays the content of the PDO selected in the section above. Entries can be deleted, edited or added by
executing of the respective command from the context menu.
PDO Assignment: If activated a CoE write command will be added to index 0x1CXX to write the PDO configuration
0x16XX or 0x1A00.
PDO Configuration: If activated several CoE write commands will be added to write the PDO mapping to the slave.

ATTENTION

If a Slave doesn’t support the PDO configuration, a download may result in a Slave error.
This function should only be used by experts.

173

5. CONFIGURATION

5.5.12.3.3. EtherCAT Slave - Edit PDO List

Figure 101: Edit PDO List Dialog

This dialog is opened through the context menu from the PDO List area, presented in Figure 100. Below are some
explanations on the configuration options presented in this dialog.

Name: Name of the PDO input.
Index: Index of the PDO in being edited.
TxPDO (Input): If activated, the PDO will be transferred from the Master to the Slave.
RxPDO (Output): If activated, the PDO will be transferred from the Slave to the Master.
Mandatory: The PDO is necessary and can’t be unchecked in the PDO Assignment area.
Fixed Content: The PDO content is fixed and can’t be changed. It’s not possible to add entries in the PDO Content
panel.
Virtual PDO: Reserved for future use.
Exclude PDOs: It’s possible to define a list of PDO that can, or can’t, be selected along with the PDO being edited in
the PDO Assignment area, or in the Process Data tab. If a PDO is marked in this list, it can’t be selected, turning into
gray in the PDO Assignment area when the PDO in edition is selected.
SyncUnit: ID of the PDO Sync Manager shall assigned to.

5.5.12.3.4. EtherCAT Slave - Startup Parameters

In the Startup Parameters tab, parameters for the device can be defined, which will be transferred by SDOs (Service Data
Objects) or IDN at the system’s startup. The options available in this tab, as well as the access possibilities, vary according to
the EtherCAT Slave used and they are present in the Device Description File.

5.5.12.3.5. EtherCAT Slave - I/O Mapping

This tab of the EtherCAT Slave configuration editor offers the possibility to assign the project variables to the EtherCAT
inputs or outputs. This way, the EtherCAT Slave variables can be controlled by the User Application.

174

5. CONFIGURATION

Figure 102: Slave I/O Mapping Dialog

5.5.12.3.6. EtherCAT Slave - Status and Information

The Status tab of the EtherCAT Slave provides status information (e.g. ’Running’, ’Stopped’) and device-specific diagnostic
messages, also on the used card and the internal bus system.

The Information tab, presented in the EtherCAT Slave configuration editor, shows, if available, the following general
information about the module: Name, Vendor, Type, Version, Categories, Order Number, Description, Image.

5.5.13. EtherNet/IP

The EtherNet/IP is a master-slave architecture protocol, consisting of an EtherNet/IP Scanner (master) and one or more
EtherNet/IP Adapters (slave).

The Ethernet/IP protocol is based on CIP (Common Industrial Protocol), which have two primary purposes: The transport
of control-oriented data associated with I/O devices and other system-related information to be controlled, such as configuration
parameters and diagnostics. The first one is done through implicit messages, while the second one is done through explicit
messages.

Their runtime system can act as either Scanner or Adapter. Each CPU’s NET interface support only one EtherNet/IP
instance and it can’t be instanced on an Ethernet expansion module.

An EtherNet/IP Adapter instance supports an unlimited number of modules or Input/Output bytes. In these modules, can
be added variables of types: BYTE, BOOL, WORD, DWORD, LWORD, USINT, UINT, UDINT, ULINT, SINT, INT, DINT,
LINT, REAL and LREAL.

ATTENTION

EtherNet/IP can’t be used together with Ethernet Redundant Mode or with Half-Cluster’s
redundancy.

ATTENTION

To avoid communication issues, EtherNet/IP Scanner can only have Adapters configured
within the same subnetwork.

175

5. CONFIGURATION

5.5.13.1. EtherNet/IP

To add an EtherNet/IP Scanner or Adapter it’s needed to add an Ethernet Adapter under the desired NET. This can be done
through the command Add Device. Under this Ethernet Adapter it’s possible to add a Scanner or an Adapter.

Figure 103: Adding an Ethernet Adapter

176

5. CONFIGURATION

Figure 104: Adding an EtherNet/IP Adapter or Scanner

177

5. CONFIGURATION

5.5.13.2. EtherNet/IP Scanner Configuration

Figure 105: Adding an EtherNet/IP Adapter Under the Scanner

5.5.13.2.1. General

After open the Adapter declared under the Scanner it’s possible to configure it as needed. The first Tab is General, on it is
possible to configure the IP address and the Electronic Keying parameters. These parameters must be checked or unchecked if
the adapter being used is installed on MasterTool. Otherwise, if the Adapter used is of type Generic. The Vendor ID, Device
Type, Product Code, Large Revision, and Small Revision fields must be filled in with the correct vendor’s information and the
boxes checked as much as necessary. Altus, for its part, has its own ID, which is "1454".

178

5. CONFIGURATION

Figure 106: EtherNet/IP General Tab

5.5.13.2.2. Connections

The upper area of the Connections tab displays a list of all configured connections. When there is an Exclusive Owner
connection in the EDS file, it is inserted automatically when the Adapter is added. The configuration data for these connections
can be changed in the lower part of the view.

Figure 107: EtherNet/IP Connection Tab

179

5. CONFIGURATION

Notes:
For two or more EtherNet/IP Scanners to connect to the same Remote Adapter:

1. Only one of the Scanners can establish an Exclusive Owner connection.
2. The same value of RPI(ms) must be configured for the Scanners.

The configuration data is defined in the EDS file. The data is transmitted to the remote adapter when the connection is
opened.

Configuration Description Default
Value Options

RPI (ms)
Request Packet Interval: ex-
change interval of the input
and output data.

10 ms
Multiple the Interval of the
Bus Cycle Task to which it
is associated

O -> T Size (Bytes)
Size of the producer data
from the Scanner to the
Adapter (O -> T)

0 0 - 65527

T -> O Size (Bytes)
Size of the consumer data
from the Adapter to the
Scanner (T -> O)

0 0 - 65531

Proxy Config Size (Bytes) Proxy configuration data
size - -

Device Config Size (Bytes) Device configuration data
size. - -

Connection Path
Address of the configuration
objects - input objects - out-
put objects.

Automatically generated path

Automatically generated
path, User-defined path and
Path defined by symbolic
name

Table 136: EtherNet/IP Connection parameters

To add new connections there is the button Add Connection... which will open the New connection window. In this window,
you can configure a new connection type from those predefined in the Adapter’s EDS or a connection from zero when using a
Generic device.

180

5. CONFIGURATION

Figure 108: EtherNet/IP New Connection’s Window

5.5.13.2.3. Assemblies

The upper area of the Assemblies tab displays a list of all configured connections. When a connection is selected, the
associated inputs and outputs are displayed in the lower area of the tab.

Figure 109: EtherNet/IP Assemblies

181

5. CONFIGURATION

Output Assembly and Input Assembly:

Configuration Description

Add Opens the dialog box “Add
Input/Output”

Delete Deletes all selected Input-
s/Outputs.

Move Up
Moves the selected In-
put/Output within the
list.

Move Down
The order in the list deter-
mines the order in the I/O
mapping.

Table 137: EtherNet/IP Assemblies tab

Dialog box Add Input/Output:

Configuration Description

Name Name of the input/output to
be inserted.

Help String

Data type
Type of the input/output to
be inserted. This type also
define its Bit Length.

Bit Length This value must not be
edited.

Table 138: EtherNet/IP “Add Input/Output” window

5.5.13.2.4. EtherNet/IP I/O Mapping

I/O Mapping tab shows, in the Variable column, the name of the automatically generated instance of the Adapter under
IEC Objects. In this way, the instance can be accessed by the application. Here the project variables are mapped to adapter’s
inputs and outputs.

5.5.13.3. EtherNet/IP Adapter Configuration

The EtherNet/IP Adapter requires Ethernet/IP Modules. The Modules will provide I/O mappings that can be manipulated
by user application through %I or %Q addresses according to its configuration.

New Adapters can be installed on MasterTool with the EDS Files. The configuration options may differ depending on the
device description file of the added Adapter.

5.5.13.3.1. General

The first tab of the EtherNet/IP Adapter is the General tab. Here you can set the parameters of the Electronic Keying used
in the scanner to check compatibility. In this tab, you can also install the EDS of the device directly in the MasterTool device
repository or export it.

182

5. CONFIGURATION

Figure 110: EtherNet/IP General Tab

5.5.13.3.2. EtherNet/IP Adapter: I/O Mapping

On the EtherNet/IP I/O Mapping tab, you can configure which bus cycle task the Adapter will execute.

5.5.13.4. EtherNet/IP Module Configuration

Figure 111: Adding an EtherNet/IP Module under the Adapter

183

5. CONFIGURATION

5.5.13.4.1. Assemblies

The parameters of the module’s General tab follow the same rules as described in the 137 and 138 tables.

Figure 112: EtherNet/IP Module Assemblies tab

5.5.13.4.2. EtherNet/IP Module: I/O Mapping

The I/O Mapping tab shows, in the Variable column, the name of the automatically generated Adapter instances. In this
way, the instance can be accessed by the user application.

5.5.14. IEC 60870-5-104 Server

As select this option at MasterTool, the CPU starts to be an IEC 60870-5-104 communication server, allowing connection
with up to three client devices. To each client the driver owns one exclusive event queue with the following features:

Size: 1000 events
Retentivity: non retentive
Overflow policy: keep the newest

To configure this protocol, it is needed to do the following steps:

Add a protocol IEC 60870-5-104 Server instance to one of the available Ethernet channel. To realize this procedure
consult the section Inserting a Protocol Instance
Configure the Ethernet interface. To realize this procedure consult the section Ethernet Interfaces Configuration
Configure the general parameters of protocol IEC 60870-5-104 Server with connection mode Port or IP, and the TCP
port number when the selected connection mode is IP
Add and configure devices, defining the proper parameters
Add and configure the IEC 60870-5-104 mappings, specifying the variable name, type of object, object address, size,
range, dead band and type of dead band
Configure the link layer parameters, specifying the addresses, communication time-outs and communication parameters
Configure the application layer parameters, synchronism configuration, commands, as well as transmission mode of
Integrated Totals objects

The descriptions of each configuration are related below, in this section.

5.5.14.1. Type of data

The table below shows the supported variable type by the Nexto Series CPU for each protocol IEC 60870-5-104 data type.

184

5. CONFIGURATION

Object Type IEC Variables Type
Single Point Information (M_SP_NA) BOOL

BIT
Double Point Information (M_DP_NA) DBP
Step Position Information (M_ST_NA) USINT

Measured Value, normalized value (M_ME_NA) INT
Measured Value, scaled value (M_ME_NB) INT

INT
UINT

Measured Value, short floating point value (M_ME_NC) DINT
UDINT
REAL

Integrated Totals (M_IT_NA) INT
DINT

Bitstring Information (M_BO_NA) DWORD
Single Command (C_SC_NA) BOOL

BIT
Double Command (C_DC_NA) DBP

Regulating Step Command (C_RC_NA) DBP
Setting Point Command, normalized Value (C_SE_NA) INT

Setting Point Command, scaled Value (C_SE_NB) INT
Setting Point Command, short floating point Value (C_SE_NC) REAL

Bitstring Command (C_BO_NA) DWORD

Table 139: Variables Declaration to IEC 60870-5-104

Notes:
Regulating Step Command: The Lower and Higher object states of the C_RC_NA are associated respectively to OFF

and ON internal DBP type states.
Step Position Information: According to item 7.3.1.5 of Standard IEC 60870-5-101, this 8 bit variable is compose by two

fields: value (defined by the 7 bits less significant) and transient (defined as the most significant bit, which indicates when the
measured device is transitioning).

Below, there is a code example for fields manipulation in an USINT type variable. Attention, because this code doesn’t
consist if the value is inside the range, therefore this consistency remains at user’s charge.

PROGRAM UserPrg
VAR
usiVTI: USINT; // Value with transient state indication, mapped for the Client
siValue: SINT; // Value to be converted to VTI. Must be between -64 and +63
bTransient: BOOL; // Transient to be converted to VTI
END_VAR

usiVTI := SINT_TO_USINT(siValue) AND 16#3F;
IF siValue < 0 THEN
usiVTI := usiVTI OR 16#40;
END_IF
IF bTransient THEN
usiVTI := usiVTI OR 16#80;
END_IF

185

5. CONFIGURATION

PROFIBUS: Except by the digital objects, the protocol IEC 60870-5-104’s analog and counters objects data types are
different from PROFIBUS analogs and counters modules data types, not being possible to map such PROFIBUS variable types
directly to IEC 60870-5-104 clients.

In these cases it is needed to create an intermediary variable, to be mapped in the IEC 60870-5-104 client, and properly
convert the types, as can be observed on the example’s code below.

PROGRAM UserPrg
VAR

iAnalogIn: INT;
iAnalogOut: INT;
diCounter: DINT;

END_VAR

// Analog input conversion from WORD (PROFIBUS) to INT (IEC104)
iAnalogIn:= WORD_TO_INT(wNX6000in00);

// Analog output conversion from INT(IEC104) to WORD (PROFIBUS)
wNX6100out00:= INT_TO_WORD(iAnalogOut);

// Counter conversion from WORDs high+low (PROFIBUS) to DINT (IEC104)
diCounter:= DWORD_TO_DINT(ROL(WORD_TO_DWORD(wNX1005cnt00H), 16) OR wNX1005cnt00L

);

5.5.14.2. Double Points

The double digital points are used to indicate equipment position, such as valves, circuit breakers and secctioners, where
the transition between open and close states demand a determined time. Can thus indicate an intermediary transition state
between both final states.

Double digital points are also used as outputs and, in an analogous way, it is necessary to keep one of the outputs enabled
for a certain time to complete the transition. Such actuation is done through pulses, also known by trip/close commands, with
determined duration (enough to the switching of the device under control).

Consult the Double Points section of Utilization Manual for information about double digital points through DBP data
type.

Once the Nexto Series digital input and output modules don’t support DBP points mapping, some application trickery
are needed to make it possible. Remembering that is also not possible to use the PulsedCommand function, defined at the
LibRtuStandard library, to operate the Nexto Series digital double points.

5.5.14.2.1. Digital Input Double Points

For the digital input modules it is needed two auxiliary variables’ declaration, to be mapped on the digital input module,
besides the double point that is wished to map on the server:

The double point value variable: type DBP
The simple point OFF/TRIP value variable: type BOOL
The simple point ON/CLOSE value variable: type BOOL

Figure 113: Double Point Variables Declaration Example

186

5. CONFIGURATION

Done the variables declaration, it is necessary to create a link between the value variables and the digital input module
quality, through the CPU’s Internal Points tab:

Figure 114: Double Point Variables Attribution to Internal Points

The double point value variable must be mapped at the server IEC 60870-5-104 driver, and both simple variables at the
Nexto Series digital input module (in that example, a NX1001). Typically the OFF (TRIP) state is mapped to the even input
and the ON (CLOSE) state to the odd input.

Figure 115: Double Point Variables Mapping on the Client IEC 60870-5-104

Figure 116: Variables Mapping at the Module Inputs

At last, the user must insert two code lines in its application, to be cyclically executed, to simple variables value attribution
to double point:

187

5. CONFIGURATION

DBP value variable, index ON, receive simple point ON value
DBP value variable, index OFF, receive simple point OFF value

Figure 117: Variables’ Values Attribution to the Double Point

5.5.14.2.2. Digital Output Double Points

For the digital output modules it must be used the CommandReceiver function block to intercept double points actuation
commands originated from the clients IEC 60870-5-104. Consult the section Interception of Commands Coming from the
Control Center for further information.

The example code below, POU CmdRcv, treats pulsed commands received from clients for a digital double point, mapped
in a NX2020 module. Besides the following ST code it is need to map a DBP point in Nexto’s IEC 60870-5-104 server.

Figure 118: Mapping of Digital Output Double Point variables on IEC 60870-5-104 Client

PROGRAM CmdRcv
VAR
CmdReceive: CommandReceiver; // Interceptor Instance
fbPulsedCmd: PulsedCommandNexto; // Pulsed Command Instance
byResult: BYTE; // Pulsed command result
dbpIEC104: DBP; // Variable mapped in the IEC 104
bSetup: BOOL:= TRUE; // Interceptor initial setup
END_VAR

// Executes the function configuration in the first cycle
IF bSetup THEN
CmdReceive.dwVariableAddr:= ADR(dbpIEC104);
CmdReceive.bExec:= TRUE;
CmdReceive.eCommandResult:= COMMAND_RESULT.NONE;
CmdReceive.dwTimeout:= 256 * 10;
bSetup:= FALSE;
END_IF

// In case a command is captured:
IF CmdReceive.bCommandAvailable THEN

// Treats each one of the possible commands

188

5. CONFIGURATION

CASE CmdReceive.sCommand.eCommand OF

COMMAND_TYPE.NO_COMMAND:

// Inform that there is an invalid command.
// Does nothing and must move on by time-out.

COMMAND_TYPE.SELECT:

// Treats only commands for double points
IF CmdReceive.sCommand.sSelectParameters.sValue.eParamType =
DOUBLE_POINT_COMMAND THEN
// Returns command finished with success
// (controlled by IEC104 protocol)
byResult:= 7;

ELSE
// Returns command not supported
byResult:= 1;

END_IF

COMMAND_TYPE.OPERATE:

// Treats only commands for double points
IF CmdReceive.sCommand.sOperateParameters.sValue.eParamType =
DOUBLE_POINT_COMMAND THEN
// Pulse generation in outputs
IF CmdReceive.sCommand.sOperateParameters.sValue.sDoublePoint.bValue THEN

// Executes TRIP function
fbPulsedCmd(

byCmdType:= 101,
byPulseTime:= DWORD_TO_BYTE(CmdReceive.sCommand.sOperateParameters.

sValue.sDoublePoint.sPulseConfig.dwOnDuration/10),
ptDbpVarAdr:= ADR(dbpIEC104),
stQuality:= IOQualities.QUALITY_NX2020[4],
byStatus=> byResult);

ELSE
// Executes CLOSE function
fbPulsedCmd(

byCmdType:= 102,
byPulseTime:= DWORD_TO_BYTE(CmdReceive.sCommand.sOperateParameters.

sValue.sDoublePoint.sPulseConfig.dwOffDuration/10),
ptDbpVarAdr:= ADR(dbpIEC104),
stQuality:= IOQualities.QUALITY_NX2020[5],
byStatus=> byResult);

END_IF
ELSE

// Returns command not supported
byResult:= 1;

END_IF

COMMAND_TYPE.CANCEL:

// Returns command finished with success
// (controlled by IEC104 protocol)
byResult:= 7;

189

5. CONFIGURATION

END_CASE

// Treats the pulsed command function result
// and generates the answer to the intercepted command
CASE byResult OF
1: // Invalid type of command

CmdReceive.eCommandResult:= COMMAND_RESULT.NOT_SUPPORTED;
CmdReceive.bDone:= TRUE;

2: // Invalid input parameters
CmdReceive.eCommandResult:= COMMAND_RESULT.INCONSISTENT_PARAMETERS;
CmdReceive.bDone:= TRUE;

3: // Parameter change in running
CmdReceive.eCommandResult:= COMMAND_RESULT.PARAMETER_CHANGE_IN_EXECUTION;
CmdReceive.bDone:= TRUE;

4: // Module did not answered the command(absent)
CmdReceive.eCommandResult:= COMMAND_RESULT.HARDWARE_ERROR;
CmdReceive.bDone:= TRUE;

5: // Command started and in running (does not returns nothing)
6: // Another command has been sent to this point and it is running

CmdReceive.eCommandResult:= COMMAND_RESULT.LOCKED_BY_OTHER_CLIENT;
CmdReceive.bDone:= TRUE;

7: // Command finished with success
CmdReceive.eCommandResult:= COMMAND_RESULT.SUCCESS;
CmdReceive.bDone:= TRUE;

END_CASE

END_IF

CmdReceive();

IF CmdReceive.bDone THEN
CmdReceive.bDone:= FALSE;
END_IF

As can be observed in the previous code, to help in the pulse generation in Nexto’s digital double outputs, it was created
and used a function block equivalent to PulsedCommand function of library LibRtuStandard. The PulsedCommandNexto()
function block shows up coded in ST language.

FUNCTION_BLOCK PulsedCommandNexto
VAR_INPUT
byCmdType: BYTE; // command type:

// 100 = status
// 101 = close/on
// 102 = trip/off

byPulseTime: BYTE; // Pulse duration (in hundredths of second)
ptDbpVarAdr: POINTER TO DBP; // DBP variable address (can be mapped)
stQuality: QUALITY; // DBP point quality(digital module)
END_VAR
VAR_OUTPUT
bON: BOOL; // Odd output mapped on Nexto DO module
bOFF: BOOL; // Even output mapped on Nexto DO module
byStatus: BYTE:= 7; // Function return:

// 1 = invalid command
// 2 = Time out of valid range (2..255)

190

5. CONFIGURATION

// 3 = command changed in running time
// 4 = module did not answer to the command (absent)
// 5 = command started or running
// 6 = There is already an active command on this point
// 7 = pulse command finished with success

END_VAR
VAR
byState: BYTE; // Function block state
udiPulseEnd: UDINT; // Pulse end instant
END_VAR

// PulsedCommandNexto state machine
CASE byState OF

0: // Init state, ready to receive commands:
CASE byCmdType OF

100:// Just returns the last status

101: // Execute pulse ON:
// Valids the pulse duration
IF byPulseTime > 1 THEN

// Check if there is already an active command on this point
IF ptDbpVarAdr^.ON OR ptDbpVarAdr^.OFF THEN

// Returns that there is already an active command
byStatus:= 6;

ELSE
// Enables CLOSE output
ptDbpVarAdr^.ON:= TRUE;
ptDbpVarAdr^.OFF:= FALSE;
// Next state: execute pulse ON
byState:= byCmdType;
// Returns started command
byStatus:= 5;

END_IF
ELSE

// Returns the out of range pulse
byStatus:= 2;

END_IF

102: // Execute pulse OFF
// Valids the pulse duration
IF byPulseTime > 1 THEN

// Check if there is already an active command on this point
IF ptDbpVarAdr^.ON OR ptDbpVarAdr^.OFF THEN

// Returns that there is already an active
byStatus:= 6;

ELSE
// Enables TRIP output
ptDbpVarAdr^.ON:= FALSE;
ptDbpVarAdr^.OFF:= TRUE;
// Next step: execute pulse OFF
byState:= byCmdType;
// Returns started command
byStatus:= 5;

END_IF

191

5. CONFIGURATION

ELSE
// Returns the out of range pulse
byStatus:= 2;

END_IF
ELSE

// Returns invalid command
byStatus:= 1;

END_CASE

// Memorizes the instant of the pulse end
udiPulseEnd:= SysTimeGetMs() + BYTE_TO_UDINT(byPulseTime) * 10;

101, 102:// Continues the pulse execution ON/OFF
// It returns that the command is running
byStatus:= 5;
// Checks the running parameter change
IF byCmdType <> 100 AND byCmdType <> byState THEN

// Returns the running parameter change
byStatus:= 3;

END_IF
// Checks pulse end
IF SysTimeGetMs() >= udiPulseEnd THEN

// Disable TRIP and CLOSE outputs
ptDbpVarAdr^.ON:= FALSE;
ptDbpVarAdr^.OFF:= FALSE;
// Returns finished command, only if the command has not changed
IF byCmdType = 100 OR byCmdType = byState THEN

byStatus:= 7;
END_IF
// Next state: initial
byState:= 0;

END_IF

END_CASE

// Checks digital module (DBP point) quality
IF stQuality.VALIDITY <> QUALITY_VALIDITY.VALIDITY_GOOD THEN
// Disable TRIP and CLOSE outputs
ptDbpVarAdr^.ON:= FALSE;
ptDbpVarAdr^.OFF:= FALSE;
// Returns absent module
byStatus:= 4;
// Next state: initial
byState:= 0;
END_IF

// Copy DBP output states to the simple outputs
bON:= ptDbpVarAdr^.ON;
bOFF:= ptDbpVarAdr^.OFF;

192

5. CONFIGURATION

5.5.14.3. General Parameters

To the General Parameters configuration of an IEC 60870-5-104 Server according to figure below follow the table below
parameters:

Figure 119: Server IEC 60870-5-104 General Parameters Screen

Parameter Description Factory De-
fault Possibilities

Connection Mode
Set the connection mode
with the Connected Client
modules.

Port Port
IP

TCP Port

Defines which PLC’s TCP
port number will be used to
communicate with the Con-
nected Client modules. In
case the “Connection Mode”
field is set as "IP".

2404 1 to 65535

Table 140: IEC 60870-5-104 Server General Parameters Configuration

5.5.14.4. Data Mapping

To configure the IEC 60870-5-104 Server data relation, viewed on figure below follow the parameters described on table
below:

Figure 120: IEC 60870-5-104 Server Mappings Screen

193

5. CONFIGURATION

Parameter Description Factory De-
fault Possibilities

Value Variable Symbolic variable name - Name of a variable declared
in a POU or GVL

Object Type IEC 60870-5-104 object
type configuration -

Single Point Information
Double Point Information
Step Position Information
Measured Value (Normal-
ized)
Measured Value (Scaled)
Measured Value (Short
Floating Point)
Integrated Totals
Bitstring Information (32
Bits)
Single Command
Double Command
Regulating Step Command
Setting Point Command
(Normalized)
Setting Point Command
(Scaled)
Setting Point Command
(Short Floating Point)
Bitstring Command (32
Bits)

Object Address IEC 60870-5-104 mapping
first point’s index - 1 to 65535

Size

Specifies the maximum data
quantity that an IEC 60870-
5-104 mapping will can ac-
cess

- 1 to 86400000

Range Configured data address
range - -

Counter Variable
Name of the symbolic vari-
able which will hold the
counter variable’s value

-
Name of a variable declared
in a POU, GVL or counter
module

Dead Band Variable
Name of the symbolic vari-
able which will hold the
dead band’s value

- Name of a variable declared
in a POU or GVL

Dead Band Type Defines the dead band type
to be used in the mapping Disabled

Absolute
Disabled
Integrated

Select Required
Defines if it is required a
previous select to run a com-
mand

False True
False

Short Pulse (ms)
Defines the short pulse time
to an IEC 60870-5-104 digi-
tal command

1000 1 to 86400000

Long Pulse (ms)
Defines the long pulse time
to an IEC 60870-5-104 digi-
tal command

2000 1 to 86400000

Table 141: IEC 60870-5-104 Server Mappings Configuration

194

5. CONFIGURATION

Notes:
Value Variable: When a read command is sent, the return received in the answer is stored in this variable. When it is a

write command, the written value is going to be stored in that variable. The variable can be simple, array, array element or can
be at structures.

Counter Variable: This field applies only on mapping of Integrated Totals type objects, being this the controller variable
to be managed on process. It must has same type and size of the variable declared on Value Variable column, which value is
going to be read, or reported to, the client in case of events.

ATTENTION

When the Counter Variable has a quality variable associated, to the quality to be transferred
to the frozen variable at freeze command, it must be associated a quality variable to the
frozen one. This procedure must be done through Internal Points tab.

Dead Band Variable: This field applies only to input analog variables (Measured Value type objects) mappings. It must
has same type and size of the variable declared on Value Variable column. New dead band variable values are going to be
considered only when the input analog variable change its value.

Dead Band Type: The configuration types available to dead band are:

Function type Configuration Description

Disabled
In this option, any value change in a
group’s point, as smaller it is, generates an
event to this point.

Dead Band Type Absolute

In this option, if the group’s point value ab-
solute change is bigger than the value in
“Dead Band” field, an event is going to be
generated to this point.

Integrated

In this option, if the absolute of the inte-
gration of the group’s point value change
is bigger than the value in “Dead Band”
field, an event is going to be generated to
this point. The integration interval is one
second.

Table 142: IEC 60870-5-104 Server Mappings Dead Band Types

Short Pulse and Long Pulse: At the define of short and long pulses duration time it must be considered the limits
supported by the device which will treat the command. For example, case the destiny is an output card, which is not supported
in native by Nexto Series. It must be checked at the module’s Datasheet what the minimum and maximum times, as well as
the resolution, to running the pulsed commands.

5.5.14.5. Link Layer

To the IEC 60870-5-104 Server link layer parameters configuration, shown on figure below, follow the described parameters
on table below:

195

5. CONFIGURATION

Figure 121: Server IEC 60870-5-104 Link Layer Configuration Screen

Parameter Description Factory De-
fault Possibilities

Port Number

Listened port address to
client connection. Used
when the client connection
isn’t through IP

2404 1 to 65535

IP Address
Connected client IP, used
when the client connection
is through IP

0.0.0.0 1.0.0.1 to 223.255.255.254

Common Address of
ASDU

IEC 60870-5-104 address,
if the connected client is
through IP

1 1 to 65534

Time-out t1 (s)

Time period (in seconds)
that the device waits the re-
ceiving of an acknowledge
message after sent an APDU
message type I or U (data),
before close the connection

15 1 to 180

Time-out t2 (s)

Time period (in seconds)
that the device waits to
send a watch message (S-
Frame) acknowledging the
data frame receiving

10 1 to 180

Time-out t3 (s)

Time period (in seconds) in
what is going to be sent a
message to link test in case
there is no transmission by
both sides

20 1 to 180

Parameter k (APDUs)

Maximum number of data
messages (I-Frame) trans-
mitted and not acknowl-
edged

12 1 to 12

Parameter w (APDUs)

Maximum number of
data messages (I-Frame)
received and not acknowl-
edged

8 1 to 8

Table 143: IEC 60870-5-104 Server Link Layer Configuration

196

5. CONFIGURATION

Note:
The fields Time-out t1 (s), Time-out t2 (s) and Time-out t3 (s) are dependents between themselves and must be configured

in a way that Time-out t1 (s) be bigger than Time-out t2 (s) and Time-out t3 (s) be bigger than Time-out t1 (s). If any of these
rules be not respected, error messages are going to be generated during the project compilation.

ATTENTION

For slow communication links (example: satellite communication), the parameters Time-out
t1 (s), Time-out t2 (s) and Time-out t3 (s) must be properly adjusted, such as doubling the
default values of these fields.

5.5.14.6. Application Layer

To configure the IEC 60870-5-104 Server application layer, shown on figure below, follow the parameters described on
table below:

Figure 122: Server IEC 60870-5-104 Application Layer Configuration Screen

Parameter Description Factory De-
fault Possibilities

Enable Time Synchroniza-
tion

Option to Enable/Disable
time sync request Disabled Disabled

Enabled

Time Synchronization
Command Received in
Local Time

Option to Enable/Disable
the treatment of the synchro-
nization command in local
time

Enabled Disabled
Enabled

Use Local Time instead of
UTC Time

Option to Enable/Disable
the time stamp in local time
for events

Disabled Disabled
Enabled

Maximum Time Between
Select and Operate (s)

Time period in which the
selection command will
remain active (the count
starts from the received
selection command ac-
knowledge) waiting the
Operate command

5 1 to 180

Transmission Mode of
Analog Input Events

Analog input events trans-
mission mode

All Events
(SOE)

All Events (SOE)
Most Recent Event

197

5. CONFIGURATION

Parameter Description Factory De-
fault Possibilities

Transmission Mode
Frozen counters transmis-
sion mode (Integrated To-
tals)

Freeze by
counter-
interrogation
command,
transmit
sponta-
neously

Freeze by counter-
interrogation command,
transmit spontaneously
Freeze and transmit by
counter-interrogation
command

Table 144: IEC 60870-5-104 Server Application Layer Configuration

Notes:
Enable Time Synchronization: Once enabled, allow the IEC 60870-5-104 Server adjust the CPU’s clock when a sync

command is received.
Time Synchronization Command Received in Local Time: When enabled, the IEC 60870-5-104 Server adjusts the CPU

clock by treating the time received in the synchronization command as local time. Otherwise, this time is considered UTC.
Use Local Time instead of UTC Time: Once enabled, the time stamp of the events generated by IEC 60870-5-104 Server

will be sent according to the CPU’s local time.

ATTENTION

When the time sync option is checked in more than one server, the received times from
different servers will be overwritten in the system clock in a short time period, being able to
cause undesirable behaviors due to delays on messages propagation time and system load.

Transmission Mode of Analog Inputs Events: The Analog Inputs Events transmission modes available are the following:

Function Type Configuration Description
Transmission Mode
of Analog Input
Events

All Events (SOE) All analog events generated are going to be
sent.

Most Recent Event It is sent only the most recent analog event.

Table 145: IEC 60870-5-104 Server Transmission Modes of Analog Inputs Events

198

5. CONFIGURATION

Transmission Mode: The available transmission modes of the frozen counters (Integrated Totals) are the following:

Function Type Configuration Description

Transmission Mode

Freeze by counter-
interrogation com-
mand, transmit
spontaneously

Equivalent to the counters acquisition D
Mode (Integrated Totals) defined by Stan-
dard IEC 60870-5-101. In this mode,
the control station’s counters interrogation
commands, freeze the counters. Case the
frozen values have been modified, they are
reported through events.

Freeze and trans-
mit by counter-
interrogation com-
mand

Equivalent to the counters acquisition C
Mode (Integrated Totals) defined by Stan-
dard IEC 60870-5-101. In this mode,
the control station’s counters interrogation
commands, freeze the counters. The sub-
sequent counters interrogation commands
(read) are sent by the control station to re-
ceive the frozen values.

Table 146: IEC 60870-5-104 Server Transmission Modes of the Frozen Counters

ATTENTION

The Standard IEC 60870-5-104, section Transmission control using Start/Stop, foresee the
commands STARTDT and STOPDT utilization to data traffic control between client and
server, using simple or multiple connections. Despite Nexto supports such commands, its
utilization isn’t recommended to control data transmission, mainly with redundant CPUs,
because such commands aren’t synchronized between both CPUs. Instead of using multiple
connections between client and Nexto server, it’s suggested the use of NIC Teaming re-
sources to supply (physically) redundant Ethernet channels and preserve the CPU resources
(CPU control centers).

5.5.14.7. Server Diagnostic

The IEC 60870-5-104 Server protocol diagnostics are stored in T_DIAG_IEC104_SERVER_1 type variables, which are
described in table below:

Diagnostic variable of type
T_DIAG_IEC104_SERVER_1.* Size Description

Command bits, automatically reset:
tCommand.bStop BOOL Disable Driver
tCommand.bStart BOOL Enable Driver
tCommand.bDiag_01_Reserved BOOL Reserved
tCommand.bDiag_02_Reserved BOOL Reserved
tCommand.bDiag_03_Reserved BOOL Reserved
tCommand.bDiag_04_Reserved BOOL Reserved
tCommand.bDiag_05_Reserved BOOL Reserved
tCommand.bDiag_06_Reserved BOOL Reserved

Diagnostics:
tClient_X.bRunning BOOL IEC 60870-5-104 Server is running

199

5. CONFIGURATION

Diagnostic variable of type
T_DIAG_IEC104_SERVER_1.* Size Description

tClient_X.eConnectionStatus.
CLOSED

Communication channel closed. Server
won’t accept connection request. ENUM
value (0)

tClient_X.eConnectionStatus.
LISTENING

ENUM(BYTE)
Server is listening to the configured port
and there is no connected clients. ENUM
value (1)

tClient_X.eConnectionStatus.
CONNECTED

Connected client. ENUM value (2)

tClient_X.tQueueDiags.
bOverflow

BOOL Client queue is overflowed

tClient_X.tQueueDiags.
wSize

WORD Configured queue size

tClient_X.tQueueDiags.
wUsage

WORD Events number in the queue

tClient_X.tQueueDiags.
dwReserved_0

DWORD Reserved

tClient_X.tQueueDiags.
dwReserved_1

DWORD Reserved

tClient_X.tStats.wRXFrames WORD Number of received frames
tClient_X.tStats.wTXFrames WORD Number of sent frames

tClient_X.tStats.wCommErrors WORD
Communication errors counter, including
physical layer, link layer and transport
layer errors.

tClient_X.tStats.dwReserved_0 DWORD Reserved
tClient_X.tStats.dwReserved_1 DWORD Reserved

Table 147: IEC 60870-5-104 Server Diagnostics

5.5.14.8. Commands Qualifier

The standard IEC 60870-5-104 foresee four different command qualifiers for the objects Single Command, Double Com-
mand and Regulating Step Command, all supported by the Nexto Server.

Each object type has a specific behavior to each command qualifier, as can be seen on the table below.

Qualifier Protocol IEC 60870-5-104 object type
Single Command Double Command Regulating Step Command

No additional defini-
tion (default)

Same behavior of persis-
tent qualifier.

Same behavior of short
pulse qualifier.

Same behavior of short pulse
qualifier.

Short pulse duration

Requires command in-
terception to application
treatment. Other way
it will return a nega-
tive acknowledge mes-
sage (fail).

Requires command in-
terception to application
treatment. Other way
it will return a nega-
tive acknowledge mes-
sage (fail).

Requires command interception
to application treatment. Other
way it will return a negative ac-
knowledge message (fail).

Long pulse duration

200

5. CONFIGURATION

Qualifier Protocol IEC 60870-5-104 object type
Single Command Double Command Regulating Step Command

Persistent output

The output is going to
be on or off and that
will remain until new
command, according to
value (ON or OFF) com-
manded by the client.

Table 148: IEC 60870-5-104 Server Commands Qualifier

Note:
Command Interception: For further information about commands interception of IEC 608705-104 clients, consult section

Interception of Commands Coming from the Control Center, implemented through CommandReceiver function block.

5.5.15. PROFINET Controller

For correct use of the PROFINET Controller protocol, it is necessary to consult the manual MU214621 - Nexto Series
PROFINET Manual .

5.6. Communication Performance
5.6.1. MODBUS Server

The MODBUS devices configurable in the Nexto CPU run in the background, with a priority below the user application
and cyclically. Thus, their performance varies depending on the remaining time, taking into account the difference between the
interval and time that the application takes to run. For example, a MODBUS device in an application that runs every 100 ms,
with a running time of 50 ms, will have a lower performance than an application running every 50 ms to 200 ms of interval.
It happens because in the latter case, the CPU will have a longer time between each MainTask cycle to perform the tasks with
lower priority.

It also has to be taken into account the number of cycles that the device, slave or server takes to respond to a request. To
process and transmit a response, a MODBUS RTU Slave will takes two cycles (cycle time of the MODBUS task), where as a
MODBUS Ethernet Server task takes only one cycle. But this is the minimum time between receipt of a request and the reply.
If the request is sent immediately after the execution of a task MODBUS cycle time may be equal to 2 or 3 times the cycle
time for the MODBUS slave and from 1 to 2 times the cycle time for the MODBUS server.

In this case: Maximum Response Time = 3 * (cycle time) + (time of execution of the tasks) + (time interframe chars) +
(send delay).

For example, for a MODBUS Ethernet Server task with a cycle of 50 ms, an application that runs for 60 ms every 100 ms,
the server is able to run only one cycle between each cycle of the application. On the other hand, using the same application,
running for 60 ms, but with an interval of 500 ms, the MODBUS performs better, because while the application is not running,
it will be running every 50 ms and only each cycle of MainTask it will take longer to run. For these cases, the worst performance
will be the sum of the Execution Time of the user application with the cycle time of the MODBUS task.

For the master and client devices the operating principle is exactly the same, but taking into account the polling time of the
MODBUS relation and not the cycle time of the MODBUS task. For these cases, the worst performance of a relationship will
be performed after the polling time, along with the user application Execution Time.

It is important to stress that the running MODBUS devices number also changes its performance. In an user application
with Execution Time of 60 ms and interval of 100 ms, there are 40 ms left for the CPU to perform all tasks of lower priority.
Therefore, a CPU with only one MODBUS Ethernet Server will have a higher performance than a CPU that uses four of these
devices.

5.6.1.1. CPU’s Local Interfaces

For a device MODBUS Ethernet Server, we can assert that the device is capable to answer a x number of requisitions per
second. Or, in other words, the Server is able to transfer n bytes per second, depending on the size of each requisition. As
smaller is the cycle time of the MODBUS Server task, higher is the impact of the number of connections in his answer rate.
However, for cycle times smaller than 20 ms this impact is not linear and the table below must be viewed for information.

The table below exemplifies the number of requisitions that a MODBUS Server inserted in a local Ethernet interface is
capable to answer, according to the cycle time configured for the MODBUS task and the number of active connections:

201

5. CONFIGURATION

Number of Active Connections

Answered requisitions
per second with the
MODBUS task cycle at
5 ms

Answered requisitions
per second with the
MODBUS task cycle at
10 ms

Answered requisitions
per second with the
MODBUS task cycle at
20 ms

1 Connection 185 99 50
2 Connections 367 197 100
4 Connections 760 395 200
7 Connections 1354 695 350

10 Connections 1933 976 500

Table 149: Communication Rate of a MODBUS Server at Local Interface

ATTENTION

The communication performances mentioned in this section are just examples, using a CPU
with only one device MODBUS TCP Server, with no logic to be executed inside the appli-
cation that could delay the communication. Therefore, these performances must be taken as
the maximum rates.

For cycle times equal or greater than 20 ms, the increase of the answer rate is linear, and may be calculated using an
equation:

N = C x (1 / T)
Where:
N is the medium number of answers per second;
C is the number of active connections;
T is the MODBUS task interval in seconds.
As an example a MODBUS Server, with only one active connection and a cycle time of 50 ms we get:
C = 1; T = 0,05 s;
N = 1 x (1 / (0,05))
N = 20
That is, in this configuration the MODBUS Server answers, on average, 20 requisitions per second.
In case the obtained value is multiplied by the number of bytes in each requisition, we will obtain a transfer rate of n bytes

per second.

5.6.1.2. Remote Interfaces

The performance of a device MODBUS Server in one remote Ethernet interface is similar to the performance in the CPU’s
local interfaces.

However, due to time of the communication between the CPU and the modules, the maximum performance is limited.
For only one active connection, the number of answers is limited in the maximum of 18 answers per second. With more
active connections, the number of answers will increase linearly, exactly like the local interfaces, however being limited at the
maximum of 90 answers per second. So, for a remote Ethernet interface, we will have the following forms to calculate his
performance:

For T ≤ 55 ms is used:
N = C x (18.18 – (18.18 / (0.055 x 1000)))
And for T ≥ 55 ms is used:
N = C x (Z – (Z / (T x 1000)))
Where N is the medium number of answers per second, C is the number of active connections and T is equal to the cycle

time of the MODBUS task (in seconds).
The user must pay attention to the fact that the maximum performance of a device MODBUS Server in one remote Ethernet

interface is 90 answers of requisitions per second.

202

5. CONFIGURATION

5.6.2. OPC DA Server

Communication performance with OPC DA Server was tested by creating POUs with 1,000 INT variables each. All
scenarios were tested with Single profile and MainTask Interval at 100 ms. The communication was enabled by the attribute
’symbol’ := ’readwrite’, to make the data available to the OPC DA Server. The measurements were made while MasterTool
was disconnected from the CPU, and MainTask duration was made to last 5%, 50% and 80% of the configured Interval, as
seen in table below.

At the OPC Client’s side, a SCADA system driver was used. Configured update time was 50 ms. Performance results in
these conditions are described in table below.

Total quantity of vari-
ables in the PLC’s
project

Variable update time at OPC DA Client

5% of CPU Busy 50% of CPU Busy 80% of CPU Busy
1000 600 ms 800 ms 1400 ms
2000 800 ms 900 ms 2800 ms
5000 1000 ms 2000 ms 6500 ms
10000 2000 ms 4000 ms 13700 ms
15000 3200 ms 6400 ms 20000 ms
20000 4000 ms 8100 ms 25000 ms

Table 150: Communication Rate of an OPC DA Server

5.6.3. OPC UA Server

The OPC UA Server MU214609 analyzes the performance of OPC UA communication in greater detail, including address-
ing the consumption of Ethernet communication bandwidth. This manual also discusses concepts about the operation of the
OPC UA protocol.

5.6.4. IEC60870-5-104 Server

The IEC 60870-5-104 Server driver is executed by the CPU in the same way as the other communication drivers Servers,
that is, in the background, with a priority below the user application and cyclically. The task of this The driver specifically
executes every 50 ms, and 1 driver execution cycle is enough to process and respond to requests. However, as it is a low priority
task, it is not guaranteed to be able to run at this frequency because depends on the percentage of free CPU (difference between
the MainTask interval and the time that the user application takes to be executed) and also concurrency with tasks from other
protocols configured in the CPU.

To help in the comprehension of the driver IEC 60870-5-104 Server performance are presented the result of some test done
with an IEC 60870-5-104 Client simulator, connected to a NX3030 running an IEC 60870-5-104 Server. The configured data
base was compose of 900 digital points and 100 analog points (all with quality and time stamp), and the MainTask was using
70 ms (of the 100 ms interval).

Time to complete a general interrogation command: less than one second
Time to transfer 900 digital events + 100 analog events: 6 seconds

5.7. System Performance
In cases where the application has only one MainTask user task responsible for the execution of a single Program type pro-

gramming unit called MainPrg (as in Single Profile), the PLC consumes a certain amount of time for the task to be processed.
At that time we call it as Execution Time.

In an application the average application Execution Time can be known using the MasterTool IEC XE in the Device item
of its Devices Tree as follows:

PLC Logic-> Application-> Task Configuration in the Monitor tab, Average Cycle Time column.
The user must pay attention to the Cycle Time so that it does not exceed 80% of the interval set in the MainTask user task.

For example, in an application where the interval is 100 ms, an appropriate Cycle Time is up to 80 ms. This is due to the fact
that the CPU needs time to perform other tasks such as communication processing, processing of the display and memory card,
and these tasks take place within the range (the remaining 20% of Cycle Time).

203

5. CONFIGURATION

ATTENTION

For very high cycle times (typically higher than 300 ms), even that the value of 80% is
respected, it may occur a reduction in the display response time and of the diagnostics key.
In case the 80 percentage is not respected and the running time of the user task is closer or
exceeds the interval set for the MainTask, the screen and the diagnosis button cannot respond
once its priority in the system running is lower than the user tasks. In case an application with
errors is loaded in the CPU, it may be necessary to restart it without loading this application
as shown in the System Log section.

ATTENTION

The CPU’s system logs of the Nexto Series, starting from firmware version 1.4.0.33 now
reloaded in case of a CPU reset or a reboot of the Runtime System, that is, you can view the
older logs when one of these conditions occurs.

5.7.1. I/O Scan

For a project that uses digital I/O modules, being them inserted into the bus and declared in the project, the MainTask time
will increase according to the number of modules. The table below illustrates the average time that is added to the MainTask:

Declared Modules in the Bus Added Time in the MainTask Cycle Time (µs)
5 300
10 700
20 1000

Table 151: I/O Scanning Time

In projects that use remote I/Os, for example, using the NX5001 PROFIBUS-DP Master module, the manual of the re-
spective module has to be consulted for information about performance and influences of the module in the execution of user
tasks.

5.7.2. Memory Card

Data transfers involving the memory card is performed by the CPU in the background, as this gives priority to the execution
of user application and communication processing. Thus, the transfer of files to the card may suffer an additional significant
time, depending on the Cycle Time of the user application.

The time required to read/write files on the card will be directly affected by the Cycle Time of the user application since
this application has priority in execution.

Further information about the use of the memory card see Memory Card section.

5.8. RTC Clock
The CPUs have an internal clock that can be used through the NextoStandard.lib library. This library is automatically

loaded during the creation of a new project (to perform the library insertion procedure, see Libraries section). The figure
below shows how to include the blocks in the project:

204

5. CONFIGURATION

Figure 123: Clock Reading and Writing Blocks

ATTENTION

Function blocks of RTC Reading and Writing, previously available in 2.00 MasterTool IEC
XE or older become obsolete from 2.00 or newer, the following blocks are no longer used:
NextoGetDateAndTime, NextoGetDateAndTimeMs, NextoGetTimeZone, NextoSetDateAnd-
Time, NextoSetDateAndTimeMs and NextoSetTimeZone.

5.8.1. Function Blocks for RTC Reading and Writing

Among other function blocks, there are some very important used for clock reading (GetDateAndTime, GetDayOfWeek
and GetTimeZone) and for date and time new data configuring (SetDateAndTime and SetTimeZone). These functions always
use the local time, that is, take into account the value defined by the Time Zone.

The proceedings to configure these two blocks are described below.

5.8.1.1. Function Blocks for RTC Reading

The clock reading can be made through the following functions:

5.8.1.1.1. GetDateAndTime

Figure 124: Date and Hour Reading

205

5. CONFIGURATION

Input Parameters Type Description

DATEANDTIME EXTENDED_DATE
_AND_TIME

This variable returns the value of
date and hour of RTC in the format
shown at Table 161.

Table 152: Input Parameters of GetDateAndTime

Output Parameters Type Description

GETDATEANDTIME RTC_STATUS Returns the function error state, see
Table 163.

Table 153: Output Parameters of GetDateAndTime

Utilization example in ST language:

PROGRAM UserPrg
VAR
Result : RTC_STATUS;
DATEANDTIME : EXTENDED_DATE_AND_TIME;
xEnable : BOOL;
END_VAR
--
IF xEnable = TRUE THEN
Result := GetDateAndTime(DATEANDTIME);
xEnable := FALSE;
END_IF

5.8.1.1.2. GetTimeZone

The following function reads the Time Zone configuration, this function is directly related with time in Time Zone at SNTP
synchronism service:

Figure 125: Configuration Reading of Time Zone

Input Parameters Type Description

TIMEZONE TIMEZONESETTINGS This variable presents the reading
of Time Zone configuration.

Table 154: Input Parameters of GetTimeZone

206

5. CONFIGURATION

Output Parameters Type Description

GetTimeZone RTC_STATUS Returns the function error state, see
Table 163.

Table 155: Output Parameters of GetTimeZone

Utilization example in ST language:

PROGRAM UserPrg
VAR
GetTimeZone_Status : RTC_STATUS;
TimeZone : TIMEZONESETTINGS;
xEnable : BOOL;
END_VAR
--
IF xEnable = TRUE THEN
GetTimeZone_Status := GetTimeZone(TimeZone);
xEnable := FALSE;
END_IF

5.8.1.1.3. GetDayOfWeek

GetDayOfWeek function is used to read the day of the week.

Figure 126: Day of Week Reading

Output Parameters Type Description

GetDayOfWeek DAYS_OF_WEEK Returns the day of the week. See
Section 162.

Table 156: Output Parameters of GetDayOfWeek

When called, the function will read the day of the week and fill the structure DAYS_OF_WEEK.
Utilization example in ST language:

PROGRAM UserPrg
VAR
DayOfWeek : DAYS_OF_WEEK;
END_VAR
--
DayOfWeek := GetDayOfWeek();

207

5. CONFIGURATION

5.8.1.2. Funções de Escrita do RTC

The clock settings are made through function and function blocks as follows:

5.8.1.2.1. SetDateAndTime

SetDateAndTime function is used to write the settings on the clock. Typically the precision is on the order of hundreds of
milliseconds.

Figure 127: Set Date And Time

Input parameters Type Description

REQUEST BOOL This variable, when receives a ris-
ing edge, enables the clock writing.

DATEANDTIME EXTENDED_DATE
_AND_TIME

Receives the values of date and
hour with milliseconds. See section
161.

Table 157: Input Parameters of SetDateAndTime

Output parameters Type Description

DONE BOOL
This variable, when true, indicates
that the action was successfully
completed.

EXEC BOOL
This variable, when true, indicates
that the function is processing the
values.

ERROR BOOL This variable, when true, indicates
an error during the Writing.

STATUS RTC_STATUS Returns the error occurred during
the configuration. See Table 163.

Table 158: Output Parameters of SetDateAndTime

When a rising edge occurs at the REQUEST input, the function block will write the new DATEANDTIME values on the
clock. If the writing is successfully done, the DONE output will be equal to TRUE. Otherwise, the ERROR output will be equal
to TRUE and the error will appear in the STATUS variable.

Utilization example in ST language:

PROGRAM UserPrg
VAR
SetDateAndTime : SetDateAndTime;
xRequest : BOOL;
DateAndTime : EXTENDED_DATE_AND_TIME;
xDone : BOOL;

208

5. CONFIGURATION

xExec : BOOL;
xError : BOOL;
xStatus : RTC_STATUS;
END_VAR
--
IF xRequest THEN

SetDateAndTime.REQUEST:=TRUE;
SetDateAndTime.DATEANDTIME:=DateAndTime;
xRequest:= FALSE;

END_IF
SetDateAndTime();
SetDateAndTime.REQUEST:=FALSE;
IF SetDateAndTime.DONE THEN

xExec:=SetDateAndTime.EXEC;
xError:=SetDateAndTime.ERROR;
xStatus:=SetDateAndTime.STATUS;

END_IF

ATTENTION

If you try to write time values outside the range of the RTC, the values are converted to
valid values, provided they do not exceed the valid range of 01/01/2000 to 12/31/2035. For
example, if the user attempts to write the value 2000 ms, it will be converted to 2 seconds,
write the value 100 seconds, it will be converted to 1 min and 40 seconds. If the type value
of 30 hours, it is converted to 1 day and 6 hours, and so on.

5.8.1.2.2. SetTimeZone

The following function block makes the writing of the time zone settings:

Figure 128: Writing of the Time zone Settings

Input parameters Type Description

TIMEZONE TIMEZONESETTINGS Structure with time zone to be con-
figured. See Table 164.

Table 159: SetTimeZone Input Parameters

Output parameters Type Description

SetTimeZone RTC_STATUS Returns the error occurred during
the reading/setting. See Table 163.

Table 160: SetTimeZone Output Parameters

209

5. CONFIGURATION

When called, the function will configure the TIMEZONE with the new system time zone configuration. The configuration
results is returned by the function.

Utilization example in ST language:

PROGRAM UserPrg
VAR
Status : RTC_STATUS;
TimeZone : TIMEZONESETTINGS;
xWrite : BOOL;
END_VAR
--
//FB SetTimeZone
IF (xWrite = TRUE) THEN
Status := SetTimeZone(TimeZone);

IF Status = RTC_STATUS.NO_ERROR THEN
xWrite := FALSE;

END_IF
END_IF

ATTENTION

To perform the clock should be used time and date values within the following valid range:
00:00:00 hours of 01/01/2000 to 12/31/2035 23:59:59 hours, otherwise , is reported an error
through the STATUS output parameter. For details of the STATUS output parameter, see the
section RTC_STATUS.

5.8.2. RTC Data Structures

The reading and setting function blocks of the Nexto Series CPUs RTC use the following data structures in its configuration:

5.8.2.1. EXTENDED_DATE_AND_TIME

This structure is used to store the RTC date when used the function blocks for date reading/setting within milliseconds of
accuracy. It is described in the table below:

Structure Type Variable Description
BYTE byDayOfMonth Stores the day of the set date.
BYTE ByMonth Stores the month of the set date.
WORD wYear Stores the year of the set date.

EXTENDED_DATE_ BYTE byHours Stores the hour of the set date.
AND_TIME BYTE byMinutes Stores the minutes of the set date.

BYTE bySeconds Stores the seconds of the set date.

WORD wMilliseconds Stores the milliseconds of the set
date.

Table 161: EXTENDED_DATE_AND_TIME

210

5. CONFIGURATION

5.8.2.2. DAYS_OF_WEEK

This structure is used to store the day of week:

Enumerable Value Description
0 INVALID_DAY
1 SUNDAY
2 MONDAY

DAYS_OF_WEEK 3 TUESDAY
4 WEDNESDAY
5 THURSDAY
6 FRIDAY
7 SATURDAY

Table 162: DAYS_OF_WEEK Structure

5.8.2.3. RTC_STATUS

This enumerator is used to return the type of error in the RTC setting or reading and it is described in the table below:

Enumerator Value Description
NO_ERROR (0) There is no error.
UNKNOWN_COMMAND (1) Unknown command.
DEVICE_BUSY (2) Device is busy.
DEVICE_ERROR (3) Device with error.

ERROR_READING_OSF (4) Error in the reading of the valid date
and hour flag.

ERROR_READING_RTC (5) Error in the date and hour reading.
RTC_STATUS ERROR_WRITING_RTC (6) Error in the date and hour writing.

ERROR_UPDATING_SYSTEM
_TIME (7)

Error in the update of the system’s
date and hour.

INTERNAL_ERROR (8) Internal error.
INVALID_TIME (9) Invalid date and hour.
INPUT_OUT_OF_RANGE
(10)

Out of the limit of valid date and
hour for the system.

SNTP_NOT_ENABLE (11)

Error generated when the SNTP
service is not enabled and it is done
an attempt for modifying the time
zone.

Table 163: RTC_STATUS

5.8.2.4. TIMEZONESETTINGS

This structure is used to store the time zone value in the reading/setting requests of the RTC’s function blocks and it is
described in table below:

Structure Type Variable Description
TIMEZONESETTINGS INT iHour Set time zone hour.

INT iMinutes Set time zone minute.

Table 164: TIMEZONESETTINGS

211

5. CONFIGURATION

Note:
Function Blocks of Writing and Reading of Date and Hour: different libraries of NextoStandard, which have function

blocks or functions that may perform access of reading and writing of date and hour in the system, are not indicated. The
NextoStandard library has the appropriate interfaces for writing and reading the system’s date and hour accordingly and for
informing the correct diagnostics.

5.9. User Files Memory
Nexto Series CPUs have a memory area destined to the general data storage, in other words, the user can store several

project files of any format in the CPU memory. This memory area varies according to the CPU model used (check Memory
section).

In order to use this area, the user must access a project in the MasterTool IEC XE software and click on the Devices Tree,
placed at the program left. Double click on the Device item and, after selecting the CPU in the Communication Settings tab
which will be open, select the Files tab and click on Refresh, both in the computer files column (left) and in the CPU files
column (right) as shown on figure below.

Figure 129: User Files Access

After updating the CPU column of files, the root directory of files stored in the CPU will be shown. Then it will be possible
to select the folder where the files will be transferred to. The “InternalMemory” folder is a default folder to be used to store
files in the CPU’s internal memory, since it is not possible to transfer files to the root directory. If necessary, the user can create
other folders in the root directory or subfolders inside the “InternalMemory” folder.

The “MemoryCard” folder is the directory where the memory card is mounted, if it is inserted into the CPU. Files which
are transferred to the “MemoryCard” are being transferred directly into the memory card. As new features are being added to
the product, some folders may appear and which should be ignored by the user.

ATTENTION

In the case where the memory card is inserted after the CPU startup, an username and pass-
word will be requested to perform the MasterTool IEC XE access and/or file transfers to the
memory card or vice versa. The standard user with privileges to access the CPU is “Owner”
and the default password for that user is “Owner”.

In order to perform a file transfer from the microcomputer to the CPU just select the desired file in the left column and
press the “»” key located in the center of the screen, as shown in figure below. The download time will vary depending on file
size and cycle time (execution) of the current application of the CPU and may take several minutes.

The user does not need to be in Run Mode or connected to the CPU to perform the transfers, since it has the ability to
connect automatically when the user performs the transfer.

212

5. CONFIGURATION

Figure 130: Files Transference

ATTENTION

The files contained in the folder of a project created by MasterTool IEC XE have special
names reserved by the system in this way cannot be transferred through the Files tab. If the
user wishes to transfer a project to the user memory, you must compact the folder and then
download the compressed file (*.zip for example).

In case it is necessary to transfer documents from the CPU to the PC in which the MasterTool IEC XE software is installed,
the user must follow a very similar procedure to the previously described, as the file must be selected from the right column
and the button “«” pressed, placed on the center of the screen.

Furthermore, the user has some operation options in the storing files area, which are the following:

New directory : allows the creation of a new folder in the user memory area.

Delete item : allows the files excluding in the folders in the user memory area.

Refresh : allows the file updating, on the MasterTool IEC XE screen, of the files in the user memory area and in the
computer.

Figure 131: Utilization Options

ATTENTION

For a CPU in Stop Mode or with no application, the transfer rate to the internal memory is
approximately 150 Kbytes/s.

213

5. CONFIGURATION

5.10. Memory Card
Among other memories, Nexto Series CPUs allow the user the utilization of a memory card. It is defined according the

features described in Memory Card Interface section which stores, among other files, the project and application in the CPU
internal memory.

When the card is inserted in the CPU and it presents a file type different from FAT32, it automatically identifies those
files and questions the user if he wants to format the files. In negative case the user cannot use the card, as it is not mounted.
A message informing the format is not recognized is presented and the card presence is not displayed either. If the user
decides to format the files, the CPU takes a few minutes to execute the operation, depending on the cycle time (execution) of
the application which is running in the CPU. Once the memory card is mounted, the CPU will read its general information,
leaving access to the memory card slower in the first few minutes. This procedure is done only when the card is inserted or in
case of the CPU reset.

ATTENTION

It is recommended to format the memory card directly in the Nexto CPU in order to avoid
possible use problems, mounting time increase or even the incorrect functioning.
It is not recommended to remove the memory card or de-energize the CPU during the for-
matting or during the files transfer as it can cause the loss of data as well as irreversible
damages.

5.10.1. Project Preparation

To use the functionality, during the project configuration, in the MasterTool IEC XE software, the user must enable the
option to copy the CPU project to the memory card and/or memory card to the CPU and to configure passwords. These
passwords will be requested by the CPU when executing the respective transfer. For information about the table, see section
Project Parameters.

ATTENTION

If the CPU has no application, the “Memory Card” Menu will be available to allow the
transfer of the project from memory card to the CPU without requiring any kind of previous
preparation of the CPU.

To use the feature you must perform the following steps.
Navigate to the Online menu and execute the command Create Boot Application, remembering that you cannot be logged

into the CPU to perform this procedure. After you run this command, two files are created in the folder where the project is
saved. One with the extension “app” and one with the extension “crc".

After generating the files in the previous item, you must navigate to the CPU General Parameters settings and click the
Memory Card... button. A new screen will open as shown in figure below. In this screen you must enable the desired transfer
operation(s) and, if necessary, set the password(s) with numeric characters only. The use of password is not required.

To complete the setup operation you must click the Find File... button and then locate the file with “.crc” extension
generated in the previous step.

214

5. CONFIGURATION

Figure 132: Memory Card Settings

Following these steps, MasterTool IEC XE will send all files needed to perform the send and receive operations of projects
via memory card. If the card is mounted, the password will be written to it. Otherwise, the password set in MasterTool will be
requested if the user tries to transfer the CPU project to the card.

5.10.2. Project Transfer

To transfer the project from CPU to the memory card or vice versa, the user, in addition to enabling in MasterTool IEC XE
software to use the functionality, will have to access the menu Memory Card in the CPU, using the diagnostics key, and select
the desired transfer option.

ATTENTION

The transfer of the project to the memory card should only be done using the CPU diagnostics
key.

Afterwards, you will be prompted for the password if the user has set during application setup. Then with a short press on
the diagnostics key the digits are incremented and with a long press are confirmed. In the confirmed sixth digit, the CPU will
consist of the password and start the process.

After transferring the memory card to the CPU, if there is a RUN application it will be kept in STOP for safety reasons. To
put the CPU in RUN, it must be rebooted.

When the passwords of both the application that is in the CPU and the application that is on the memory card are the same,
it is not required to enter the passwords in the CPU menu to perform the application transfers. For more information on using
the diagnostics key, see section One Touch Diag.

To remove the memory card, simply press and hold the MS key and wait until the memory card icon disappears from the
graphic display status screen.

ATTENTION

If the memory card is removed without have been unmounted through CPU’s menu, during
a file transference, this process can cause the loss of card data as well as corrupt the files in
it. This process may cause the need of another card formatting when it’ll be inserted on the
CPU again.

215

5. CONFIGURATION

ATTENTION

If there is any file at memory card root named “NextoMemCard” or “Backup”, it will be
deleted to create the system folders with the same name, used by the CPU to store the project
application and the project archive. Folders with these names will not be overwritten.

5.10.3. MasterTool Access

The memory card access is connected to the same user memory screen in the MasterTool IEC XE software, being it
mounted in the folder called MemoryCard. NextoMemCard and Backup folders are created into the memory card every time
the latter is inserted into the CPU. In case these folders already exist, the system will recognize them and will not overwrite
the folders.

In the NextoMemCard on the memory card, you will find the application files, in this window you still have the option to
save your project in a preferred directory (if you have sent the source code). In MasterTool in the option "File / Project Archive
/ Extract Archive..." you can open in MasterTool the saved application, which is located in the directory previously chosen.

The Backup folder is not used by the user.

Figure 133: Directory with Memory Card Inserted with Project

ATTENTION

The files transference time depends on the interval time difference minus the average execu-
tion time of the task (s) in execution (available time until the next task cycle), it means, the
bigger this difference for each task in an application, the faster will be the transference of a
data from the memory card to a CPU/MasterTool IEC XE or vice-versa.
Transferring files to the memory card will be slower than the transfer to the internal memory
of the CPU. For a CPU in Stop Mode or with no application, the transfer rate is close to 100
Kbytes/s.

5.11. CPU’s Informative and Configuration Menu
The access to the Informative Menu, the Nexto CPU Configuration and the detailed diagnostics, are available through levels

and to access the menu information, change level and modify any configuration, a long touch is required on the diagnostic
button and to navigate through the items on the same level, a short touch on the diagnostic button is required. See One Touch
Diag section to verify the functioning and the difference between the diagnostics button touch types.

The table below shows the menu levels and each screen type available in the CPUs, if they are informative, configurable or
to return a level.

216

5. CONFIGURATION

Level 1 Level 2 Level 3 Type
TEMPERATURE - Informative
CONTRAST CONTRAST LEVEL Configurable
DATE AND TIME - Informative

HARDWARE INPUTS DIGITAL INPUTS STATE Informative

OUTPUTS DIGITAL OUTPUTS
STATE Informative

BACK - Return level
ENGLISH >ENGLISH Configurable

LANGUAGES PORTUGUES >PORTUGUES Configurable
ESPANOL >ESPANOL Configurable
BACK - Return level
NET 1 IP ADDR. Informative
NET 1 MASK Informative

NETWORK NET 2 IP ADDR. - Informative
NET 2 MASK Informative
BACK Return level
FIRMWARE Informative

SOFTWARE BOOTLOADER - Informative
AUX. PROC. Informative
BACK Return level
MEMCARD > CPU CPU PASSWORD Configurable

MEM. CARD CPU > MEMCARD MC PASSWORD Configurable
FORMAT CONFIRM ? Configurable
BACK - Return level

BACK - - Return level

Table 165: CPU Menu Levels

Notes:
Memory Card: The memory card is only available in the menu, if it is connected in the Nexto CPU.
Password: The memory card data access password is only necessary in case it is configured in the MasterTool IEC XE

software. You cannot edit the password via menu.
As shown on Table 165, between the available options to visualize and modify are the main data necessary to user, as:

Information about the hardware resources:

• TEMPERATURE – CPU Internal temperature (Ex.: 36 C 97 F)
• CONTRAST – Contrast setting of the CPU frontal display
• DATE AND TIME – Date and time set in the CPU (Ex.: 2001.01.31 00:00)

Changing the menu language on the CPU:

• PORTUGUES – Changes the language to Portuguese
• ENGLISH – Changes the language to English
• ESPANOL – Changes the language to Spanish

Visualization of information about the network set in the device:

• NET 1 IP ADDR. – Address (Ex.: 192.168.0.1)
• NET 1 MASK – Subnet mask (Ex.: 255.255.255.0)
• NET 2 IP ADDR – Address (Ex.: 192.168.0.2)
• NET 2 MASK – Subnet mask (Ex.: 255.255.255.0)

217

5. CONFIGURATION

Information about the software versions:

• FIRMWARE – CPU software version (Ex.: 1.0.0.0)
• BOOTLOADER – CPU bootloader version (Ex.: 1.0.0.0)
• AUX. PROC. – CPU auxiliary processor version (Ex.: 1.0.0.0)

Access to the Memory Card data:

• MEMCARD > CPU – Transference of the memory card project to the CPU
• CPU > MEMCARD – Transference of the CPU project to the memory card
• FORMAT – Formats the card to the FAT32 files system

The figure below describes an example of how to operate the Nexto CPUs menu through the contrast adjust menu procedure
from the Statusscreen. Besides to make the configuration easy, it is possible to identify all screen levels and the touch type to
navigate through them, and to modify other parameters as Language and the Memory Card, using the same access logic. The
short touch shows the contrast is being incremented (clearer) and in the next touch after its maximum value, it returns to the
minimum value (less clear). The long touch shows the confirmation of the desired contrast and its return to the previous level.

Figure 134: Contrast Adjust

Besides the possibility of the Nexto CPUs menu to be closed through a long touch on the screen diagnostic button BACK
from level 1, there are also other output conditions that are described below:

Short touch, at any moment, in the other modules existent on the bus, make the CPU disconnect from the menu and
show the desired module diagnostic.
Idle time, at any level, superior to 5 s.

218

5. CONFIGURATION

5.12. Function Blocks and Functions
5.12.1. Special Function Blocks for Serial Communication

The special function blocks for serial interfaces make possible the local access (COM 1 AND COM 2) and also access to
remote serial ports (expansion modules). Therefore, the user can create his own protocols and handle the serial ports as he
wishes, following the IEC 61131-3 languages available in the MasterTool IEC XE software. The blocks are available inside the
NextoSerial library which must be added to the project so it’s possible to use them (to execute the library insertion procedure,
see MasterTool IEC XE Programming Manual – MP399609, section Library).

The special function blocks for serial interfaces can take several cycles (consecutive calls) to complete the task execution.
Sometimes a block can be completed in a single cycle, but in the general case, needs several cycles. The task execution
associated to a block can have many steps which some depend on external events, that can be significantly delayed. The
function block cannot implement routines to occupy the time while waits for these events, because it would make the CPU
busy. The solution could be the creation of blocking function blocks, but this is not advisable because it would increase the
user application complexity, as normally, the multitask programming is not available. Therefore, when an external event is
waited, the serial function blocks are finished and the control is returned to the main program. The task treatment continues in
the next cycle, in other words, on the next time the block is called.

Before describing the special function blocks for serial interfaces, it is important to know the Data types, it means, the data
type used by the blocks.

Data type Options Description

BAUD200 Lists all baud rate possibilities (bits
per second)

BAUD300
BAUD600
BAUD1200
BAUD1800

SERIAL_BAUDRATE BAUD2400
BAUD4800
BAUD9600
BAUD19200
BAUD38400
BAUD57600
BAUD115200
DATABITS_5 Lists all data bits possibilities.

SERIAL_DATABITS DATABITS_6
DATABITS_7
DATABITS_8

Defines all modem signal possibilities for the configurations:

RS232_RTS

Controls the Nexto CPU RS-232C
port. The transmitter is enabled
to start the transmission and dis-
abled as soon as possible after the
transmission is finished. For exam-
ple, can be used to control a RS-
232/RS-485 external converter.

SERIAL_HANDSHAKE RS232_RTS_OFF
Controls the RS-232C port of the
Nexto CPU. The RTS signal is al-
ways off.

RS232_RTS_ON
Controls the RS-232C port of the
Nexto CPU. The RTS signal is al-
ways on.

219

5. CONFIGURATION

Data type Options Description

RS232_RTS_CTS

Controls the RS-232C port of the
Nexto CPU. In case the CTS is dis-
abled, the RTS is enabled. Then
waits for the CTS to be enabled
to get the transmission and RTS
restarts as soon as possible, at the
end of transmission. Ex: Control-
ling radio modems with the same
modem signal.

RS232_MANUAL

Controls the RS-232C port of the
Nexto CPU. The user is responsi-
ble to control all the signals (RTS,
DTR, CTS, DSR, DCD).

SERIAL_MODE NORMAL_MODE Serial Communication Normal Op-
eration mode.

EXTENDED_MODE

Serial Communication Extended
Operation mode in which are pro-
vided information about the re-
ceived data frame.

Defines all configuration parameters of the serial port:
BAUDRATE Defined in SERIAL_BAUDRATE.
DATABITS Defined in SERIAL_DATABITS.
STOPBITS Defined in SERIAL_STOPBITS.
PARITY Defined in SERIAL_PARITY.

SERIAL_PARAMETERS HANDSHAKE Defined in SE-
RIAL_HANDSHAKE.

UART_RX_THRESHOLD

Byte quantity which must be re-
ceived to generate a new UART in-
terruption. Lower values make the
TIMESTAMP more precise when
the EXTENDED MODE is used
and minimizes the overrun errors.
However, values too low may cause
too many interruptions and delay
the CPU.

MODE Defined in SERIAL_MODE.

ENABLE_RX_ON_TX

When true, all the received byte
during the transmission will be dis-
charged instead going to the RX
line. Used to disable the full-duplex
operation in the RS-422 interface.

ENABLE_DCD_EVENT When true, generates an external
event when the DCD is modified.

ENABLE_CTS_EVENT When true, generates an external
event when the CTS is modified.

PARITY_NONE List all parity possibilities.
PARITY_ODD

SERIAL_PARITY PARITY_EVEN
PARITY_MARK
PARITY_SPACE

220

5. CONFIGURATION

Data type Options Description

SERIAL_PORT COM 1

List all available serial ports (COM
10, COM 11, COM 12, COM 13,
COM 14, COM 15, COM 16, COM
17, COM 18 and COM 19 – expan-
sion modules).

COM 2
Defines a character in the RX queue in extended mode.

RX_CHAR Data byte.
SERIAL_RX_CHAR_ EX-
TENDED RX_ERROR Error code.

RX_TIMESTAMP

Silence due to the previous charac-
ter or due to another event which
has happen before this character
(serial port configuration, transmis-
sion ending).

It has some fields which deliver information regarding RX queue
status/error, used when the normal format is utilized (no error
and timestamp information):

RX_FRAMING_ERRORS

Frame errors counter: character in-
correct formation – no stop bit, in-
correct baud rate, among other –
since the serial port configuration.
Returns to zero when it reaches the
maximum value (65535).

RX_PARITY_ERRORS

Parity errors counter, since the se-
rial port configuration. Returns to
zero when it reaches the maximum
value (65535).

RX_BREAK_ERRORS

Interruption errors counter, since
the serial port configuration, in
other words, active line higher than
the character time. Returns to zero
when it reaches the maximum value
(65535).

SERIAL_RX_QUEUE_
STATUS

RX_FIFO_OVERRUN_
ERRORS

FIFO RX overrun errors counter,
since the serial port configuration,
in other words, error in the FIFO
RX configured threshold. Returns
to zero when it reaches the maxi-
mum value (65535).

RX_QUEUE_OVERRUN_
ERRORS

RX queue overrun errors counter, in
other words, the maximum charac-
ters number (1024) was overflowed
and the data are being overwritten.
Returns to zero when it reaches the
maximum value (65535).

RX_ANY_ERRORS
Sum the last 5 error counters
(frame, parity, interruption, RX
FIFO overrun, RX queue overrun).

RX_REMAINING Number of characters in the RX
queue.

List of critic error codes that can be returned by the serial func-
tion block. Each block returns specific errors, which will be de-
scribed below:

221

5. CONFIGURATION

Data type Options Description
NO_ERROR No errors.

ILLEGAL_*

Return the parameters with invalid
values or out of range:
- SERIAL_PORT
- SERIAL_MODE
- BAUDRATE
- DATA_BITS
- PARITY
- STOP_BITS
- HANDSHAKE
- UART_RX_THRESHOLD
- TIMEOUT
- TX_BUFF_LENGTH
- HANDSHAKE_METHOD
- RX_BUFF_LENGTH

PORT_BUSY Indicates the serial port is being
used by another instance

HW_ERROR_UART Hardware error detected in the
UART.

HW_ERROR_REMOTE Hardware error at communicating
with the remote serial port.

CTS_TIMEOUT_ON

Time-out while waiting for the CTS
enabling, in the RS-232 RTS/CTS
handshake, in the SERIAL_TX
block.

CTS_TIMEOUT_OFF

Time-out while waiting for the CTS
disabling, in the RS-232 RTS/CTS
handshake, in the SERIAL_TX
block.

SERIAL_STATUS TX_TIMEOUT_ERROR
Time-out while waiting for the
transmission ending in the SE-
RIAL_TX.

RX_TIMEOUT_ERROR

Time-out while waiting for all char-
acters in the SERIAL_RX block
or the SERIAL_RX_EXTENDED
block.

FB_SET_CTRL_
NOT_ALLOWED

The SET_CTRL block can’t be
used in case the handshake is dif-
ferent from RS232_MANUAL.

FB_GET_CTRL_
NOT_ALLOWED

The GET_CTRL block can’t be
used in case the handshake is dif-
ferent from RS232_MANUAL.

FB_SERIAL_RX_
NOT_ALLOWED

The SERIAL_RX isn’t available for
the RX queue, extended mode.

FB_SERIAL_RX_ EX-
TENDED_NOT_ALLOWED

The SERIAL_RX_EXTENDED
isn’t available for the RX queue,
normal mode.

DCD_INTERRUPT_
NOT_ALLOWED

The interruption by the DCD signal
can’t be enabled in case the serial
port doesn’t have the respective pin.

222

5. CONFIGURATION

Data type Options Description

CTS_INTERRUPT_
NOT_ALLOWED

The interruption by the CTS sig-
nal can’t be enabled in case
the handshake is different from
RS232_MANUAL or in case the
serial port doesn’t have the respec-
tive pin.

DSR_INTERRUPT_
NOT_ALLOWED

The interruption by the DSR signal
can’t be enabled in case the serial
port doesn’t have the respective pin.
(Nexto CPUs don’t have this signal
in local ports)

NOT_CONFIGURED The function block can’t be used
before the serial port configuration.

INTERNAL_ERROR Indicates that an internal problem
has ocurred in the serial port.

STOPBITS_1 List all Stop Bits possibilities.
SERIAL_STOPBITS STOPBITS_2

STOPBITS_1_5

Table 166: Serial Function Blocks Data types

5.12.1.1. SERIAL_CFG

This function block is used to configure and initialize the desired serial port. After the block is called, every RX and TX
queue associated to the serial ports and the RX and TX FIFO are restarted.

Figure 135: Serial Configuration Block

Input parameters Type Description

REQUEST BOOL This variable, when true, enables the func-
tion block use.

PORT SERIAL_PORT Select the serial port, as described in the
SERIAL_PORT data type.

PARAMETERS SERIAL_PARAMETERS
This structure defines the serial port con-
figuration parameters, as described in the
SERIAL_PARAMETERS data type.

Table 167: SERIAL_CFG Input Parameters

223

5. CONFIGURATION

Output parameters Type Description

DONE BOOL This variable is true when the block is com-
pletely executed. It is false otherwise.

EXEC BOOL This variable is true while the block is be-
ing executed. It is false otherwise.

ERROR BOOL

This variable is true when the block con-
cludes the execution with an error. It is
false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:
- NO_ERROR
- ILLEGAL_SERIAL_PORT
- ILLEGAL_SERIAL_MODE
- ILLEGAL_BAUDRATE
- ILLEGAL_DATA_BITS
- ILLEGAL_PARITY
- ILLEGAL_STOP_BITS
- ILLEGAL_HANDSHAKE
- ILLEGAL_UART_RX_THRESHOLD
- PORT_BUSY
- HW_ERROR_UART
- HW_ERROR_REMOTE
- DCD_INTERRUPT_NOT_ALLOWED
- CTS_INTERRUPT_NOT_ALLOWED
- DSR_INTERRUPT_NOT_ALLOWED

Table 168: SERIAL_CFG Output Parameters

Utilization example in ST language, after the library Nexto Serial is inserted in the project:

PROGRAM UserPrg
VAR
Config: SERIAL_CFG;
Port: SERIAL_PORT := COM1;
Parameters: SERIAL_PARAMETERS := (BAUDRATE := BAUD9600,
DATABITS := DATABITS_8,
STOPBITS := STOPBITS_1,
PARITY := PARITY_NONE,
HANDSHAKE := RS232_RTS,
UART_RX_THRESHOLD := 8,
MODE :=NORMAL_MODE,
ENABLE_RX_ON_TX := FALSE,
ENABLE_DCD_EVENT := FALSE,
ENABLE_CTS_EVENT := FALSE);
Status: SERIAL_STATUS;
END_VAR
//INPUTS:

224

5. CONFIGURATION

Config.REQUEST := TRUE;
Config.PORT := Port;
Config.PARAMETERS := Parameters;
//FUNCTION:
Config();
//OUTPUTS:
Config.DONE;
Config.EXEC;
Config.ERROR;
Status := Config.STATUS; //If it is necessary to treat the error.

5.12.1.2. SERIAL_GET_CFG

The function block is used to capture the desired serial port configuration.

Figure 136: Block to Capture the Serial Configuration

Input parameters Type Description

REQUEST BOOL This variable, when true, enables the func-
tion block use.

PORT SERIAL_PORT Select the serial port, as described in the
SERIAL_PORT data type.

Table 169: SERIAL_GET_CFG Input Parameters

225

5. CONFIGURATION

Output parameters Type Description

DONE BOOL This variable is true when the block is com-
pletely executed. It is false otherwise.

EXEC BOOL This variable is true while the block is be-
ing executed. It is false otherwise.

ERROR BOOL

This variable is true when the block con-
cludes the execution with an error. It is
false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:
- NO_ERROR
- ILLEGAL_SERIAL_PORT
- PORT_BUSY
- HW_ERROR_UART
- HW_ERROR_REMOTE
- NOT_CONFIGURED

PARAMETERS SERIAL_PARAMETERS
This structure receives the serial port con-
figuration parameters, as described in the
SERIAL_PARAMETERS data type.

Table 170: SERIAL_GET_CFG Output Parameters

Utilization example in ST language, after the library is inserted in the project:

PROGRAM UserPrg
VAR
GetConfig: SERIAL_GET_CFG;
Port: SERIAL_PORT := COM1;
Parameters: SERIAL_PARAMETERS;
Status: SERIAL_STATUS;
END_VAR
//INPUTS:
GetConfig.REQUEST := TRUE;
GetConfig.PORT := Port;
//FUNCTION:
GetConfig();
//OUTPUTS:
GetConfig.DONE;
GetConfig.EXEC;
GetConfig.ERROR;
Status := GetConfig.STATUS; //If it is necessary to treat the error.
Parameters := GetConfig.PARAMETERS; //Receive the parameters of desired serial

port.

226

5. CONFIGURATION

5.12.1.3. SERIAL_GET_CTRL

This function block is used to read the CTS, DSR and DCD control signals, in case they are available in the serial port. A
false value will be returned when there are not control signals.

Figure 137: Block Used to Visualize the Control Signals

Input parameters Type Description

REQUEST BOOL This variable, when true, enables the func-
tion block use.

PORT SERIAL_PORT Select the serial port, as described in the
SERIAL_PORT data type.

Table 171: SERIAL_GET_CTRL Input Parameters

Output parameters Type Description

DONE BOOL This variable is true when the block is com-
pletely executed. It is false otherwise.

EXEC BOOL This variable is true while the block is be-
ing executed. It is false otherwise.

ERROR BOOL

This variable is true when the block con-
cludes the execution with an error. It is
false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:
- NO_ERROR
- ILLEGAL_SERIAL_PORT
- PORT_BUSY
- HW_ERROR_UART
- HW_ERROR_REMOTE
- FB_GET_CTRL_NOT_ALLOWED
- NOT_CONFIGURED

CTS_VALUE BOOL Value read in the CTS control signal.
DSR_VALUE BOOL Value read in the DSR control signal.
DCD_VALUE BOOL Value read in the DCD control signal.

Table 172: SERIAL_GET_CTRL Output Parameters

227

5. CONFIGURATION

Utilization example in ST language, after the library is inserted in the project and the serial port configured:

PROGRAM UserPrg
VAR
Get_Control: SERIAL_GET_CTRL;
Port: SERIAL_PORT := COM1;
Status: SERIAL_STATUS;
END_VAR
//INPUTS:
Get_Control.REQUEST := TRUE;
Get_Control.PORT := Port;
//FUNCTION:
Get_Control();
//OUTPUTS:
Get_Control.DONE;
Get_Control.EXEC;
Get_Control.ERROR;
Status := Get_Control.STATUS; //If it is necessary to treat the error.
Get_Control.CTS_VALUE;
Get_Control.DSR_VALUE;
Get_Control.DCD_VALUE;

5.12.1.4. SERIAL_GET_RX_QUEUE_STATUS

This block is used to read some status information regarding the RX queue, specially developed for the normal mode, but
it can also be used in the extended mode.

Figure 138: Block Used to Visualize the RX Queue Status

Input parameters Type Description

REQUEST BOOL This variable, when true, enables the func-
tion block use.

PORT SERIAL_PORT Select the serial port, as described in the
SERIAL_PORT data type.

Table 173: SERIAL_GET_RX_QUEUE_STATUS Input Parameters

228

5. CONFIGURATION

Output parameters Type Description

DONE BOOL This variable is true when the block is com-
pletely executed. It is false otherwise.

EXEC BOOL This variable is true while the block is be-
ing executed. It is false otherwise.

ERROR BOOL

This variable is true when the block con-
cludes the execution with an error. It is
false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:
- NO_ERROR
- ILLEGAL_SERIAL_PORT
- PORT_BUSY
- HW_ERROR_UART
- HW_ERROR_REMOTE
- NOT_CONFIGURED

RXQ_STATUS SERIAL_RX_
QUEUE_STATUS

Returns the RX queue status/er-
ror, as described in the SE-
RIAL_RX_QUEUE_STATUS data
type.

Table 174: SERIAL_GET_RX_QUEUE_STATUS Output Parameters

Utilization example in ST language, after the library is inserted in the project and the serial port configured:

PROGRAM UserPrg
VAR
Get_Status: SERIAL_GET_RX_QUEUE_STATUS;
Port: SERIAL_PORT := COM1;
Status: SERIAL_STATUS;
Status_RX: SERIAL_RX_QUEUE_STATUS;
END_VAR
//INPUTS:
Get_Status.REQUEST := TRUE;
Get_Status.PORT := Port;
//FUNCTION:
Get_Status();
//OUTPUTS:
Get_Status.DONE;
Get_Status.EXEC;
Get_Status.ERROR;
Status := Get_Status.STATUS; //If it is necessary to treat the error.
Status_RX := Get_Status.RXQ_STATUS; //If it is necessary to treat the error of

the RX.

229

5. CONFIGURATION

5.12.1.5. SERIAL_PURGE_RX_QUEUE

This function block is used to clean the serial port RX queue, local and remote. The UART RX FIFO is restarted too.

Figure 139: Block Used to Clean the RX Queue

Input parameters Type Description

REQUEST BOOL This variable, when true, enables the func-
tion block use.

PORT SERIAL_PORT Select the serial port, as described in the
SERIAL_PORT data type.

Table 175: SERIAL_PURGE_RX_QUEUE Input Parameters

Output parameters Type Description

DONE BOOL This variable is true when the block is com-
pletely executed. It’s false otherwise.

EXEC BOOL This variable is true while the block is be-
ing executed. It’s false otherwise.

ERROR BOOL

This variable is true when the block con-
cludes the execution with an error. It’s
false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:
- NO_ERROR
- ILLEGAL_SERIAL_PORT
- PORT_BUSY
- HW_ERROR_UART
- HW_ERROR_REMOTE
- NOT_CONFIGURED

Table 176: SERIAL_PURGE_RX_QUEUE Output Parameters

230

5. CONFIGURATION

Utilization example in ST language, after the library is inserted in the project and the serial port configured:

PROGRAM UserPrg
VAR
Purge_Queue: SERIAL_PURGE_RX_QUEUE;
Port: SERIAL_PORT := COM1;
Status: SERIAL_STATUS;
END_VAR
//INPUTS:
Purge_Queue.REQUEST := TRUE;
Purge_Queue.PORT := Port;
//FUNCTION:
Purge_Queue();
//OUTPUTS:
Purge_Queue.DONE;
Purge_Queue.EXEC;
Purge_Queue.ERROR;
Status := Purge_Queue.STATUS; //If it is necessary to treat the error.

5.12.1.6. SERIAL_RX

This function block is used to receive a serial port buffer, using the RX queue normal mode. In this mode, each character
in the RX queue occupy a single byte which has the received data, storing 5, 6, 7 or 8 bits, according to the serial interface
configuration.

Figure 140: Block Used to Read the Reception Buffer Values

Input parameters Type Description

REQUEST BOOL This variable, when true, enables the func-
tion block use.

PORT SERIAL_PORT Select the serial port, as described in the
SERIAL_PORT data type.

RX_BUFFER_
POINTER POINTER TO BYTE Pointer of a byte array to receive the buffer

values.

RX_BUFFER_
LENGTH UINT

Specify the expected character number in
the byte array. In case more than the ex-
pected bytes are available, only the ex-
pected quantity will be read from the byte
array, the rest will be leaved in the RX
queue (maximum size equal to 1024 char-
acters).

231

5. CONFIGURATION

Input parameters Type Description

RX_TIMEOUT UINT

Specify the time-out to receive the ex-
pected character quantity. In case it is
smaller than the necessary to receive the
characters, the RX_TIME-OUT_ERROR
output from the STATUS parameter will be
indicated. When the specified value, in ms,
is equal to zero, the function will return the
data within the buffer.

Table 177: SERIAL_RX Input Parameters

Output parameters Type Description

DONE BOOL This variable is true when the block is com-
pletely executed. It is false otherwise.

EXEC BOOL This variable is true while the block is be-
ing executed. It is false otherwise.

ERROR BOOL

This variable is true when the block con-
cludes the execution with an error. It is
false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:
- NO_ERROR
- ILLEGAL_SERIAL_PORT
- PORT_BUSY
- HW_ERROR_UART
- HW_ERROR_REMOTE
- ILLEGAL_RX_BUFF_LENGTH
- RX_TIMEOUT_ERROR
- FB_SERIAL_RX_NOT_ALLOWED
- NOT_CONFIGURED

RX_RECEIVED UINT

Returns the received characters num-
ber. This number can be within
zero and the configured value in
RX_BUFFER_LENGTH. In case it is
smaller, an error will be indicated by the
function block.

RX_REMAINING UINT
Returns the number of characters which
are still in the RX queue after the function
block execution.

Table 178: SERIAL_RX Output Parameters

232

5. CONFIGURATION

Utilization example in ST language, after the library is inserted in the project and the serial port configured:

PROGRAM UserPrg
VAR
Receive: SERIAL_RX;
Port: SERIAL_PORT := COM1;
Buffer_Pointer: ARRAY [0..1023] OF BYTE; //Max size.
Status: SERIAL_STATUS;
END_VAR
//INPUTS:
Receive.REQUEST := TRUE;
Receive.PORT := Port;
Receive.RX_BUFFER_POINTER := ADR(Buffer_Pointer);
Receive.RX_BUFFER_LENGTH := 1024; //Max size.
Receive.RX_TIMEOUT := 10000;
//FUNCTION:
Receive();
//OUTPUTS:
Receive.DONE;
Receive.EXEC;
Receive.ERROR;
Status := Receive.STATUS; //If it is necessary to treat the error.
Receive.RX_RECEIVED;
Receive.RX_REMAINING;

5.12.1.7. SERIAL_RX_EXTENDED

This function block is used to receive a serial port buffer using the RX queue extended mode as shown in the Serial
Interfaces Configuration section.

Figure 141: Block Used for Reception Buffer Reading

Input parameters Type Description

REQUEST BOOL This variable, when true, enables the func-
tion block use.

PORT SERIAL_PORT Select the serial port, as described in the
SERIAL_PORT data type.

RX_BUFFER_
POINTER

POINTER TO SE-
RIAL_RX_CHAR
_EXTENDED

Pointer of a SE-
RIAL_RX_CHAR_EXTENDED array to
receive the buffer values.

233

5. CONFIGURATION

Input parameters Type Description

RX_BUFFER_
LENGTH UINT

Specify the expected character number
in the SERIAL_RX_CHAR_EXTENDED
array. In case more than the expected bytes
are available, only the expected quantity
will be read from the byte array, the rest
will be leaved in the RX queue (maximum
size equal to 1024 characters).

RX_TIMEOUT UINT

Specify the time-out to receive the ex-
pected character quantity. In case it is
smaller than the necessary to receive the
characters, the RX_TIMEOUT_ERROR
output from the STATUS parameter will be
indicated. When the specified value, in ms,
is equal to zero, the function will return the
data within the buffer.

Table 179: SERIAL_RX_EXTENDED Input Parameters

Output parameters Type Description

DONE BOOL This variable is true when the block is com-
pletely executed. It is false otherwise.

EXEC BOOL This variable is true while the block is be-
ing executed. It is false otherwise.

ERROR BOOL

This variable is true when the block con-
cludes the execution with an error. It is
false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:
- NO_ERROR
- ILLEGAL_SERIAL_PORT
- PORT_BUSY
- HW_ERROR_UART
- HW_ERROR_REMOTE
- ILLEGAL_RX_BUFF_LENGTH
- RX_TIMEOUT_ERROR
- FB_SERIAL_RX_EXTENDED_NOT
_ALLOWED
- NOT_CONFIGURED

RX_RECEIVED UINT

Returns the received characters num-
ber. This number can be within
zero and the configured value in
RX_BUFFER_LENGTH. In case it is
smaller, an error will be indicated by the
function block.

RX_REMAINING UINT
Returns the number of characters which
are still in the RX queue after the function
block execution.

234

5. CONFIGURATION

Output parameters Type Description

RX_SILENCE UINT

Returns the silence time in the RX queue,
measured since the last received charac-
ter is finished. The time unit is 10 µs.
This output parameter type is important
to detect the silence time in protocols as
MODBUS RTU. It might not be the si-
lence time after the last received character
by this function block, as it is only true if
RX_REMAINING = 0.

Table 180: SERIAL_RX_EXTENDED Output Parameters

Utilization example in ST language, after the library is inserted in the project and the serial port configured:

PROGRAM UserPrg
VAR
Receive_Ex: SERIAL_RX_EXTENDED;
Port: SERIAL_PORT := COM1;
Buffer_Pointer: ARRAY [0..1023] OF SERIAL_RX_CHAR_EXTENDED;
Status: SERIAL_STATUS;
END_VAR
//INPUTS:
Receive_Ex.REQUEST := TRUE;
Receive_Ex.PORT := Port;
Receive_Ex.RX_BUFFER_POINTER := ADR(Buffer_Pointer);
Receive_Ex.RX_BUFFER_LENGTH := 1024; //Max size.
Receive_Ex.RX_TIMEOUT := 10000;
//FUNCTION:
Receive_Ex();
//OUTPUTS:
Receive_Ex.DONE;
Receive_Ex.EXEC;
Receive_Ex.ERROR;
Status := Receive_Ex.STATUS; //If it is necessary to treat the error.
Receive_Ex.RX_RECEIVED;
Receive_Ex.RX_REMAINING;
Receive_Ex.RX_SILENCE;

5.12.1.8. SERIAL_SET_CTRL

This block is used to write on the control signals (RTS and DTR), when they are available in the serial port. It can also set
a busy condition for the transmission, through BREAK parameter and it can only be used if the modem signal is configured
for RS232_MANUAL.

235

5. CONFIGURATION

Figure 142: Block for Control Signals Writing

Input parameters Type Description

REQUEST BOOL This variable, when true, enables the func-
tion block use.

PORT SERIAL_PORT Select the serial port, as described in the
SERIAL_PORT data type.

RTS_VALUE BOOL Value to be written on RTS signal.

RTS_EN BOOL Enables the RTS_VALUE parameter writ-
ing.

DTR_VALUE BOOL Value to be written on DTR signal.

DTR_EN BOOL Enables the DTR_VALUE parameter writ-
ing.

BREAK BOOL In case it’s true, enables logic 0 (busy) in
the transmission line.

Table 181: SERIAL_SET_CTRL Input Parameters

Output parameters Type Description

DONE BOOL This variable is true when the block is com-
pletely executed. It is false otherwise.

EXEC BOOL This variable is true while the block is be-
ing executed. It is false otherwise.

ERROR BOOL

This variable is true when the block con-
cludes the execution with an error. It is
false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:
- NO_ERROR
- ILLEGAL_SERIAL_PORT
- PORT_BUSY
- HW_ERROR_UART
- HW_ERROR_REMOTE
- FB_SET_CTRL_NOT_ALLOWED
- NOT_CONFIGURED

Table 182: SERIAL_SET_CTRL Output Parameters

236

5. CONFIGURATION

Utilization example in ST language, after the library is inserted in the project and the serial port configured:

PROGRAM UserPrg
VAR
Set_Control: SERIAL_SET_CTRL;
Port: SERIAL_PORT := COM1;
Status: SERIAL_STATUS;
END_VAR

//INPUTS:
Set_Control.REQUEST := TRUE;
Set_Control.PORT := Port;
Set_Control.RTS_VALUE := FALSE;
Set_Control.RTS_EN := FALSE;
Set_Control.DTR_VALUE := FALSE;
Set_Control.DTR_EN := FALSE;
Set_Control.BREAK := FALSE;
//FUNCTION:
Set_Control();
//OUTPUTS:
Set_Control.DONE;
Set_Control.EXEC;
Set_Control.ERROR;
Status := Set_Control.STATUS; //If it is necessary to treat the error.

5.12.1.9. SERIAL_TX

This function block is used to transmit a data buffer through serial port and it is only finalized after all bytes were transmitted
or after time-out (generating errors).

Figure 143: Block for Values Transmission by the Serial

Input parameters Type Description

REQUEST BOOL This variable, when true, enables the func-
tion block use.

PORT SERIAL_PORT Select the serial port, as described in the
SERIAL_PORT data type.

TX_BUFFER_
POINTER POINTER TO BYTE Pointer of a byte array to transmit the

buffer values.

TX_BUFFER_
LENGTH UINT

Specify the expected character number in
the byte array to be transmitted (TX queue
maximum size is 1024 characters).

237

5. CONFIGURATION

Input parameters Type Description

TX_TIMEOUT UINT

Specify the time-out to complete the trans-
mission including the handshake phase.
The specified value, in ms, must be posi-
tive and different than zero.

DELAY_BEFORE_
TX UINT

Specify the delay, in ms, between the func-
tion block call and the transmission begin-
ning. This variable can be used in commu-
nications with some modems.

CLEAR_RX_
BEFORE_TX BOOL

When true, the RX queue and the UART
FIFO RX are erased before the transmis-
sion beginning. This behavior is typical in
half-duplex master/slave protocols.

Table 183: SERIAL_TX Input Parameters

Output parameters Type Description

DONE BOOL This variable is true when the block is com-
pletely executed. It is false otherwise.

EXEC BOOL This variable is true while the block is be-
ing executed. It is false otherwise.

ERROR BOOL

This variable is true when the block con-
cludes the execution with an error. It is
false otherwise. It is connected to the vari-
able DONE, as its status is showed after the
block conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error
found during the block execution. The
possible states, already described in the
SERIAL_STATUS data type, are:
- NO_ERROR
- ILLEGAL_SERIAL_PORT
- PORT_BUSY
- HW_ERROR_UART
- HW_ERROR_REMOTE
- ILLEGAL_TX_BUFF_LENGTH
- ILLEGAL_TIMEOUT
- CTS_TIMEOUT_ON
- CTS_TIMEOUT_OFF
- TX_TIMEOUT_ERROR
- NOT_CONFIGURED

TX_TRANSMITTED UINT

Returns the transmitted byte number which
must be equal to TX_BUFFER_LENGTH,
but can be smaller in case some error has
occurred during transmission.

Table 184: SERIAL_TX Output Parameters

238

5. CONFIGURATION

Utilization example in ST language, after the library is inserted in the project and the serial port configured:

PROGRAM UserPrg
VAR
Transmit: SERIAL_TX;
Port: SERIAL_PORT := COM1;
Buffer_Pointer: ARRAY [0..9] OF BYTE := [0,1,2,3,4,5,6,7,8,9];
Status: SERIAL_STATUS;
END_VAR

//INPUTS:
Transmit.REQUEST := TRUE;
Transmit.PORT := Port;
Transmit.TX_BUFFER_POINTER := ADR(Buffer_Pointer);
Transmit.TX_BUFFER_LENGTH := 10;
Transmit.TX_TIMEOUT := 10000;
Transmit.DELAY_BEFORE_TX := 1000;
Transmit.CLEAR_RX_BEFORE_TX := TRUE;
//FUNCTION:
Transmit();
//OUTPUTS:
Transmit.DONE;
Transmit.EXEC;
Transmit.ERROR;
Status := Transmit.STATUS; //If it is necessary to treat the error.
Transmit.TX_TRANSMITTED;

5.12.2. Inputs and Outputs Update

By default, the local bus and CPU integrated I/O are updated on every execution cycle of MainTask. The Refresh functions
allows to update these I/O points asynchronously at any point of user application code.

When the function blocks to update the inputs and outputs are not used, the update is performed every cycle of the Main-
Task.

ATTENTION

At the startup of a CPU of this series, the inputs and outputs are only updated for reading
and prepared for writing when the MainTask is performed.
All other system tasks that run before MainTask will be with the inputs and outputs invalid.

5.12.2.1. REFRESH_INPUT

This function block is used to update the specified module inputs without the necessity to wait for the cycle to be completed.
It is important to notice that the filters configured in the MasterTool IEC XE and the update time of the module inputs will
have to be considered in effective time of the inputs update in the application developed by the user.

ATTENTION

The REFRESH_INPUT function must only be used in MainTask.
To update inputs in other tasks, the option Enable I/O update per task must be selected, for
further information about this option, consult Table 43.

239

5. CONFIGURATION

ATTENTION

REFRESH_INPUT function does not support inputs that have been mapped to symbolic
variables. For proper operation it is necessary that the input is mapped to a variable within
the memory direct representation of input variables (%I).

ATTENTION

The REFRESH_INPUT function updates only the direct variables %I that are declared in the
"Bus: I/O Mapping" tab of the module addressed in the respective rack/slot of the function.
In the case of communication modules/interfaces (MODBUS, Profibus, etc.), the update does
not include the direct variables of the device mappings.

Figure 144: Block for Input Updating

Input parameters Type Description
byRackNumber BYTE Rack number.

bySlotNumber BYTE Position number where the module is con-
nected.

Table 185: REFRESH_INPUT Input Parameters

Possible TYPE_RESULT:
OK_SUCCESS: Execution success.
ERROR_FAILED: This error is returned if the function is called for a module that has only outputs, or also if the option
Always update variables (located in the module’s configuration screen, tab I/O Mapping) is not checked.
ERROR_NOTSUPPORTED: The called routine is not supported by the product.
ERROR_PARAMETER: Invalid / unsupported parameter.
ERROR_MODULE_ABSENT: The module is absent in the bus.
ERROR_MODULE_NOTCONFIGURED: The module is not configured in the application.
ERROR_MODULE_NOTRUNNING: The module is not running (is not in operational state).
ERROR_MODULE_COMMFAIL: Failure in the communication with the module.
ERROR_MODULE_NOTFOUND: The module was not found in the application or is not supported.

Utilization example in ST language:

PROGRAM UserPrg
VAR
Info: TYPE_RESULT;
byRackNumber: BYTE;
bySlotNumber: BYTE;
END_VAR
//INPUTS:
byRackNumber := 0;
bySlotNumber := 10;
//FUNCTION:
Info := REFRESH_INPUT (byRackNumber, bySlotNumber); //Function call.
//Variable "Info" receives possible function errors.

240

5. CONFIGURATION

5.12.2.2. REFRESH_OUTPUT

This function block is used to update the specified module outputs. It is not necessary to wait until the cycle is finished. It
is important to notice that the update time of the module outputs will have to be considered in the effective time of the outputs
update in the application developed by the user.

ATTENTION

The REFRESH_OUTPUT function must only be used in MainTask.
To update outputs in other tasks, the option Enable I/O update per task must be selected, for
further information about this option, consult Table 43.

ATTENTION

REFRESH_OUTPUT function does not support inputs that have been mapped to symbolic
variables. For proper operation it is necessary that the input is mapped to a variable within
the memory direct representation of input variables (%Q).

ATTENTION

The REFRESH_OUTPUT function updates only the direct variables %Q that are declared
in the "Bus: I/O Mapping" tab of the module addressed in the respective rack/slot of the
function. In the case of communication modules/interfaces (MODBUS, Profibus, etc.), the
update does not include the direct variables of the device mappings.

Figure 145: Block for Output Updating

Input parameters Type Description
byRackNumber BYTE Rack number.

bySlotNumber BYTE Position number where the module is con-
nected.

Table 186: REFRESH_OUTPUT Input Parameters

Possible TYPE_RESULT:

OK_SUCCESS: Execution success.
ERROR_FAILED: This error is returned if the function is called for a module that has only inputs, or also if the option
Always update variables (located in the module’s configuration screen, tab I/O Mapping) is not checked.
ERROR_NOTSUPPORTED: The called routine is not supported by the product.
ERROR_PARAMETER: Invalid / unsupported parameter.
ERROR_MODULE_ABSENT: The module is absent in the bus.
ERROR_MODULE_NOTCONFIGURED: The module is not configured in the application.
ERROR_MODULE_NOTRUNNING: The module is not running (is not in operational state).
ERROR_MODULE_COMMFAIL: Failure in the communication with the module.
ERROR_MODULE_NOTFOUND: The module was not found in the application or is not supported.

Utilization example in ST language:

241

5. CONFIGURATION

PROGRAM UserPrg
VAR
Info: TYPE_RESULT;
byRackNumber: BYTE;
bySlotNumber: BYTE;
END_VAR
//INPUTS:
byRackNumber := 0;
bySlotNumber := 10;
//FUNCTION:
//Function call.
Info := REFRESH_OUTPUT (byRackNumber, bySlotNumber);
//Variable "Info" receives possible function errors.

5.12.3. PID Function Block

ATTENTION

The PID function block described up to previous revision L of this manual became obsolete
and was removed from this manual.
The PID, PID_INT and PID_REAL function blocks described up to revision C of
MP399609, also became obsolete and were also removed from newer versions of that man-
ual. Users that need description of these obsolete function blocks due to maintenance reasons
must use revision C of MP399609.
Function blocks PID, PID_INT and PID_REAL must not be used in new projects. These
function blocks were replaced by newer function blocks with additional resources, like auto-
tuning and support to cascade, override and feed-forward controls. These new function
blocks are described in MU214610, and are available after version 1.1.0.0 of library Nex-
toPID.

5.12.4. Retain Timer

The timer retain is a function block developed for applications as production line clocks, that need to store its value and
restart the counting from the same point in case of power supply failure. The values stored by the function block, are only zero
in case of a Reset Cold, Reset Origin or a new application Download (see the MasterTool IEC XE User Manual - MU299609),
when the counters keep working, even when the application is stopped (Stop Mode).

ATTENTION

It is important to stress that, for the correct functioning of the Timer Retain blocks, the
variables must be declared as Retain (VAR RETAIN). It’s also important to notice that in
simulation mode, the Timer Retain function blocks do not run properly due to need the
Nexto CPU for correct behavior.

The three blocks already available in the MasterTool IEC XE software NextoStandard library are described below (for the
library insertion proceeding, see MasterTool IEC XE Programming Manual – MP399609, section Library).

5.12.4.1. TOF_RET

The function block TOF_RET implements a time delay to disable an output. When the input IN has its state changed from
(TRUE) to (FALSE), or a falling edge, the specified time PT will be counted and the Q output will be driven to (FALSE) at the
end of it. When the input IN is in logic level 1 (TRUE), the output Q remain in the same state (TRUE), even if this happened
in the middle of the counting process. The PT time can be changed during the counting as the block assumes the new value if
the counting hasn’t finished. Figure 146 depicts the TOF_RET block and Figure 147 shows its graphic behavior.

242

5. CONFIGURATION

Figure 146: TOF_RET Block

Input parameters Type Description

IN BOOL This variable, when receives a falling edge,
enables the block counting.

PT TIME This variable specifies the block counting
limit (time delay).

Table 187: TOF_RET Input Parameters

Output parameters Type Description

Q BOOL
This variable executes a falling edge as the
PT variable (time delay) reaches its maxi-
mum value.

ET TIME This variable shows the current time delay.

Table 188: TOF_RET Output Parameters

Figure 147: TOF_RET Block Graphic Behavior

Utilization example in ST language:

PROGRAM UserPrg
VAR RETAIN
bStart : BOOL := TRUE;
TOF_RET : TOF_RET;
END_VAR

// When bStart=FALSE starts counting
TOF_RET(IN := bStart,
PT := T#20S);

243

5. CONFIGURATION

// Actions executed at the end of the counting
IF (TOF_RET.Q = FALSE) THEN
bStart := TRUE;
END_IF

5.12.4.2. TON_RET

The TON_RET implements a time delay to enable an output. When the input IN has its state changed from (FALSE) to
(TRUE), or a rising edge, the specified time PT will be counted and the Q output will be driven to (TRUE) at the end of it.
When the input IN is in logic level 0 (FALSE), the output Q remain in the same state (FALSE), even if it happens in the middle
of the counting process. The PT time can be changed during the counting as the block assumes the new value if the counting
hasn’t finished. Figure 148 depicts the TON_RET block and Figure 149 shows its graphic behavior.

Figure 148: TON_RET Function Block

Input parameters Type Description

IN BOOL This variable, when receives a rising edge,
enables the function block counting.

PT TIME This variable specifies the block counting
limit (time delay).

Table 189: TON_RET Input Parameters

Output parameters Type Description

Q BOOL
This variable executes a rising edge as the
PT variable (time delay) reaches its maxi-
mum value.

ET TIME This variable shows the current time delay.

Table 190: TON_RET Output Parameters

Figure 149: TON_RET Block Graphic Behavior

244

5. CONFIGURATION

Utilization example in ST language:

PROGRAM UserPrg
VAR RETAIN
bStart : BOOL;
TON_RET : TON_RET;
END_VAR

// Quando bStart=TRUE starts counting
TON_RET(IN := bStart,
PT := T#20S);

// Actions executed at the end of the counting
IF (TON_RET.Q = TRUE) THEN
bStart := FALSE;
END_IF

5.12.4.3. TP_RET

The TP_RET function block works as a trigger. The timer which starts when the IN input has its state changed from
(FALSE) to (TRUE), that is, a rising edge, it is increased until the PT time limit is reached. During the counting, the Q output
is (TRUE), otherwise it is (FALSE). The PT time can be changed during the counting as the block assumes the new value if
the counting has not finished. Figure 150 depicts the TP_RET and Figure 151 shows its graphic behavior.

Figure 150: TP_RET Function Block

Input parameters Type Description

IN BOOL This variable, when receives a rising edge,
enables the function block counting.

PT TIME This variable specifies the function block
counting limit (time delay).

Table 191: TP_RET Input Parameters

Output parameters Type Description

Q BOOL This variable is true during the counting,
otherwise is false.

ET TIME This variable shows the current time delay.

Table 192: TP_RET Output Parameters

245

5. CONFIGURATION

Figure 151: TP_RET Block Graphic Behavior

Utilization example in ST language:

PROGRAM UserPrg
VAR RETAIN
bStart : BOOL;
TP_RET : TP_RET;
END_VAR

// Configure TP_RET
TP_RET(IN := bStart,
PT := T#20S);

bStart := FALSE;

// Actions executed during the counting
IF (TP_RET.Q = TRUE) THEN
// Executes while the counter is activated
ELSE
// Executes when the counter is deactivated
END_IF

5.12.5. User Log

Feature that allows the user to create own records and write to log files on the memory card present in the CPU. The files
are generated in a specific directory of the memory card in the CSV format, allowing viewing in text editors and spreadsheets.
The separator was the semicolon character. For more information about the use of the memory card, see section Memory
Card.

There are two functions available, one for log information and another to remove all records. The following is a description
of the types of data used by the functions:

246

5. CONFIGURATION

Data type Option Description
USER_LOG_EVENT_ERROR

USER_LOG_EVENT_TYPES USER_LOG_EVENT_DEBUG
USER_LOG_EVENT_INFO

USER_LOG_EVENT_WARN

The user is free to use the best
indication according to log
message severity.

USER_LOG_MESSAGE Log message with 150-character
max.

USER_LOG_OK The operation was performed suc-
cessfully.

USER_LOG_FAILED

The operation was not performed
successfully. The reason for the
failure can be checked in the system
logs – see section System Log.

USER_LOG_BUFFER_FULL Messages are being added beyond
the processing capacity.

USER_LOG_ERROR_CODES USER_LOG_NO_MEMORY At the time, there were no resources
to perform the operation.

USER_LOG_FILE_SYSTEM_ERROR

There was an error while access-
ing the memory card or there is no
available space. Error information
can be verified in the logs of system
– see section System Log.

USER_LOG_NO_MEMORY_CARD There is a memory card present in
the CPU.

USER_LOG_MEMORY_CARD_FULL There is no free space available on
the memory card.

USER_LOG_PROCESSING
The resource is busy executing the
last operation, for example, deleting
all log files.

Table 193: Data Type for User Log

The following are described the two functions available in the LibLogs library on MasterTool IEC XE. To perform the
procedure of inserting a library, see the MasterTool IEC Programming Manual – MP399609, section Libraries.

ATTENTION

The User Logs are available only until version 1.3.0.20 of Nexto Series CPUs. In the same
way to use this feature is necessary version 1.40 or higher of MasterTool IEC XE.

5.12.5.1. UserLogAdd

This function is used to add a new user log message, adding in a new line to the log file on the memory card. The message
must have a maximum length of 150 characters, and the event type of the message. Application variables can be registered
using conversion to string and concatenation with the main message. The date and time information in UTC (timestamp)
is automatically added in the message with a resolution of milliseconds where the event was registered. The date and time
information is also used in the formation of the names of the log files.

The UserLogAdd function can be used to enter multiple messages within a single task and also in different application
tasks. However independent of each execution of the function in the application, being on the same task or on different tasks,
all use the same feature to record the desired messages. For this reason it is recommended that the addition of messages using
the UserLogAdd function in the application be held every 50 ms to prevent the return of buffer overload. If the function is
performed in periods shorter than the indicated, but respect the average time of 50 ms between each message addition at the
end of the interval for the task, also prevents the return of buffer overload. So that the logs are added correctly, it is important
to respect time limits when the card is inserted and at startup of the CPU, mentioned in section Memory Card. After the
operation the function returns the options for the given type USER_LOG_ERROR_CODES as Table 193. When the function
return is not USER_LOG_OK, the message was not registered and the function UserLogAdd should be re-executed with the

247

5. CONFIGURATION

desired message. In case of return of consecutive writing failures, the memory card can be damaged. The replacement by a
healthy memory card ensures that the latest logged messages will be recorded on the card that is not damaged, since the CPU
is not restarted.

The figure below represents the function UserLogAdd and table below the input parameters:

Figure 152: UserLogAdd Function

Input Parameters Type Description

byEventType BYTE
This variable specifies the event type of
the log being added as options for the
USER_LOG_EVENT_TYPES data type.

pszMessage USER_LOG_MESSAGE

This variable should contain the set of
characters that compose the message to be
added to the log file. The message must
contain a maximum of 150 characters.

Table 194: UserLogAdd Input Parameters

The log files are generated and organized on the memory card in a specific directory path depending on the CPU serial
number and the firmware version installed. For example, for a CPU with serial number 445627 and firmware version 1.4.0.4,
the location where the log files should be written to the memory card is MemoryCard/UserLog/445627/1.4.0.4/.

The names of the log files are formed by the date and time (timestamp) of the first message. Except when there’s a problem
to use this name, for example, another existing file with the same name, in this situation it is used the instant date and time. The
file name follows the following pattern: year/month/day/hour/minute/second/millisecond.CSV. In case of file access problem
due to defective sector not enabling to continue writing, will be added to the name of this file the extension “corrupted” and a
new file will be created. The amount of logs per file is not fixed, varying depending on the size of messages. The amount of
created files is limited to 1024 with maximum size of 1 MB each, so the memory card requires 1 GB of free space. When it
reaches the limit of 1024 files created on the memory card, during CPU operation, the oldest files are removed so that files with
latest logs are preserved, even in cases of partial manual removal of the files in the directory where the files are being written.

The viewing of the log files can be performed through worksheets or conventional text editors. The concatenated informa-
tion, for improved visualization, may use semicolons between the strings of the message to separate them. One must be careful
in formatting cells with floating point values.

Utilization example in ST language:

PROGRAM UserPrg
VAR

eLogError : USER_LOG_ERROR_CODES;
sMessage :USER_LOG_MESSAGE;

END_VAR

IF (m_rTemperature > MAX_TEMPERATURE_ACCEPT) THEN
sMessage := 'Temperature higher than expected: ';
sMessage := concat(sMessage, REAL_TO_STRING(m_rTemperature));
sMessage := concat(sMessage, 'º');
eLogError := UserLogAdd(USER_LOG_EVENT_WARN, sMessage);

//eLogError variable gets possible function errors.
END_IF

248

5. CONFIGURATION

Log file content example: (UserLog-201308271506245738.csv)

Model; NX3008
Serial number; 445627
Firmware version; 1.4.0.4

27/08/2013 15:06:24.5738; WARN; Overtemperature: 25º
27/08/2013 16:37:45.3476; WARN; Overtemperature: 25º
28/08/2013 09:10:55.4201; WARN; Overtemperature: 26º

5.12.5.2. UserLogDeleteAll

The UserLogDeleteAll function performs the deletion of log files present in the directory created specifically for the CPU
in which is inserted the memory card, i.e. are only deleted the logs contained in the directory named with the CPU firmware
version that exists within the directory with the CPU serial version. The log files deleted are only files that exist at the time of
memory card mounting and the generated by the UserLogAdd function. Logs of other CPUs and files added manually by the
user during execution are not deleted. The figure below represents the function UserLogDeleteAll.

Figure 153: UserLogDeleteAll Function

Utilization example in ST language:

PROGRAM UserPrg
VAR
eLogError : USER_LOG_ERROR_CODES;
END_VAR

IF (m_DeleteLogs = TRUE) THEN
eLogError := UserLogDeleteAll();
m_DeleteLogs := FALSE;
//eLogError variable gets possibles function errors.
END_IF

ATTENTION

The UserLogDeleteAll function’s return does not indicate operation completed, just confir-
mation of execution that can take a large amount of time if there are hundreds of log files in
the directory. The function to record the new user log is unavailable right now, returning the
USER_LOG_PROCESSING option for any operation. The result of the operation can also
be checked in the system log.

249

5. CONFIGURATION

5.12.6. ClearRtuDiagnostic

This function isn’t supported by this CPUs’ Series.

5.12.7. ClearEventQueue

The ClearEventQueue function available by the LibRtuStandard library can be used when it’s needed to clear the CPU’s
event queue and of all instanced drivers.

According to table below the function’s execution result is going to be showed in its output variable.

ATTENTION

The ClearEventQueue function does not apply to clearing the Event Log (SOE) service
queue, described in section SOE Configuration. The function only clears the event queues
of the drivers configured under the communication interfaces (COMs and NETs) of the CPU.

Name ENUM (UDINT) Result Description
OK_SUCCESS 0 Success
ERROR_FAILED 1 General error

ERROR_NOTSUPPORTED 2 The called routine is not supported
by the product

ERROR_PARAMETER 3 Invalid/unsupported parameter
ERROR_MODULE_ABSENT 16 The module is absent in the bus

ERROR_MODULE_NOTCONFIGURED 17 The module is not configured in the
application

ERROR_MODULE_NOTRUNNING 18 The module is not running (isn’t in
operational state)

ERROR_MODULE_COMMFAIL 19 Failure in the communication with
the module

ERROR_MODULE_NOTFOUND 20 The module wasn’t found in appli-
cation or is not supported

Table 195: ClearEventQueue Function Results

Using example in ST language, where the function call is going to clear the events queue, and consequently, reset the
communication drivers events queue usage diagnostics T_DIAG_DNP_SERVER_1.tClient_*.tQueueDiags.wUsage:

PROGRAM UserPrg
VAR

ClearEventQueueStatus : TYPE_RESULT;
END_VAR

ClearEventQueueStatus := ClearEventQueue();

250

5. CONFIGURATION

5.13. SNMP
5.13.1. Introduction

SNMP (Simple Network Management Protocol) is a protocol widely used by network administrators to provide important
information and diagnostic equipment present in a given Ethernet network.

This protocol uses the concept of agent and manager, in which the manager sends read requests or write certain objects
to the agent. Through a MIB (Management Information Base) the manager is aware of existing objects in the agent, and thus
can make requests of these objects, respecting the read permissions or writing the same. MIB is a collection of information
organized hierarchically with each object of this tree is called OID (Object Identifier).

For all equipment with SNMP, it is mandatory to support MIB-II. In this MIB are described key information for managing
Ethernet networks.

5.13.2. SNMP nas UCPs Nexto

The CPUs of the Nexto Series behave as agents in SNMP communication. The information made available through SNMP
cannot be manipulated or accessed through the user application, requiring an external SNMP manager to perform access. The
table below contains the objects available in the Nexto CPUs. This feature is available after firmware version 1.4.0.33 of
the Nexto Series CPUs supports the protocols SNMPv1, SNMPv2c and SNMPv3, and support the MIB-II, where objects are
described in RFC-1213.

OID Name Description

1.3.6.1.2.1.1 System Contains name, description, location and other equip-
ment identification information.

1.3.6.1.2.1.2 Interfaces

Contains information of the machine’s network inter-
faces. The ifTable (OID 1.3.6.1.2.1.2.2) has the indexes 6
and 7 available, which can be viewed by the network in-
terfaces statistics NET 1 and NET 2, respectively, of the
Nexto Series CPUs.

1.3.6.1.2.1.3 At Contains information of the last required connections to
the agent.

1.3.6.1.2.1.4 IP Contains statistical connections using IP protocol.
1.3.6.1.2.1.5 ICMP Contains statistical connections using ICMP protocol.
1.3.6.1.2.1.6 TCP Contains statistical connections using TCP protocol.
1.3.6.1.2.1.7 UDP Contains statistical connections using UDP protocol.

1.3.6.1.2.1.11 SNMP Contains statistical connections using SNMP protocol.

Table 196: MIB II Objects – Nexto Series SNMP Agent

By default, the SNMP agent is activated, i.e., the service is initialized at the time the CPU is started. The access to the
agent information is via the Ethernet interfaces of the Nexto Series CPUs on UDP port 161. So when the service is active,
the agent information can be accessed through any one of the Ethernet interfaces available. It is not possible to provide agent
information through Ethernet interfaces NX5000 modules. In figure below an example is shown SNMP manager, in which
some values are read.

251

5. CONFIGURATION

Figure 154: SNMP Manager Example

For SNMPv3, in which there is user authentication and password to requests via SNMP protocol, is provided a standard
user described in the User and SNMP Communities section.

If you want to disable the service, change the SNMPv3 user or communities for SNMPv1 / v2c predefined, you must access
the System Web Page of the CPU. For details, see the Configuration SNMP section.

5.13.3. Private MIB

The Private MIB has been discontinued since June 2019.

5.13.4. Configuration SNMP

SNMP settings can be changed through the System Web Page, in the CPU Management tab in the SNMP menu. After
successful login, the current state of the service (enabled or disabled) as well as the user information SNMPv3 and communities
for SNMPv1 / v2c can be viewed.

The user can enable or disable the service via a checkbox at the top of the screen.
It’s also possible to change the SNMPv3 information by clicking the Change button just below the user information. Will

open a form where you must complete the old username and password, and the new username and password. The other user
information SNMPv3 cannot be changed.

To change the data of SNMPv1/v2c communities, the process is similar, just click the Change button below the information
community. A new screen will open where the new data to the rocommunity and rwcommunity fields will be inserted. If you
fail any of the fields blank, their community will be disabled. That way, if the user leaves the two fields blank, access to the
SNMP agent will only be possible through SNMPv3.

If the user wants to return to the default settings, it must be manually reconfigure the same according to the User and
SNMP Communities section. Therefore, all current SNMP configurations will be kept in the firmware update process. These
options are shown in figure below.

252

5. CONFIGURATION

Figure 155: SNMP Login screen

After successful login, the current state of the service (enabled or disabled) as well as the user information SNMPv3 and
communities for SNMPv1 / v2c can be viewed.

Figure 156: SNMP status configuration screen

ATTENTION

The Username and Password to access the agent via SNMP protocol are the same used to
login on the SNMP Settings web page.

253

5. CONFIGURATION

5.13.5. User and SNMP Communities

To access the SNMPv1 / v2c of the Nexto Series CPUs, there are two communities, according to table below.

Communities Default String Type
rocommunity Public Only read
rwcommunity Private Read and Write

Table 197: SNMPv1/v2c Default Communities info

It’s possible to access SNMPv3 using default user, see table below:

Username Type Authentication
Protocol Password Privacy Pro-

tocol
Privacy Pass-
word

administrator rwuser MD5 administrator - -

Table 198: SNMPv3 Default User info

For all settings of communities, user and password, some limits must be respected, as described on the following table:

Configurable
item

Minimum
Size Max Size Allowed Characters

rocommunity - 30 [0-9][a-z][A-Z]@$*_.
rwcommunity - 30 [0-9][a-z][A-Z]@$*_.
V3 User - 30 [0-9][a-z][A-Z]@$*_.
V3 Password 8 30 [0-9][a-z][A-Z]@$*_.

Table 199: SNMP settings limits

254

6. MAINTENANCE

6. Maintenance
One feature of the Nexto Series is the abnormality diagnostic generation, whether they are failures, errors or operation

modes, allowing the operator to identify and solve problems which occurs in the system easily.
The Nexto CPUs permit many ways to visualize the diagnostics generated by the system, which are:

One Touch Diag
Diagnostics via LED
Diagnostics via System Web Page
Diagnostics via Variables
Diagnostics via Function Blocks

The first one is an innovating feature of Nexto Series, which allows a fast access to the application abnormal conditions.
The second is purely visual, generated through two LEDs placed on the panel (DG and WD) and also through the LEDs placed
in the RJ45 connector (exclusive for Ethernet connection). The next feature is the graphic visualization in a WEB page of the
rack and the respective configured modules, with the individual access allowed of the operation state and the active diagnostics.
The diagnostics are also stored directly in the CPU variables, either direct representation (%Q) or attributed (AT variable), and
can be used by the user application, for instance, being presented in a supervisory system. The last ones present specific
conditions of the system functioning.

These diagnostics function is to point possible system installation or configuration problems, and communication network
problems or deficiency.

6.1. Module Diagnostics
6.1.1. One Touch Diag

The One Touch Diag (OTD), or single touch diagnostics, is an exclusive feature the Nexto Series brings for the pro-
grammable controllers. With this new concept the user can verify the diagnostics of any module connected to the system
straight on the CPU graphic display with a single touch on the module Diagnostic Switch. This is a powerful diagnostic tool
which can be used offline (with no need of supervisory or programming software) making easier to find and solve quickly
possible problems.

The diagnostics key is placed on the CPU upper part, in an easy access place and, besides giving active diagnostics, allows
the access to the navigation menu, described in the Configuration – CPU’s Informative and Configuration Menu section.

The figure below shows the CPU switch placement:

Figure 157: Diagnostic Switch

With only a short touch, the CPU starts to show the bus diagnostics (when active, otherwise shows the “NO DIAG”
message). Initially, the Tag is visualized (configured in the module properties in the MasterTool IEC XE software, following

255

6. MAINTENANCE

the IEC 61131-3 standard), in other words, the name attributed to the CPU, and after that all diagnostics are shown, through
CPU display messages. This process is executed twice on the display. Everything occurs automatically as the user only has to
execute the first short touch and the CPU is responsible to show the diagnostics. The diagnostics of other modules present on
the bus are also shown on the CPU graphic display by a short press in the diagnostic module button, in the same presentation
model of diagnostics.

The figure below shows the process starting with the short touch, with the conditions and the CPU times presented in
smaller rectangles. It is important to stress the diagnostics may have more than one screen, in other words, the specified time
in the block diagram below is valid for one of them.

Figure 158: CPU Diagnostics Visualization

Before all visualization process be concluded, it is just to give a short touch on the diagnostic switch, at any moment, or
press the diagnostic switch from any I/O module connected to the bus. Also, it is important to observe that the One Touch Diag
could be available when the module could be in Operational Mode.

In case a long touch is executed, the CPU goes to navigation menu, which is described in the Configuration – CPU’s
Informative and Configuration Menu section.

256

6. MAINTENANCE

The table below shows the difference between the short touch time, the long touch time and stuck button.

Touch type Minimum time Maximum time Indication condition
No touch - 59.99 ms -
Short touch 60 ms 0.99 s Release
Long touch 1 s 20 s More than 1 s till 20 s

Locked Switch 20.01 s (∞) Diagnostics indication, see
on Table 205

Table 200: One Touch Time

The messages presented on the Nexto CPU graphic display, correspondent to the diagnostics, are described in the Diag-
nostics via Variables section, on Table 205.

If any situation of stuck button occur in one of the I/O modules, the diagnostic button of this module will stop of indicate
the diagnostics on CPU graphic display when is pressed. In this case, the CPU will indicate that there is a module with active
diagnostics. To remove this diagnostic from the CPU, a hot swap must be done in the module where the diagnostic is active.

For further details on the procedure for viewing the diagnostics of the CPU or other bus modules, see description in the
User Manual Nexto Series – MU214600.

6.1.2. Diagnostics via LED

This product have a LED for diagnostic indication (LED DG) and a LED for watchdog event indication (LED WD). The
Tables 201 and 202 show the meaning of each state and its respective descriptions.

6.1.2.1. DG (Diagnostic)

Green Red Description Causes Priority

Off Off Not used No power supply.
Hardware problem -

On Off
All applications
in execution mode
(Run)

- 3 (Low)

Off On
All applications
in stopping mode
(Stop)

- 3 (Low)

Blinking 2x Off Bus modules with di-
agnostic

At least, a bus mod-
ule, including the
CPU, is with an
active diagnostic

1

Blinking 3x Off Data forcing

Some memory area is
being forced by the
user through Master-
Tool IEC XE

2

Off Blinking 4x
Configuration or
hardware error in the
bus

The bus is damaged
or is not properly
configured

0 (High)

Table 201: Description of the Diagnostic LEDs States

257

6. MAINTENANCE

6.1.2.2. WD (Watchdog)

Red LED Description Causes Priority

Off No watchdog indica-
tion Normal operation 3 (Low)

Blinking 1x Software watchdog User application
watchdog 2

On Hardware watchdog
Damaged module
and/or corrupted
operational system

1 (High)

Table 202: Description of the Watchdog LED States

Notes:
Software Watchdog: In order to remove the watchdog indication, make an application reset or turn off and turn on the

CPU again. This watchdog occurs when the user application execution time is higher than the configured watchdog time.
The diagnostics can be checked in the Exception.wExceptionCode variable, see on Table 209.
Hardware Watchdog: In order to reset any watchdog indication, as in the WD LED or in the Reset.bWatchdogReset

operand, the module must be disconnected from the power supply.
In order to verify the application conditions in the module restart, see configurations on Table 43.

6.1.2.3. RJ45 Connector LEDs

Both LEDs placed in the RJ45 connectors, help the user in the installed physical network problem detection, indicating the
network Link speed and the existence of interface communication traffic. The LEDs meaning is presented on table below.

Yellow Green Meaning
◦ ◦ Network LINK absent
• ◦ 10 Mbytes/s network LINK
• • 100 Mbytes/s network LINK

X -

Ethernet network transmission or reception occurrence,
for or to this IP address. Blinks on Nexto CPU demand
and not every transmission or reception, in other words, it
may blink on a lower frequency than the real transmission
or reception frequency

Table 203: Ethernet LEDs Meaning

6.1.3. Diagnostics via System Web Page

Besides the previously presented features, the Nexto Series brings to the user an innovating access tool to the system
diagnostics and operation states, through a System Web Page.

The utilization, besides being dynamic, is very intuitive and facilitates the user operations. The use of a supervisory system
can be replaced when it is restricted to system status verification.

To access the desired CPU’s System Web Page, it is just to use a desktop browser and type, on the address bar, the CPU IP
address (Ex.: http://192.168.1.1). First, the CPU information is presented, according to Figure 159:

258

http://192.168.1.1

6. MAINTENANCE

Figure 159: Initial Screen

There is also the Bus Information tab, which can be visualized through the Rack or the present module list (option on the
screen right side). While there is no application on the CPU, this page will display a configuration with the largest available
rack and a standard power supply, connected with the CPU. When the Rack visualization is used, the modules that have
diagnostics blink and assume the red color, as shown on Figure 160. Otherwise a list with the system connected modules, Tags
and active diagnostics number is presented:

Figure 160: System Information

When the module with diagnostics is pressed, the module active(s) diagnostic(s) are shown, as illustrated on Figure 161:

ATTENTION

When a CPU is restarted and the application goes to exception in the system’s startup, the
diagnostics will not be valid. It is necessary to fix the problem which generates the applica-
tion’s exception so that the diagnostics are updated.

259

6. MAINTENANCE

Figure 161: System Diagnostics

In case the Status tab is selected, the state of all detailed diagnostics is shown on the screen, as illustrated on Figure 162:

Figure 162: System Status

The user can choose to visualize two language options: Portuguese and English. Simply change in the upper right part of
the screen to the desired language.

6.1.4. Diagnostics via Variables

The Nexto Series CPUs have many variables for diagnostic indication. There are data structures with the diagnostics of all
modules declared on the bus, mapped on the variables of direct representation %Q, and defined symbolically through the AT
directive, in the GVL System_Diagnostics created automatically by the MasterTool IEC XE.

The table below summarizes the diagnostic byte/words division:

260

6. MAINTENANCE

Byte Description
0 to 3 CPU summarized diagnostics.

4 to 693 CPU detailed diagnostics.

Table 204: CPU Diagnostics Division

6.1.4.1. Summarized Diagnostics

The table below shows the meaning of each CPU summarized diagnostic bit:

Diagnostics Message DG_Module.tSummarized.* Description
NO DIAG - There is no active diagnostic.

CONFIG.
MISMATCH

bConfigMismatch
TRUE – There is a configuration problem in the
bus, as the module inserted in the wrong posi-
tion.
FALSE – The bus is configured correctly.

ABSENT
MODULES

bAbsentModules TRUE – One or more declared modules are ab-
sent.
FALSE – All declared modules were detected
in the bus.

SWAPPED
MODULES

bSwappedModules TRUE – There are changed modules in the bus.

FALSE – There are no changed modules in the
bus.

NON-DECLARED
MODULES

bNonDeclaredModules TRUE – One or more modules in the bus were
not declared in the configuration.
FALSE – All modules were declared.

MODULES W/
DIAGNOSTICS

bModulesWithDiagnostic TRUE – One or more modules in the bus are
with active diagnostic.
FALSE – There is no active diagnostic in the
modules in the bus.

MODULES W/
FATAL ERROR

bModuleFatalError TRUE – One or more modules in the bus are in
fatal error.
FALSE – All modules are working properly.

MODULES W/
PARAM. ERROR

bModuleParameterError TRUE – One or more modules in the bus have
parameterization error.
FALSE – All modules are parameterized.

BUS
ERROR

bWHSBBusError TRUE – Master indication there is failure in the
WHSB bus.
FALSE – The WHSB bus is working properly.

HARDWARE
FAILURE

bHardwareFailure TRUE – CPU hardware failure.

FALSE – The hardware is working properly.
SOFTWARE
EXCEPTION

bSoftwareException TRUE – One or more exceptions generated by
the software.
FALSE – No exceptions generated in the soft-
ware.

HARDWARE
WATCHDOG

bMemoryCardError TRUE - The CPU restarted by hardware watch-
dog at least once.
FALSE - The CPU is operating normally.

ERROR IN
MEMORY CARD

bCOM1ConfigError TRUE – The memory card is inserted in the
CPU, but is not working properly.
FALSE – The memory card is working prop-
erly.

COM1 CONF.
ERROR

bCOM2ConfigError TRUE – Some error occurred during, or after,
the COM 1 serial interface configuration.
FALSE – The COM 1 serial interface configu-
ration is correct.

COM2 CONF.
ERROR

bNET1ConfigError TRUE – Some error occurred during, or after,
the COM 2 serial interface configuration.

261

6. MAINTENANCE

Diagnostics Message DG_Module.tSummarized.* Description
FALSE – The COM 2 serial interface configu-
ration is correct.

NET1 CONF.
ERROR

bNET2ConfigError TRUE – Some error occurred during, or after,
the NET 1 Ethernet interface configuration.
FALSE – The NET 1 Ethernet interface config-
uration is correct.

NET2 CONF.
ERROR

bInvalidDateTime TRUE – Some error occurred during, or after,
the NET 2 Ethernet interface configuration.
FALSE – The NET 2 Ethernet interface config-
uration is correct.

INVALID
DATE/TIME

bRuntimeReset TRUE – The date or hour are invalid.

FALSE – The date and hour are correct.

RUNTIME RESET bRetentivityLost
TRUE – The RTS (Runtime System) has been
restarted at least once. This diagnostics is only
cleared in the system restart.
FALSE – The RTS (Runtime System) is operat-
ing normally.

OTD SWITCH
ERROR

bOTDSwitchError
TRUE – True in case the OTD key has been
locked for more than 20 s at least once while
the CPU was energized. This diagnostic is only
cleared in the system restart.
FALSE – The key is not currently locked or was
locked while the CPU was energized.

ABSENT
RACK

bAbsentRacks TRUE – One or more declared racks are absent.

FALSE – There are no absent racks.
DUPLICATED

RACK
bDuplicatedRacks TRUE – There are racks with a duplicated iden-

tification number.
FALSE – There are no racks with a duplicated
identification number.

INVALID
RACK

bInvalidRacks TRUE – There are racks with an invalid identi-
fication number.
FALSE – There are no racks with an invalid
identification number.

NON DECLARED
RACK

bNonDeclaredRacks TRUE – There are racks with a non-declared
identification number.
FALSE – There are no racks with a non-
declared identification number.

DUPLICATED
SLOT

bDuplicatedSlots TRUE – There are some duplicated slot address.

FALSE – There are no duplicated slot address.

Table 205: CPU Summarized Diagnostics

Notes:
Configuration Mismatch: The incompatible configuration diagnostic is generated if one or more modules of the rack

does not correspond to the declared one, so, in the absence or different modules conditions. The modules inserted in the bus
that were not declared in the project are not considered.

Swapped Modules: If only two modules are changed between themselves in the bus, then changed diagnostic can be
identified. Otherwise, the problem is treated as “Incompatible Configuration”.

Modules with Fatal Error: In case the modules with fatal error diagnostic is true, it must be verified which is the
problematic module in the bus and send it to Altus Technical Assistance, as it has hardware failure.

Module with Parameterization Error: In case the parameterization error diagnostic is true, it must be verified the module
in the bus are correctly configured and if the firmware and MasterTool IEC XE software version are correct. If the problem
occurred when inserting a module on the bus, make sure the module supports hot swapping.

Bus Error: Considered a fatal error, interrupting the access to the modules in the bus. In case the bus error diagnostic is
true, an abnormal situation due to the hot exchange configuration selected might have occurred or a hardware problem in the
bus communication lines, then, contact Altus Technical Assistance.

Hardware Failure: In case the Hardware Failure diagnostic is true, the CPU must be sent to Altus Technical Assistance,
as it has problems in the RTC, auxiliary processor, or other hardware resources.

262

6. MAINTENANCE

Software Exception: In case the software exception diagnostic is true, the user must verify his application to guarantee
it is not accessing the memory wrongly. If the problem remains, the Altus Technical Support sector must be consulted. The
software exception codes are described next in the CPU detailed diagnostics table.

Diagnostic Message: The diagnostics messages can be visualized by the CPU graphic display using the OTD key or using
the CPU’s System Web Page.

6.1.4.2. Detailed Diagnostics

The tables below contain Nexto Series’ CPUs detailed diagnostics. It is important to have in mind the observations below
before consulting them:

Visualization of the Diagnostics Structures: The Diagnostics Structures added to the Project can be seen at the item
“Library Manager” of MasterTool tree view. There, it is possible to see all data types defined in the structure.
Counters: All CPU diagnostics counters return to zero when their limit value is exceeded.
DG_Module, where the word Module must be replaced by the product being used.

DG_Module.tDetailed.Target.* Size Description
dwCPUModel DWORD CPU model.
abyCPUVersion BYTE ARRAY(4) Firmware version.
abyBootloaderVersion BYTE ARRAY(4) Bootloader version.
abyAuxprocVersion BYTE ARRAY(4) Auxiliary processor version.

Table 206: Target Detailed Diagnostics Group Description

DG_Module.tDetailed.Hardware.* Size Description

bAuxprocFailure BIT Failure in the communication between the auxiliary
processor and the principal processor.

bRTCFailure BIT The main processor is not enabled to communicate with
the RTC (CPU’s clock).

bThermometerFailure BIT Failure in the communication between the thermometer
and the main processor.

bLCDFailure BIT Failure in the communication between the LCD screen
and the main processor.

Table 207: Hardware Detailed Diagnostics Group Description

DG_Module.tDetailed.Exception.* Size Description
wExceptionCode WORD Exception code generated by the RTS. See Table 209.
byProcessorLoad BYTE Level, in percentage (%), of charge in the processor.

Table 208: Exception Detailed Diagnostics Group Description

Note:
Exception Code: the code of the exception generated by the RTS (Runtime System) can be consulted below:

Code Description Code Description
0x0000 There is no exception code. 0x0051 Access violation.

0x0010 Watchdog time of the IEC task expired
(Software Watchdog). 0x0052 Privileged instruction.

0x0012 I/O configuration error. 0x0053 Page failure.

0x0013 Checksum error after the program
download. 0x0054 Stack overflow.

0x0014 Fieldbus error. 0x0055 Invalid disposition.
0x0015 I/O updating error. 0x0056 Invalid maneuver.
0x0016 Cycle time (execution) exceeded. 0x0057 Protected page.
0x0017 Program online updating too long. 0x0058 Double failure.
0x0018 External references not resolved. 0x0059 Invalid OpCode.

263

6. MAINTENANCE

Code Description Code Description
0x0019 Download rejected. 0x0100 Data type misalignment.

0x001A Project not loaded, as the retentive vari-
ables cannot be reallocated. 0x0101 Arrays limit exceeded.

0x001B Project not loaded and deleted. 0x0102 Division by zero.
0x001C Out of memory stack. 0x0103 Overflow.

0x001D Retentive memory is corrupted and can-
not be mapped. 0x0104 Cannot be continued.

0x001E Project can be loaded but causes a drop
later on. 0x0105 Watchdog in the processor load of all

IEC task detected.

0x0021 Target of startup application does not
match to the current target. 0x0150 FPU: Not specified error.

0x0022 Scheduled tasks error. 0x0151 FPU: Operand is not normal.
0x0152 FPU: Division by zero.

0x0023 Downloaded file Checksum with error. 0x0153 FPU: Inexact result.

0x0024
Retentive identity is not correspondent
to the current identity of the boot
project program

0x0154 FPU: Invalid operation.

0x0025 IEC task configuration failure. 0x0155 FPU: Overflow.
0x0026 Application working with wrong target. 0x0156 FPU: Stack verification.
0x0050 Illegal instruction. 0x0157 FPU: Underflow.

Table 209: RTS Exception codes

DG_Module.tDetailed.RetainInfo.* Size Description

byCPUInitStatus BYTE
CPU Startup Status:
01: Hot start
02: Warm Start
03: Cold Start
Note: These variables are reset in every powerup.

wCPUColdStartCounter WORD Increments when the CPU starts with loss of retentivity.
(0 to 65535)

wCPUWarmStartCounter WORD Increments when the CPU starts normally with valid re-
tain data. (0 to 65535)

wCPUHotStartCounter WORD Disturbance counter less than CPU power failure sup-
port time. (0 to 65535).

wRTSResetCounter WORD Counter of resets performed by RTS (Runtime System).
(0 to 65535).

Table 210: RetainInfo Group Detailed Diagnostics

DG_Module.tDetailed.Reset.* Size Description

bBrownOutReset BIT The CPU was restarted due a failure in the power supply
in the last startup.

bWatchdogReset BIT The CPU was restarted due the active watchdog in the
last startup.

Table 211: Reset Detailed Diagnostics Group Description

Note:
Brownout Reset: The brownout reset diagnostic is only true when the power supply exceed the minimum limit required

in its technical characteristics, remaining in low-voltage, i.e. without undergoing any interrupt. The CPU will identify the drop
in supply and will indicate the power failure diagnostic. When the voltage is reestablished, the CPU will automatically reset
and will indicate the brownout reset diagnostic.

DG_Module.tDetailed.Thermometer.* Size Description

bOverTemperatureAlarm BIT Alarm generated due internal temperature at 85 ◦C or
above it.

bUnderTemperatureAlarm BIT Alarm generated due internal temperature at 0 ◦C or un-
der it.

264

6. MAINTENANCE

DG_Module.tDetailed.Thermometer.* Size Description
diTemperature DINT Temperature read in the internal sensor of the CPU.

Table 212: Thermometer Detailed Diagnostics Group Description

Note:
Temperature: In order to see the temperature directly in the memory address, a conversion must be made, since the data

size is DINT and monitoring is done in 4 bytes. Therefore, it’s recommended to use the associated symbolic variable, because
it already provides the final temperature value.

DG_Module.tDetailed.Serial.COM1.* Size Description

byProtocol BYTE
Protocol selected in the COM 1:
00: Without protocol
01: MODBUS RTU Master
02: MODBUS RTU Slave
03: Other protocol

dwRXBytes DWORD Counter of characters received from COM 1 (0 to
4294967295).

dwTXBytes DWORD Counter of characters transmitted from COM 1 (0 to
4294967295).

wRXPendingBytes WORD Number of characters left in the reading buffer in COM
1 (0 to 1024).

wTXPendingBytes WORD Number of characters left in the transmission buffer in
COM 1 (0 to 1024).

wBreakErrorCounter WORD The transmitter is holding the data line at zero for too
long, according to the databit configured.

wParityErrorCounter WORD The received frame has the mismatched parity bit.

wFrameErrorCounter WORD The received frame has the wrong start point, usually
caused by a noise or baud rate mismatch.

wRXOverrunCounter WORD When the receive ring buffer is full and starts to lose the
old frames (too many frames not treated by the device).

Table 213: Serial COM 1 Detailed Diagnostics Group Description

Note:
Parity Error Counter: When the serial COM 1 is configured Without Parity, this error counter won’t be incremented

when it receives a message with a different parity. In this case, a frame error will be indicated.

DG_Module.tDetailed.Serial.COM2.* Size Description

byProtocol BYTE
Protocol selected in the COM 2:
00: Without protocol
01: MODBUS RTU Master
02: MODBUS RTU Slave
03: Other protocol

dwRXBytes DWORD Counter of characters received from COM 2 (0 to
4294967295).

dwTXBytes DWORD Counter of characters transmitted through COM 2 (0 to
4294967295).

wRXPendingBytes WORD Number of characters left in the reading buffer in COM
2 (0 to 1024).

wTXPendingBytes WORD Number of characters left in the transmission buffer in
COM 2 (0 to 1024).

wBreakErrorCounter WORD The transmitter is holding the data line at zero for too
long, according to the databit configured.

wParityErrorCounter WORD The received frame has the mismatched parity bit.

wFrameErrorCounter WORD The received frame has the wrong start point, usually
caused by a noise or baud rate mismatch.

wRXOverrunCounter WORD When the receive ring buffer is full and starts to lose the
old frames (too many frames not treated by the device).

Table 214: Serial COM 2 Detailed Diagnostics Group Description

265

6. MAINTENANCE

Note:
Parity Error Counter: When the serial COM 2 is configured Without Parity, this error counter won’t be incremented

when it receives a message with a different parity. In this case, a frame error will be indicated.

DG_Module.tDetailed.Ethernet.* Size Description
NET[x].bLinkDown BIT Indicates link state on NET[x].
NET[x].wProtocol WORD Protocol selected in NET 1:

00: No protocol
NET[x].szIP STRING (15) NET[x] IP address.
NET[x].szMask STRING (15) NET[x] Subnet Mask.
NET[x].szGateway STRING (15) NET[x] Gateway Address.
NET[x].szMAC STRING (17) NET[x] MAC Address.
NET[x].abyIP BYTE ARRAY(4) NET[x] IP address.
NET[x].abyMask BYTE ARRAY(4) NET[x] Subnet Mask.
NET[x].abyGateway BYTE ARRAY(4) NET[x] Gateway Address.
NET[x].abyMAC BYTE ARRAY(6) NET[x] MAC Address.

NET[x].dwPacketsSent DWORD Counter of packets sent via NET[x] port (0 to
4294967295).

NET[x].dwPacketsReceived DWORD Counter of packets received through NET[x] port (0 to
4294967295).

NET[x].dwBytesSent DWORD Count of bytes sent over NET[x] port (0 to
4294967295).

NET[x].dwBytesReceived DWORD Count of bytes received through NET[x] port (0 to
4294967295).

NET[x].wTXErrors WORD Counter of transmission errors via NET[x] port (0 to
65535).

NET[x].wTXFIFOErrors WORD Error counter in transmit buffer through NET[x] port (0
to 65535).

NET[x].wTXDropErrors WORD Connection loss counter when transmitting through the
NET[x] port (0 to 65535).

NET[x].wTXCollisionErrors WORD Collision error counter when transmitting via NET[x]
port (0 to 65535).

NET[x].wTXCarrierErrors WORD Transmission error counter on NET[x] port transmis-
sion (0 to 65535).

NET[x].wRXErrors WORD Counter of errors received via NET[x] port (0 to 65535).

NET[x].wRXFIFOErrors WORD Error counter in the receive buffer via NET[x] port (0 to
65535).

NET[x].wRXDropErrors WORD Connection loss counter when receiving via NET[x]
port (0 to 65535).

NET[x].wRXFrameErrors WORD Frame error counter on reception via NET[x] port (0 to
65535).

NET[x].wMulticast WORD Counter of multicast packets through NET[x] port (0 to
65535).

Table 215: NET[x] Detailed Diagnostics Group Description

Note:
[x] é o número da interface ethernet da UCP, onde por exemplo, NET 1 representa o valor 1.

DG_Module.tDetailed.UserFiles.* Size Description

byMounted BYTE Indicates if the memory used for recording user files is
able to receive data.

dwFreeSpacekB DWORD Free memory space for user files in Kbytes.
dwTotalSizekB DWORD Storage capacity of the memory of user files in Kbytes.

Table 216: UserFiles Detailed Diagnostics Group Description

Note:
User Partition: The user partition is a memory area reserved for the storage of data in the CPU. For example: files with

PDF extension, files with DOC extension and other data.

266

6. MAINTENANCE

DG_Module.tDetailed.UserLogs.* Size Description
byMounted BYTE Status of the memory where user logs are inserted.
wFreeSpacekB WORD User log memory free space in Kbytes.
wTotalSizekB WORD User logs memory storage capacity in Kbytes.

Table 217: UserLogs Detailed Diagnostics Group Description

DG_Module.tDetailed.MemoryCard.* Size Description

byMounted BYTE Status of the Memory Card:
00: Memory card not mounted
01: Memory card inserted and mounted

bMemcardtoCPUEnabled BIT Protection level of the Memory Card: Data reading of
the memory card by the authorized CPU.

bCPUtoMemcardEnabled BIT Data writing in the memory card by the authorized
CPU.

dwFreeSpacekB DWORD Free space in the Memory Card in Kbytes.
dwTotalSizekB DWORD Storage capacity of the Memory Card in Kbytes.

Table 218: MemoryCard Detailed Diagnostics Group Description

DG_Module.tDetailed.WHSB.* Size Description

byHotSwapAndStartupStatus BYTE
Informs the abnormal situation in the bus which caused
the application stop for each mode of hot swapping. See
Table 220 for more information.

adwRackIOErrorStatus DWORD ARRAY (32)
Identification of errors in I/O modules, individually. For
more information about this diagnostic, see the notes
below.

adwModulePresenceStatus DWORD ARRAY (32)
Status of presence of declared I/O modules in buses, in-
dividually. For more information about this diagnostic,
see the notes below.

byWHSBBusErrors BYTE Counter of failures in the WHSB bus. This counter is
restarted in the energization (0 to 255).

Table 219: WHSB Detailed Diagnostics Group Description

Notes:
Bus modules error diagnostic: Each DWORD from this diagnostic array represents a rack, whose positions are repre-

sented by the bits of these DWORDS. So, Bit-0 of the DWORD-0 is equivalent to position zero of the rack with address zero.
Each one of these Bits is the result of an OR logic operation between the Incompatible Configuration (bConfigMismatch),
absent modules (bAbsentModules), swapped modules (bSwappedModules), module with fatal error (bModuleFatalError) di-
agnostics and the operational state of the module in a certain position.

Module presence status: Each DWORD from this diagnostic array represents a rack, whose positions are represented by
the bits of these DWORDS. So, Bit-0 from DWORD-0 is equivalent to position zero of the rack with address zero. So, if
a module is present, this bit will be true. It’s important to notice that this diagnostic is valid for all modules, except power
supplies, CPUs and non-declared modules, e.g. those that are not in the rack on the respective position (bit remains in false).

Situations in which the Application Stops: The codes for the possible situations in which the application stops can be
consulted below:

Code Enumerable Description
00 INITIALIZING This state is presented while other states are not ready.

01 RESET_WATCHDOG
Application in Stop Mode due to hardware watchdog reset or
runtime reset, when the option “Start User Application After a
Watchdog Reset” is unmarked.

02 ABSENT_MODULES_HOT_SWAP_
DISABLED

Application in Stop Mode due to Absent Modules diagnostic
being set when the Hot Swap Mode is "Disabled" or "Disabled,
for declared modules only".

03 CFG_MISMATCH_HOT_SWAP_
DISABLED

Application in Stop Mode due to Configuration Mismatch di-
agnostic being set when the Hot Swap Mode is "Disabled" or
"Disabled, for declared modules only".

267

6. MAINTENANCE

Code Enumerable Description

04 ABSENT_MODULES_HOT_SWAP_
STARTUP_CONSISTENCY

Application in Stop Mode due to Absent Modules diagnostic
being set when the Hot Swap Mode is "Enabled, with startup
consistency" or "Enabled, with startup consistency for declared
modules only".

05 CFG_MISMATCH_HOT_SWAP_
STARTUP_CONSISTENCY

Application in Stop Mode due to Incompatible Configuration
diagnostic being set when the Hot Swap Mode is "Enabled, with
startup consistency" or "Enabled, with startup consistency for
declared modules only".

06 APPL_STOP_ALLOWED_TO_RUN Application in Stop Mode and all consistencies executed suc-
cessfully. The application can be set to Run Mode.

07 APPL_STOP_MODULES_NOT_READY
Application in Stop Mode and all consistencies executed suc-
cessfully, but the I/O modules are not able to start the system. It
is not possible to set the application to Run Mode.

08 APPL_STOP_MODULES_GETTING_
READY_TO_RUN

Application in Stop Mode and all consistencies executed suc-
cessfully. The I/O modules are being prepared to start the sys-
tem. It is not possible to set the application to Run Mode.

09 NORMAL_OPERATING_STATE Application in Run Mode.
10 MODULE_CONSISTENCY_OK Internal usage.
11 APPL_STOP_DUE_TO_EXCEPTION Application in Stop Mode due to an exception in the CPU.

12 DUPLICATED_SLOT_HOT_SWAP_
DISABLED

Application in Stop Mode due to Duplicated Slots diagnostic
being set when the Hot Swap Mode is "Disabled" or "Disabled,
for declared modules only".

13 DUPLICATED_SLOT_HOT_SWAP_
STARTUP_CONSISTENCY

Application in Stop Mode due to Duplicated Slots diagnostic
being set when the Hot Swap Mode is "Enabled, with startup
consistency" or "Enabled, with startup consistency for declared
modules only".

14 DUPLICATED_SLOT_HOT_SWAP_
ENABLED

Application in Stop Mode due to Duplicated Slots diagnostic
being set when the Hot Swap Mode is "Enabled, without startup
consistency".

15 NON_DECLARED_MODULE_HOT_
SWAP_STARTUP_CONSISTENCY

Application in Stop Mode due to Non Declared Modules diag-
nostic being set when the Hot Swap Mode is "Enabled, with
startup consistency".

16 NON_DECLARED_MODULE_HOT_
SWAP_DISABLED

Application in Stop Mode due to Non Declared Modules diag-
nostic being set when the Hot Swap Mode is "Disabled".

Table 220: Codes of the Situations in which the Application Stops

DG_Module.tDetailed.Application.* Size Description

byCPUState BYTE Informs the operation state of the CPU:
01: All user applications are in Run Mode
03: All user applications is in Stop Mode

bForcedIOs BIT There is one or more forced I/O points.
bNetDefinedByWeb BIT The IP address is set by the System Web Page.

Table 221: Application Detailed Diagnostics Group Description

DG_Module.tDetailed.SNTP.* Size Description
bServiceEnabled BIT SNTP service enabled.

byActiveTimeServer BYTE
Indicates which server is active:
00: No active server.
01: Primary server active.
02: Secondary server active.

wPrimaryServerDownCount WORD Count of times the primary server was unavailable (0 to
65535).

wSecondaryServerDownCount WORD Count of times the secondary server was unavailable (0
to 65535).

dwRTCTimeUpdatedCount DWORD Count of times the RTC was updated by the SNTP ser-
vice (0 to 4294967295).

byLastUpdateSuccessful BYTE
Indicates status of last update:
00: Not updated.
01: Last update failed.
02: Last update was successful.

268

6. MAINTENANCE

DG_Module.tDetailed.SNTP.* Size Description

byLastUpdateTimeServer BYTE
Indicates which server was used in the last update:
00: No updates.
01: Primary server.
02: Secondary server.

sLastUpdateTime.byDayOfMonth BYTE Day of last RTC update.
sLastUpdateTime.byMonth BYTE Month of last RTC update.
sLastUpdateTime.wYear WORD Year of last update of RTC.
sLastUpdateTime.byHours BYTE Hour of last RTC update.
sLastUpdateTime.byMinutes BYTE Minute of last RTC update.
sLastUpdateTime.bySeconds BYTE Second of last RTC update.
sLastUpdateTime.wMilliseconds WORD Millisecond of last RTC update.

Table 222: SNTP Group Detailed Diagnostics

DG_Module.tDetailed.SOE.* Size Description
SOE[0].bConnectionStatus BIT Client Connection Status 01

SOE[0].bOverflowStatus BIT Client event queue status 01:
FALSE - No overflow
TRUE - Queue limit exceeded

SOE[0].wEventsCounter WORD Customer Queue Event Counter 01
SOE[1].bConnectionStatus BIT Client Connection Status 02

SOE[1].bOverflowStatus BIT Client event queue status 02:
FALSE - No overflow
TRUE - Queue limit exceeded

SOE[1].wEventsCounter WORD Client queue event counter 02.

Table 223: SOE Group Detailed Diagnostics

Notes:
Synchronization of SOE group diagnostics in a system operating with Half-Cluster redundancy: When a project is

configured with Half-Cluster redundancy, the SOE group diagnostics are not synchronized between the two Half-Clusters.
Updating SOE group diagnostics on transition to active state: When a Half-Cluster goes from Standby state to Active

state, SOE group diagnostics are updated from the third cycle on.

DG_Module.tDetailed.Rack.* Size Description

dwAbsentRacks DWORD
Each bit represents an identification number of a rack, if
any bit is TRUE, it means that the rack, with that iden-
tification number, is absent.

dwDuplicatedRacks DWORD
Each bit represents an identification number of a rack,
if any bit is TRUE, it means that more than one rack is
configured with the same identification number.

dwNonDeclaredRacks DWORD
Each bit represents a rack identification number, if any
bit is TRUE, it means that there is a rack configured
with an identification number that is not declared in the
project.

Table 224: Rack Group Detailed Diagnostics

DG_Module.tDetailed.ApplicationInfo.* Size Description

dwApplicationCRC DWORD 32-bit CRC of the application. When the application is
modified and sent to the CPU, a new CRC is calculated.

Table 225: ApplicationInfo Detailed Diagnostics Group Description

269

6. MAINTENANCE

6.1.5. Diagnostics via Function Blocks

The function blocks allow the visualization of some parameters which cannot be accessed otherwise. The function regard-
ing advanced diagnostics is in the NextoStandard library and is described below.

6.1.5.1. GetTaskInfo

This function returns the task information of a specific application.

Figure 163: GetTaskInfo Function

Below, the parameters that must be sent to the function for it to return the application information are described.

Input parameter Type Description
psAppName POINTER TO STRING Application name.
psTaskName POINTER TO STRING Task name.

pstTaskInfo POINTER TO stTask-
Info

Pointer to receive the application informa-
tion.

Table 226: GetTaskInfo Input Parameters

The data returned by the function, through the pointer informed in the input parameters are described on table below.

Returned Parameters Size Description

dwCurScanTime DWORD Task cycle time (execution) with 1 µs res-
olution.

dwMinScanTime DWORD Task cycle minimum time with 1 µs reso-
lution.

dwMaxScanTime DWORD Task cycle maximum time 1 µs resolution.

dwAvgScanTime DWORD Task cycle average time with 1 µs resolu-
tion.

dwLimitMaxScan DWORD Task cycle maximum time before watch-
dog occurrence.

dwIECCycleCount DWORD IEC cycle counter.

Table 227: GetTaskInfo Output Parameters

Possible ERRORCODE:

NoError: success execution;
TaskNotPresent: the desired task does not exist.

Example of utilization in ST language:

PROGRAM UserPrg
VAR
sAppName : STRING;
psAppName : POINTER TO STRING;

270

6. MAINTENANCE

sTaskName : STRING;
psTaskName : POINTER TO STRING;
pstTaskInfo : POINTER TO NextoStandard.stTaskInfo;
TaskInfo :NextoStandard. stTaskInfo;
Info : NextoStandard.ERRORCODE;
END_VAR
//INPUTS:
sAppName := 'Application'; //Variable receives the application name.
psAppName := ADR(sAppName); //Pointer with application name.
sTaskName := 'MainTask'; //Variable receives task name.
psTaskName := ADR(sTaskName); //Pointer with task name.
pstTaskInfo := ADR(TaskInfo); //Pointer that receives task info.
//FUNCTION:
//Function call.
Info := GetTaskInfo (psAppName, psTaskName, pstTaskInfo);
//Variable Info receives possible function errors.

6.2. Graphic Display
The graphic display available in this product has an important tool for the process control, as through it is possible to

recognize possible error conditions, active components or diagnostics presence. Besides, all diagnostics including the I/O
modules are presented to the user through the graphic display. For further information regarding the diagnostic key utilization
and its visualization see One Touch Diag section.

On figure below, it is possible to observe the available characters in this product graphic display and, next, its respective
meanings.

Figure 164: CPU Status Screen

Legend:
1. Indication of the CPU status operation. In case the CPU application is running, the state is RUN. In case the CPU
application is stopped, the state is STOP and, when is stopped in an application depuration mark, the state is BRKP. For
further details, see CPU Operating States section.
2. Memory Card presence indication. Further details regarding its installation see Memory Card Installation section.
3. COM 1 traffic indication. The up arrow (▲) indicates data transmission and the down arrow (▼) indicates data
reception. For further information regarding the COM 1 interface see Serial Interfaces section.
4. COM 2 traffic indication. The up arrow (▲) indicates data transmission and the down arrow (▼) indicates data
reception. For further information regarding the COM 2 interface see Serial Interfaces section.
5. Indication of the CPU active diagnostics quantity. In case the number shown is different than 0 (zero), there are active
diagnostics in the CPU. For further details regarding their visualization on the CPU graphic display, through diagnostic
key, see One Touch Diag section.
6. Forced variables in the CPU indication. In case the “F” character is shown in the graphic display, a variable is being
forced by the user, whether symbolic, direct representation or AT. For further information regarding variable forcing see
Writing and Forcing Variables section.

Besides the characters described above, Nexto CPUs can present some messages on the graphic display, correspondent to
a process which is being executed at the moment.

The table below present the messages and their respective descriptions:

271

6. MAINTENANCE

Message Description
FORMATTING... Indicates the CPU is formatting the memory card.

FORMATTING ERROR Indicates that an error occurred while formatting the memory
card by the CPU.

WRONG FORMAT Indicates that the memory card format is incorrect.

INCORRECT PASSWORD Indicates the typed password is different from the configured
password.

TRANSFERRING... Indicates the project is being transferred.

TRANSFERRING ERROR
Indicates there is been an error in the project transference caused
by some problem in the memory card or its removal during trans-
ference.

TRANSFERRING COMPLETE Indicates the transference has been executed successfully.

TRANSFERRING TIMEOUT Indicates a time-out has been occurred (communication time ex-
pired) during the project transference.

CPU TYPE MISMATCH Indicates the CPU model is different from the one configured in
the project within the memory card.

VERSION MISMATCH Indicates the CPU version is different from the one configured
in the project within the memory card.

APPLICATION CORRUPTED Indicates the application within the memory card is corrupted.

APPLICATION NOT FOUND Indicates there is no application in the memory card to be trans-
ferred to the CPU.

CRC NOT FOUND Indicates that the CRC application does not exist.
MCF FILE NOT FOUND Indicates there is no MCF file in the memory card.

NO TAG There is no configured tag for the CPU in the MasterTool IEC
XE.

NO DESC There is no configured description for the CPU in the MasterTool
IEC XE.

MSG. ERROR Indicates that there are error(s) on diagnostics message(s) of the
requested module(s).

SIGNATURE MISSING Indicates the product presented an unexpected problem. Get in
contact with Altus Technical Support sector.

APP. ERROR RESTARTING Indicates that occurred an error in the application and the Run-
time is restarting the application.

APP. NOT LOADED Indicates that the runtime will not load the application.
LOADING APP. Indicates that the runtime will load the application.
WRONG SLOT Indicates that the CPU is in an incorrect position in the rack.

FATAL ERROR
Indicates that there are serious problems in the CPU startup such
as CPU partitions that were not properly mounted. Please, con-
tact Altus customer support.

HW-SW MISMATCH
Indicates that the CPU hardware and software are not compatible
because the product presented an unexpected problem. Please,
contact Altus customer support.

UPDATING FIRMWARE Indicates the firmware is being updated in the CPU.
RECEIVING FIRMWARE Indicates the updating file is being transferred to the CPU.
UPDATED Shows the firmware version updated in the CPU.

UPDATE ERROR Indicates an error has occurred during the CPU firmware updat-
ing, caused by communication failure or configuration problems.

REBOOTING SYSTEM... Indicates the CPU is being restarted for the updating to have
effect.

Table 228: Other Messages of the Graphic Display

272

6. MAINTENANCE

6.3. System Log
The System Log is an available feature in the MasterTool IEC XE programmer. It is an important tool for process control,

as it makes it possible to find events on CPU that may indicate error conditions, presence of active components or active
diagnostics. Such events can be viewed in chronological order with a resolution of milliseconds, with a storage capacity of up
to one thousand log entries stored in the CPU internal memory, that can’t be removed.

In order to access these Logs, just go to the Device Tree and double-click on Device, then go to the Log tab, where hundreds
of operations can be seen, such as: task max cycles, user access, online change, application download and upload, application
synchronization between CPUs, firmware update between another events and actions.

In order to view the Logs, just need to be connected to a CPU (selected Active Path) and click on . When this button is
pressed the Logs are displayed and updated instantly. When the button is not being pressed the Logs will be hold in the screen,
it means, these button has two stages, one hold the logs state being updated and in the state the updating is disabled. To no
longer show the Logs, press .

It is possible to filter the Logs in 4 different types: warning(s), error(s), exception(s) and information.
Another way to filter the messages displayed to the user is to select the component desired to view.
The Log tab’s Time Stamp is shown by MasterTool after information provided by the device (CPU). MasterTool can display

the Time Stamp in local time (computer’s time) or UTC, if UTC time checkbox is marked.

ATTENTION

If the device’s time or time zone parameter are incorrect, the Time Stamp shown in Master-
Tool also won’t be correct.

For further information about the System Logs please check the MasterTool IEC XE User Manual – MU299609 and the
RTC Clock and Time Synchronization subsection of this manual.

ATTENTION

The system logs of the CPUs, starting in firmware version 1.4.0.33 (Nexto) and 1.14.36.0
(Xtorm), are reloaded in the cases of a restart of the CPU or a reboot of the Runtime System,
that is, it will be possible to check the older logs when one of these situations occurs.

6.4. Not Loading the Application at Startup
If necessary, the user can choose to not load an existing application on the CPU during its startup. Just power the CPU

with the diagnostics button pressed and keep it pressed for until the message “APP. NOT LOADED” is shown in the screen. If
a login attempt is made, MasterTool IEC XE software will indicate that there is no application on the CPU. For reloading the
application, the CPU must be reset or a new application download must be done.

6.5. Power Supply Failure
The Nexto Series Power Supply (NX8000) has a failure detection system according to the levels defined in its technical

features (see Power Supply 30 W 24 Vdc Technical Characteristics - CE114200). There are two ways to diagnose a failure:
1. In case the NX8000 power supply is on with voltage lower than the required minimum limit, a power supply failure

diagnostic is generated, which is recognized by the CPU and the message “POWER FAILURE” is shown on the display.
When the supply is within the established limits, the CPU recognizes it and automatically is restarted with the user
application. The diagnostic will still be active to show to the user that the last initialization suffered a power supply
failure.

2. In case the NX8000 has a voltage drop to an inferior value than the minimum required limit and it returns to a higher
value within 10 ms, the power supply failure is not recognized by the CPU and the diagnostic is not generated as the
system remains intact during this time. But if the voltage drop takes longer than 10 ms, the “POWER FAILURE”
message is shown on the CPU screen and the diagnostic is activated.

Figure 165: Power Supply Failure Message

273

6. MAINTENANCE

The user can change the value of the variable attributed to the power supply failure to FALSE during the application
execution, facilitating the verification and treatment of this diagnostic.

The POWER FAILURE diagnostic is already mapped in a specific memory region, defined as CPU Detailed Diagnostic.
This way it is just to use it as global variable. The variable name is described in the detailed diagnostic list in the Diagnostics
via Variables section.

6.6. Common Problems
If, at power on the CPU, it does not work, the following items must be verified:

Is the room temperature within the device supported range?
Is the rack power supply being fed with the correct voltage?
Is the power supply module inserted on the far left in the rack (observing the rack by the front view) followed by the
Nexto Series CPU?
Are there network devices, as hubs, switches or routers, powered, interconnected, configured and working properly?
Is the Ethernet network cable properly connected to the Nexto CPU NET 1 or NET 2 port and to the network device?
Is the Nexto Series CPU on, in execution mode (Run) and with no diagnostics related to hardware?

If the Nexto CPU indicates the execution mode (Run) but it does not respond to the requested communications, whether
through MasterTool IEC XE or protocols, the following items must be verified:

Is the CPU Ethernet parameters configuration correct?
Is the respective communication protocol correctly configured in the CPU?
Are the variables which enable the MODBUS relations properly enabled?

If no problem has been identified, consult the Altus Technical Support.

6.7. Troubleshooting
The table below shows the symptoms of some problems with their possible causes and solutions. If the problem persists,

consult the Altus Technical Support.

Symptom Possible Cause Solution

Does not power on
Lack of power sup-
ply or incorrectly
powered.

Verify if the CPU is connected properly in the rack.
Power off and take off all modules from the bus, but the
power supply and the CPU.
Power on the bus and verify the power supply function-
ing, the external and the one in the rack.
Verify if the supply voltage gets to the Nexto power sup-
ply contacts and if is correctly polarized.

CPU Screen
shows the mes-
sage WRONG SLOT

CPU in a wrong posi-
tion.

The CPU must be placed in slots 2 and 3 of rack 0. Put it
in the correct slots.
CPUs must be placed in slots 2 and 3 of rack 0. Put it in
the correct slots.

Does not communi-
cate

Bad contact or bad
configuration.

Verify every communication cable connection.
Verify the serial and Ethernet interfaces configuration in
the MasterTool IEC XE software.

Does not recognize
the memory card

Bad connection or
not mounted.

Verify if the memory card is properly connected in the
compartment.
Verify if the memory card was put in the right side, as
indicated on the CPU frontal panel.
Verify if the memory card wasn’t unmounted through MS
button, placed on the frontal panel, visualizing the indi-
cation on the CPU graphic display.

Table 229: Troubleshooting

274

6. MAINTENANCE

6.8. Preventive Maintenance
It must be verified, each year, if the interconnection cables are connected firmly, without dust accumulation, mainly the
protection devices.
In environments subjected to excessive contamination, the equipment must be periodically cleaned from dust, debris,
etc.
The TVS diodes used for transient protection caused by atmospheric discharges must be periodically inspected, as they
might be damaged or destroyed in case the absorbed energy is above limit. In many cases, the failure may not be visual.
In critical applications, is recommendable the periodic replacement of the TVS diodes, even if they do not show visual
signals of failure.
Bus tightness and cleanness every six months.
For further information, see Nexto Series Manual - MU214600.

275

7. ANNEX. DNP3 INTEROPERABILITY

7. Annex. DNP3 Interoperability
7.1. DNP3 Device Profile

DNP3
DEVICE PROFILE DOCUMENT

Device Identification
Vendor Name Altus S/A
Device Name NX3030
Device Function Slave

DNP Levels Supported for Requests: None
Responses: None

Connections Supported IP Networking
Methods to set Configurable Parameters Software: MasterTool IEC XE

IP Networking
Type of End Point: TCP Listening (Outstation Only)
Accepts TCP Connections from Allows all
IP Address(es) from which TCP Connec-
tions are accepted: *.*.*.*

TCP Listen Port Number Configurable, range 1 to 65535
TCP Keep-alive timer Configurable, range 0 to 4294967295

Multiple master connections Supports up to two masters
Based on TCP port number

Time synchronization support SNTP
Link Layer

Data Link Address Configurable, range 0 to 65519
Self Address Support using address
0xFFFC No

Requires Data Link Layer Confirmation Never
Maximum number of octets Transmitted in
a Data Link Frame Fixed at 292

Maximum number of octets that can be Re-
ceived in a Data Link Frame Fixed at 292

Application Layer
Maximum number of octets Transmitted in
an Application Layer Fragment Fixed at 2048

Maximum number of octets that can be re-
ceived in an Application Layer Fragment Fixed at 2048

Time-out waiting for Application Confirm
of solicited response message Fixed at 10000 ms

Device Trouble Bit IIN1.6 This bit will be set if PLC is not in RUN mode
Event Buffer Overflow Behavior Discard the oldest event
Sends Multi-Fragment Responses Yes

Outstation Unsolicited Response Support
Supports Unsolicited Reporting No

Table 230: DNP3 Device Profile

276

7. ANNEX. DNP3 INTEROPERABILITY

7.2. DNP V3.0 Implementation Table

REQUEST RESPONSE
DNP OBJECT GROUP & VARIATION Master may issue Master must parse

Outstation must parse Outstation may issue

Group
Num

Var
Num Description

Function
Codes
(dec)

Qualifier Codes
(hex)

Function
Codes
(dec)

Qualifier
Codes (hex)

1 0 Binary Input –
Any Variation

1 (read) 00, 01 (start-stop)
06 (no range, or all)

1 1 Binary Input –
Packed format

1 (read) 00, 01 (start-stop)
06 (no range, or all)

129
(response)

00, 01
(start-stop)

2 0 Binary Input Event –
Any Variation

1 (read) 06 (no range, or all)
07, 08 (limited qty)

2 2 Binary Input Event –
With absolute time

1 (read) 06 (no range, or all)
07, 08 (limited qty)

129
(response)

17, 28
(index)

60 1 Class Objects –
Class 0 data

1 (read) 06 (no range, or all)

60 2 Class Objects –
Class 1 data

1 (read) 06 (no range, or all)
07, 08 (limited qty)

80 1 Internal Indications -
Packed format

1 (read) 00, 01 (start-stop) 129
(response)

00
(start-stop)

2 (write) 00 (start-stop)
index=7

Table 231: DNP V3.0 Implementation Table

277

	1 Introduction
	1.1 Nexto Series
	1.2 Innovative Features
	1.3 Documents Related to this Manual
	1.4 Visual Inspection
	1.5 Technical Support
	1.6 Warning Messages Used in this Manual

	2 Technical Description
	2.1 Panels and Connections
	2.2 General Features
	2.2.1 Common General Features
	2.2.2 Standards and Certifications
	2.2.3 Memory
	2.2.4 Protocols
	2.2.5 Serial Interfaces
	2.2.5.1 COM 1
	2.2.5.2 COM 2

	2.2.6 Ethernet Interfaces
	2.2.6.1 NET 1
	2.2.6.2 NET 2

	2.2.7 Memory Card Interface
	2.2.8 Environmental Characteristics

	2.3 Compatibility with Other Products
	2.4 Performance
	2.4.1 MainTask Interval Time
	2.4.2 Application Times
	2.4.3 Time for Instructions Execution
	2.4.4 Initialization Times

	2.5 Physical Dimensions
	2.6 Purchase Data
	2.6.1 Integrant Itens
	2.6.2 Product code

	2.7 Related Products

	3 Installation
	3.1 Mechanical Installation
	3.2 Electrical Installation
	3.3 Ethernet Network Connection
	3.3.1 IP Address
	3.3.2 Gratuitous ARP
	3.3.3 Network Cable Installation

	3.4 Serial Network Connection RS-232C
	3.4.1 RS-232C Communication

	3.5 Serial Network Connection RS-485/422
	3.5.1 RS-485 Communication without termination
	3.5.2 RS-485 Communication with Internal Termination
	3.5.3 RS-485 Communication with External Termination
	3.5.4 RS-422 Communication without Termination
	3.5.5 RS-422 Communication with Internal Termination
	3.5.6 RS-422 Communication with External Termination
	3.5.7 RS-422 Network Example

	3.6 Memory Card Installation
	3.7 Architecture Installation
	3.7.1 Module Installation on the Main Backplane Rack

	3.8 Programmer Installation

	4 Programmer Installation
	4.1 Memory Organization and Access
	4.2 Project Profiles
	4.2.1 Single
	4.2.2 Basic
	4.2.3 Normal
	4.2.4 Expert
	4.2.5 Custom
	4.2.6 Machine Profile
	4.2.7 General Table
	4.2.8 Maximum Number of Tasks

	4.3 CPU Configuration
	4.4 Libraries
	4.5 Inserting a Protocol Instance
	4.5.1 MODBUS Ethernet

	4.6 Finding the Device
	4.7 Login
	4.8 Run Mode
	4.9 Stop Mode
	4.10 Writing and Forcing Variables
	4.11 Logout
	4.12 Project Upload
	4.13 CPU Operating States
	4.13.1 Run
	4.13.2 Stop
	4.13.3 Breakpoint
	4.13.4 Exception
	4.13.5 Reset Warm
	4.13.6 Reset Cold
	4.13.7 Reset Origin
	4.13.8 Reset Process Command (IEC 60870-5-104)

	4.14 Programas (POUs) e Listas de Variáveis Globais (GVLs)
	4.14.1 MainPrg Program
	4.14.2 StartPrg Program
	4.14.3 UserPrg Program
	4.14.4 GVL System_Diagnostics
	4.14.5 GVL Disables
	4.14.6 GVL IOQualities
	4.14.7 GVL Module_Diagnostics
	4.14.8 GVL Qualities
	4.14.9 GVL ReqDiagnostics
	4.14.10 Prepare_Start Function
	4.14.11 Prepare_Stop Function
	4.14.12 Start_Done Function
	4.14.13 Stop_Done Function

	5 Configuration
	5.1 Device
	5.1.1 User Management and Access Rights
	5.1.2 PLC Settings

	5.2 CPU Configuration
	5.2.1 General Parameters
	5.2.1.1 Hot Swap
	5.2.1.1.1 Hot Swap Disabled, for Declared Modules Only
	5.2.1.1.2 Hot Swap Disabled
	5.2.1.1.3 Hot Swap Disabled, without Startup Consistency
	5.2.1.1.4 Hot Swap Enabled, with Startup Consistency for Declared Modules Only
	5.2.1.1.5 Hot Swap Enabled with Startup Consistency
	5.2.1.1.6 Hot Swap Enabled without Startup Consistency
	5.2.1.1.7 How to do the Hot Swap

	5.2.1.2 Retain and Persistent Memory Areas
	5.2.1.3 Project Parameters

	5.2.2 External Event Configuration
	5.2.3 SOE Configuration
	5.2.4 Time Synchronization
	5.2.4.1 IEC 60870-5-104
	5.2.4.2 SNTP
	5.2.4.3 Daylight Saving Time (DST)

	5.2.5 Internal Points
	5.2.5.1 Quality Conversions
	5.2.5.1.1 Internal Quality
	5.2.5.1.2 IEC 60870-5-104 Conversion
	5.2.5.1.3 MODBUS Internal Quality
	5.2.5.1.4 Local Bus I/O Modules Quality
	5.2.5.1.5 PROFIBUS I/O Modules Quality
	5.2.5.1.6 PROFIBUS Digital Inputs Quality
	5.2.5.1.7 PROFIBUS Digital Output Quality
	5.2.5.1.8 PROFIBUS Analog Inputs Quality
	5.2.5.1.9 PROFIBUS Analog Output Quality

	5.3 Serial Interfaces Configuration
	5.3.1 COM 1
	5.3.1.1 Advanced Configurations

	5.3.2 COM 2
	5.3.2.1 Advanced Configurations

	5.4 Ethernet Interfaces Configuration
	5.4.1 Internal Ethernet Interfaces
	5.4.1.1 NET 1
	5.4.1.2 NET 2
	5.4.1.3 Configuration of Internal Ethernet Interfaces
	5.4.1.3.1 Single Mode
	5.4.1.3.2 Redundant Mode

	5.4.2 NX5000 Remote Ethernet Interface
	5.4.2.1 NET 1
	5.4.2.2 Operation Modes of the NX5000 Remote Ethernet Interface
	5.4.2.2.1 Redundant Mode

	5.4.3 Reserved TCP/UDP Ports

	5.5 Protocols Configuration
	5.5.1 Protocol Behavior x CPU State
	5.5.2 Double Points
	5.5.3 CPU’s Events Queue
	5.5.3.1 Consumers
	5.5.3.2 Queue Functioning Principles
	5.5.3.2.1 Overflow Sign

	5.5.3.3 Producers

	5.5.4 Interception of Commands Coming from the Control Center
	5.5.5 MODBUS RTU Master
	5.5.5.1 MODBUS Master Protocol Configuration by Symbolic Mapping
	5.5.5.1.1 MODBUS Master Protocol General Parameters – Symbolic Mapping Configuration
	5.5.5.1.2 Devices Configuration – Symbolic Mapping configuration
	5.5.5.1.3 Mappings Configuration – Symbolic Mapping Settings
	5.5.5.1.4 Requests Configuration – Symbolic Mapping Settings

	5.5.5.2 MODBUS Master Protocol Configuration for Direct Representation (%Q)
	5.5.5.2.1 General Parameters of MODBUS Master Protocol - setting by Direct Representation (%Q)
	5.5.5.2.2 Devices Configuration – Configuration for Direct Representation (%Q)
	5.5.5.2.3 Mappings Configuration – Configuration for Direct Representation (%Q)

	5.5.6 MODBUS RTU Slave
	5.5.6.1 MODBUS Slave Protocol Configuration by Symbolic Mapping
	5.5.6.1.1 MODBUS Slave Protocol Configuration via Symbolic Mapping
	5.5.6.1.2 MODBUS Slave Protocol General Parameters – Configuration via Symbolic Mapping

	5.5.6.2 MODBUS Slave Protocol Configuration via Direct Representation (%Q)
	5.5.6.2.1 General Parameters of MODBUS Slave Protocol – Configuration via Direct Representation (%Q)
	5.5.6.2.2 Mappings Configuration – Configuration via Direct Representation (%Q)

	5.5.7 MODBUS Ethernet
	5.5.8 MODBUS Ethernet Client
	5.5.8.1 MODBUS Ethernet Client Configuration via Symbolic Mapping
	5.5.8.1.1 MODBUS Client Protocol General Parameters – Configuration via Symbolic Mapping
	5.5.8.1.2 Device Configuration – Configuration via Symbolic Mapping
	5.5.8.1.3 Mappings Configuration – Configuration via Symbolic Mapping
	5.5.8.1.4 Requests Configuration – Configuration via Symbolic Mapping

	5.5.8.2 MODBUS Ethernet Client configuration via Direct Representation (%Q)
	5.5.8.2.1 General parameters of MODBUS Protocol Client - configuration for Direct Representation (%Q)
	5.5.8.2.2 Device Configuration – Configuration via Direct Representation (%Q)
	5.5.8.2.3 Mapping Configuration – Configuration via Direct Representation (%Q)

	5.5.8.3 MODBUS Client Relation Start in Acyclic Form

	5.5.9 MODBUS Ethernet Server
	5.5.9.1 MODBUS Server Ethernet Protocol Configuration for Symbolic Mapping
	5.5.9.1.1 MODBUS Server Protocol General Parameters – Configuration via Symbolic Mapping
	5.5.9.1.2 MODBUS Server Diagnostics – Configuration via Symbolic Mapping
	5.5.9.1.3 Mapping Configuration – Configuration via Symbolic Mapping

	5.5.9.2 MODBUS Server Ethernet Protocol Configuration via Direct Representation (%Q)
	5.5.9.2.1 General Parameters of MODBUS Server Protocol – Configuration via Direct Representation (%Q)
	5.5.9.2.2 Mapping Configuration – Configuration via Direct Representation (%Q)

	5.5.10 OPC DA Server
	5.5.10.1 Creating a Project for OPC DA Communication
	5.5.10.2 Configuring a PLC on the OPC DA Server
	5.5.10.2.1 Importing a Project Configuration

	5.5.10.3 OPC DA Communication Status and Quality Variables
	5.5.10.4 Limits of Communication with OPC DA Server
	5.5.10.5 Accessing Data Through an OPC DA Client

	5.5.11 OPC UA Server
	5.5.11.1 Creating a Project for OPC UA Communication
	5.5.11.2 Types of Supported Variables
	5.5.11.3 Limit Connected Clients on the OPC UA Server
	5.5.11.4 Limit of Communication Variables on the OPC UA Server
	5.5.11.5 Encryption Settings
	5.5.11.6 Main Communication Parameters Adjusted in an OPC UA Client
	5.5.11.6.1 Endpoint URL
	5.5.11.6.2 Publishing Interval (ms) e Sampling Interval (ms)
	5.5.11.6.3 Lifetime Count e Keep-Alive Count
	5.5.11.6.4 Queue Size e Discard Oldest
	5.5.11.6.5 Filter Type e Deadband Type
	5.5.11.6.6 PublishingEnabled, MaxNotificationsPerPublish e Priority

	5.5.11.7 Accessing Data Through an OPC UA Client

	5.5.12 EtherCAT Master
	5.5.12.1 Installing and inserting EtherCAT Devices
	5.5.12.1.1 EtherCAT - Scan For Devices

	5.5.12.2 EtherCAT Master Settings
	5.5.12.2.1 EtherCAT Master Parameters
	5.5.12.2.2 EtherCAT Master - Sync Unit Assignment
	5.5.12.2.3 EtherCAT Master - Overview
	5.5.12.2.4 EtherCAT Master - I/O Mapping
	5.5.12.2.5 EtherCAT Master - Status / Information Tabs

	5.5.12.3 EtherCAT Slave Configuration
	5.5.12.3.1 EtherCAT Slave - General
	5.5.12.3.2 EtherCAT Slave - Process Data
	5.5.12.3.3 EtherCAT Slave - Edit PDO List
	5.5.12.3.4 EtherCAT Slave - Startup Parameters
	5.5.12.3.5 EtherCAT Slave - I/O Mapping
	5.5.12.3.6 EtherCAT Slave - Status and Information

	5.5.13 EtherNet/IP
	5.5.13.1 EtherNet/IP
	5.5.13.2 EtherNet/IP Scanner Configuration
	5.5.13.2.1 General
	5.5.13.2.2 Connections
	5.5.13.2.3 Assemblies
	5.5.13.2.4 EtherNet/IP I/O Mapping

	5.5.13.3 EtherNet/IP Adapter Configuration
	5.5.13.3.1 General
	5.5.13.3.2 EtherNet/IP Adapter: I/O Mapping

	5.5.13.4 EtherNet/IP Module Configuration
	5.5.13.4.1 Assemblies
	5.5.13.4.2 EtherNet/IP Module: I/O Mapping

	5.5.14 IEC 60870-5-104 Server
	5.5.14.1 Type of data
	5.5.14.2 Double Points
	5.5.14.2.1 Digital Input Double Points
	5.5.14.2.2 Digital Output Double Points

	5.5.14.3 General Parameters
	5.5.14.4 Data Mapping
	5.5.14.5 Link Layer
	5.5.14.6 Application Layer
	5.5.14.7 Server Diagnostic
	5.5.14.8 Commands Qualifier

	5.5.15 PROFINET Controller

	5.6 Communication Performance
	5.6.1 MODBUS Server
	5.6.1.1 CPU’s Local Interfaces
	5.6.1.2 Remote Interfaces

	5.6.2 OPC DA Server
	5.6.3 OPC UA Server
	5.6.4 IEC60870-5-104 Server

	5.7 System Performance
	5.7.1 I/O Scan
	5.7.2 Memory Card

	5.8 RTC Clock
	5.8.1 Function Blocks for RTC Reading and Writing
	5.8.1.1 Function Blocks for RTC Reading
	5.8.1.1.1 GetDateAndTime
	5.8.1.1.2 GetTimeZone
	5.8.1.1.3 GetDayOfWeek

	5.8.1.2 Funções de Escrita do RTC
	5.8.1.2.1 SetDateAndTime
	5.8.1.2.2 SetTimeZone

	5.8.2 RTC Data Structures
	5.8.2.1 EXTENDED_DATE_AND_TIME
	5.8.2.2 DAYS_OF_WEEK
	5.8.2.3 RTC_STATUS
	5.8.2.4 TIMEZONESETTINGS

	5.9 User Files Memory
	5.10 Memory Card
	5.10.1 Project Preparation
	5.10.2 Project Transfer
	5.10.3 MasterTool Access

	5.11 CPU’s Informative and Configuration Menu
	5.12 Function Blocks and Functions
	5.12.1 Special Function Blocks for Serial Communication
	5.12.1.1 SERIAL_CFG
	5.12.1.2 SERIAL_GET_CFG
	5.12.1.3 SERIAL_GET_CTRL
	5.12.1.4 SERIAL_GET_RX_QUEUE_STATUS
	5.12.1.5 SERIAL_PURGE_RX_QUEUE
	5.12.1.6 SERIAL_RX
	5.12.1.7 SERIAL_RX_EXTENDED
	5.12.1.8 SERIAL_SET_CTRL
	5.12.1.9 SERIAL_TX

	5.12.2 Inputs and Outputs Update
	5.12.2.1 REFRESH_INPUT
	5.12.2.2 REFRESH_OUTPUT

	5.12.3 PID Function Block
	5.12.4 Retain Timer
	5.12.4.1 TOF_RET
	5.12.4.2 TON_RET
	5.12.4.3 TP_RET

	5.12.5 User Log
	5.12.5.1 UserLogAdd
	5.12.5.2 UserLogDeleteAll

	5.12.6 ClearRtuDiagnostic
	5.12.7 ClearEventQueue

	5.13 SNMP
	5.13.1 Introduction
	5.13.2 SNMP nas UCPs Nexto
	5.13.3 Private MIB
	5.13.4 Configuration SNMP
	5.13.5 User and SNMP Communities

	6 Maintenance
	6.1 Module Diagnostics
	6.1.1 One Touch Diag
	6.1.2 Diagnostics via LED
	6.1.2.1 DG (Diagnostic)
	6.1.2.2 WD (Watchdog)
	6.1.2.3 RJ45 Connector LEDs

	6.1.3 Diagnostics via System Web Page
	6.1.4 Diagnostics via Variables
	6.1.4.1 Summarized Diagnostics
	6.1.4.2 Detailed Diagnostics

	6.1.5 Diagnostics via Function Blocks
	6.1.5.1 GetTaskInfo

	6.2 Graphic Display
	6.3 System Log
	6.4 Not Loading the Application at Startup
	6.5 Power Supply Failure
	6.6 Common Problems
	6.7 Troubleshooting
	6.8 Preventive Maintenance

	7 Annex. DNP3 Interoperability
	7.1 DNP3 Device Profile
	7.2 DNP V3.0 Implementation Table

